I need to "Find the minimal positive integer not occurring in a given sequence. "
A[0] = 1
A[1] = 3
A[2] = 6
A[3] = 4
A[4] = 1
A[5] = 2, the function should return 5.
Assume that:
N is an integer within the range [1..100,000];
each element of array A is an integer within the range [−2,147,483,648..2,147,483,647].
I wrote the code in codility, but for many cases it did not worked and the performance test gives 0 %. Please help me out, where I am wrong.
class Solution {
public int solution(int[] A) {
if(A.Length ==0) return -1;
int value = A[0];
int min = A.Min();
int max = A.Max();
for (int j = min+1; j < max; j++)
{
if (!A.Contains(j))
{
value = j;
if(value > 0)
{
break;
}
}
}
if(value > 0)
{
return value;
}
else return 1;
}
}
The codility gives error with all except the example, positive and negative only values.
Edit: Added detail to answer your actual question more directly.
"Please help me out, where I am wrong."
In terms of correctness: Consider A = {7,2,5,6,3}. The correct output, given the contents of A, is 1, but our algorithm would fail to detect this since A.Min() would return 2 and we would start looping from 3 onward. In this case, we would return 4 instead; since it's the next missing value.
Same goes for something like A = {14,15,13}. The minimal missing positive integer here is again 1 and, since all the values from 13-15 are present, the value variable will retain its initial value of value=A[0] which would be 14.
In terms of performance: Consider what A.Min(), A.Max() and A.Contains() are doing behind the scenes; each one of these is looping through A in its entirety and in the case of Contains, we are calling it repeatedly for every value between the Min() and the lowest positive integer we can find. This will take us far beyond the specified O(N) performance that Codility is looking for.
By contrast, here's the simplest version I can think of that should score 100% on Codility. Notice that we only loop through A once and that we take advantage of a Dictionary which lets us use ContainsKey; a much faster method that does not require looping through the whole collection to find a value.
using System;
using System.Collections.Generic;
class Solution {
public int solution(int[] A) {
// the minimum possible answer is 1
int result = 1;
// let's keep track of what we find
Dictionary<int,bool> found = new Dictionary<int,bool>();
// loop through the given array
for(int i=0;i<A.Length;i++) {
// if we have a positive integer that we haven't found before
if(A[i] > 0 && !found.ContainsKey(A[i])) {
// record the fact that we found it
found.Add(A[i], true);
}
}
// crawl through what we found starting at 1
while(found.ContainsKey(result)) {
// look for the next number
result++;
}
// return the smallest positive number that we couldn't find.
return result;
}
}
The simplest solution that scored perfect score was:
public int solution(int[] A)
{
int flag = 1;
A = A.OrderBy(x => x).ToArray();
for (int i = 0; i < A.Length; i++)
{
if (A[i] <= 0)
continue;
else if (A[i] == flag)
{
flag++;
}
}
return flag;
}
Fastest C# solution so far for [-1,000,000...1,000,000].
public int solution(int[] array)
{
HashSet<int> found = new HashSet<int>();
for (int i = 0; i < array.Length; i++)
{
if (array[i] > 0)
{
found.Add(array[i]);
}
}
int result = 1;
while (found.Contains(result))
{
result++;
}
return result;
}
A tiny version of another 100% with C#
using System.Linq;
class Solution
{
public int solution(int[] A)
{
// write your code in C# 6.0 with .NET 4.5 (Mono)
var i = 0;
return A.Where(a => a > 0).Distinct().OrderBy(a => a).Any(a => a != (i = i + 1)) ? i : i + 1;
}
}
A simple solution that scored 100% with C#
int Solution(int[] A)
{
var A2 = Enumerable.Range(1, A.Length + 1);
return A2.Except(A).First();
}
public class Solution {
public int solution( int[] A ) {
return Arrays.stream( A )
.filter( n -> n > 0 )
.sorted()
.reduce( 0, ( a, b ) -> ( ( b - a ) > 1 ) ? a : b ) + 1;
}
}
It seemed easiest to just filter out the negative numbers. Then sort the stream. And then reduce it to come to an answer. It's a bit of a functional approach, but it got a 100/100 test score.
Got an 100% score with this solution:
https://app.codility.com/demo/results/trainingUFKJSB-T8P/
public int MissingInteger(int[] A)
{
A = A.Where(a => a > 0).Distinct().OrderBy(c => c).ToArray();
if (A.Length== 0)
{
return 1;
}
for (int i = 0; i < A.Length; i++)
{
//Console.WriteLine(i + "=>" + A[i]);
if (i + 1 != A[i])
{
return i + 1;
}
}
return A.Max() + 1;
}
JavaScript solution using Hash Table with O(n) time complexity.
function solution(A) {
let hashTable = {}
for (let item of A) {
hashTable[item] = true
}
let answer = 1
while(true) {
if(!hashTable[answer]) {
return answer
}
answer++
}
}
The Simplest solution for C# would be:
int value = 1;
int min = A.Min();
int max = A.Max();
if (A.Length == 0) return value = 1;
if (min < 0 && max < 0) return value = 1;
List<int> range = Enumerable.Range(1, max).ToList();
List<int> current = A.ToList();
List<int> valid = range.Except(current).ToList();
if (valid.Count() == 0)
{
max++;
return value = max;
}
else
{
return value = valid.Min();
}
Considering that the array should start from 1 or if it needs to start from the minimum value than the Enumerable.range should start from Min
MissingInteger solution in C
int solution(int A[], int N) {
int i=0,r[N];
memset(r,0,(sizeof(r)));
for(i=0;i<N;i++)
{
if(( A[i] > 0) && (A[i] <= N)) r[A[i]-1]=A[i];
}
for(i=0;i<N;i++)
{
if( r[i] != (i+1)) return (i+1);
}
return (N+1);
}
My solution for it:
public static int solution()
{
var A = new[] { -1000000, 1000000 }; // You can try with different integers
A = A.OrderBy(i => i).ToArray(); // We sort the array first
if (A.Length == 1) // if there is only one item in the array
{
if (A[0]<0 || A[0] > 1)
return 1;
if (A[0] == 1)
return 2;
}
else // if there are more than one item in the array
{
for (var i = 0; i < A.Length - 1; i++)
{
if (A[i] >= 1000000) continue; // if it's bigger than 1M
if (A[i] < 0 || (A[i] + 1) >= (A[i + 1])) continue; //if it's smaller than 0, if the next integer is bigger or equal to next integer in the sequence continue searching.
if (1 < A[0]) return 1;
return A[i] + 1;
}
}
if (1 < A[0] || A[A.Length - 1] + 1 == 0 || A[A.Length - 1] + 1 > 1000000)
return 1;
return A[A.Length-1] +1;
}
class Solution {
public int solution(int[] A) {
int size=A.length;
int small,big,temp;
for (int i=0;i<size;i++){
for(int j=0;j<size;j++){
if(A[i]<A[j]){
temp=A[j];
A[j]=A[i];
A[i]=temp;
}
}
}
int z=1;
for(int i=0;i<size;i++){
if(z==A[i]){
z++;
}
//System.out.println(a[i]);
}
return z;
}
enter code here
}
In C# you can solve the problem by making use of built in library functions. How ever the performance is low for very large integers
public int solution(int[] A)
{
var numbers = Enumerable.Range(1, Math.Abs(A.Max())+1).ToArray();
return numbers.Except(A).ToArray()[0];
}
Let me know if you find a better solution performance wise
C# - MissingInteger
Find the smallest missing integer between 1 - 1000.000.
Assumptions of the OP take place
TaskScore/Correctness/Performance: 100%
using System;
using System.Linq;
namespace TestConsole
{
class Program
{
static void Main(string[] args)
{
var A = new int[] { -122, -5, 1, 2, 3, 4, 5, 6, 7 }; // 8
var B = new int[] { 1, 3, 6, 4, 1, 2 }; // 5
var C = new int[] { -1, -3 }; // 1
var D = new int[] { -3 }; // 1
var E = new int[] { 1 }; // 2
var F = new int[] { 1000000 }; // 1
var x = new int[][] { A, B, C, D, E, F };
x.ToList().ForEach((arr) =>
{
var s = new Solution();
Console.WriteLine(s.solution(arr));
});
Console.ReadLine();
}
}
// ANSWER/SOLUTION
class Solution
{
public int solution(int[] A)
{
// clean up array for negatives and duplicates, do sort
A = A.Where(entry => entry > 0).Distinct().OrderBy(it => it).ToArray();
int lowest = 1, aLength = A.Length, highestIndex = aLength - 1;
for (int i = 0; i < aLength; i++)
{
var currInt = A[i];
if (currInt > lowest) return lowest;
if (i == highestIndex) return ++lowest;
lowest++;
}
return 1;
}
}
}
Got 100% - C# Efficient Solution
public int solution (int [] A){
int len = A.Length;
HashSet<int> realSet = new HashSet<int>();
HashSet<int> perfectSet = new HashSet<int>();
int i = 0;
while ( i < len)
{
realSet.Add(A[i]); //convert array to set to get rid of duplicates, order int's
perfectSet.Add(i + 1); //create perfect set so can find missing int
i++;
}
perfectSet.Add(i + 1);
if (realSet.All(item => item < 0))
return 1;
int notContains =
perfectSet.Except(realSet).Where(item=>item!=0).FirstOrDefault();
return notContains;
}
class Solution {
public int solution(int[] a) {
int smallestPositive = 1;
while(a.Contains(smallestPositive)) {
smallestPositive++;
}
return smallestPositive;
}
}
Well, this is a new winner now. At least on C# and my laptop. It's 1.5-2 times faster than the previous champion and 3-10 times faster, than most of the other solutions. The feature (or a bug?) of this solution is that it uses only basic data types. Also 100/100 on Codility.
public int Solution(int[] A)
{
bool[] B = new bool[(A.Length + 1)];
for (int i = 0; i < A.Length; i++)
{
if ((A[i] > 0) && (A[i] <= A.Length))
B[A[i]] = true;
}
for (int i = 1; i < B.Length; i++)
{
if (!B[i])
return i;
}
return A.Length + 1;
}
Simple C++ solution. No additional memory need, time execution order O(N*log(N)):
int solution(vector<int> &A) {
sort (A.begin(), A.end());
int prev = 0; // the biggest integer greater than 0 found until now
for( auto it = std::begin(A); it != std::end(A); it++ ) {
if( *it > prev+1 ) break;// gap found
if( *it > 0 ) prev = *it; // ignore integers smaller than 1
}
return prev+1;
}
int[] A = {1, 3, 6, 4, 1, 2};
Set<Integer> integers = new TreeSet<>();
for (int i = 0; i < A.length; i++) {
if (A[i] > 0) {
integers.add(A[i]);
}
}
Integer[] arr = integers.toArray(new Integer[0]);
final int[] result = {Integer.MAX_VALUE};
final int[] prev = {0};
final int[] curr2 = {1};
integers.stream().forEach(integer -> {
if (prev[0] + curr2[0] == integer) {
prev[0] = integer;
} else {
result[0] = prev[0] + curr2[0];
}
});
if (Integer.MAX_VALUE == result[0]) result[0] = arr[arr.length-1] + 1;
System.out.println(result[0]);
I was surprised but this was a good lesson. LINQ IS SLOW. my answer below got me 11%
public int solution (int [] A){
if (Array.FindAll(A, x => x >= 0).Length == 0) {
return 1;
} else {
var lowestValue = A.Where(x => Array.IndexOf(A, (x+1)) == -1).Min();
return lowestValue + 1;
}
}
I think I kinda look at this a bit differently but gets a 100% evaluation. Also, I used no library:
public static int Solution(int[] A)
{
var arrPos = new int[1_000_001];
for (int i = 0; i < A.Length; i++)
{
if (A[i] >= 0)
arrPos[A[i]] = 1;
}
for (int i = 1; i < arrPos.Length; i++)
{
if (arrPos[i] == 0)
return i;
}
return 1;
}
public int solution(int[] A) {
// write your code in Java SE 8
Set<Integer> elements = new TreeSet<Integer>();
long lookFor = 1;
for (int i = 0; i < A.length; i++) {
elements.add(A[i]);
}
for (Integer integer : elements) {
if (integer == lookFor)
lookFor += 1;
}
return (int) lookFor;
}
I tried to use recursion in C# instead of sorting, because I thought it would show more coding skill to do it that way, but on the scaling tests it didn't preform well on large performance tests. Suppose it's best to just do the easy way.
class Solution {
public int lowest=1;
public int solution(int[] A) {
// write your code in C# 6.0 with .NET 4.5 (Mono)
if (A.Length < 1)
return 1;
for (int i=0; i < A.Length; i++){
if (A[i]==lowest){
lowest++;
solution(A);
}
}
return lowest;
}
}
Here is my solution in javascript
function solution(A) {
// write your code in JavaScript (Node.js 8.9.4)
let result = 1;
let haveFound = {}
let len = A.length
for (let i=0;i<len;i++) {
haveFound[`${A[i]}`] = true
}
while(haveFound[`${result}`]) {
result++
}
return result
}
class Solution {
public int solution(int[] A) {
var sortedList = A.Where(x => x > 0).Distinct().OrderBy(x => x).ToArray();
var output = 1;
for (int i = 0; i < sortedList.Length; i++)
{
if (sortedList[i] != output)
{
return output;
}
output++;
}
return output;
}
}
You should just use a HashSet as its look up time is also constant instead of a dictionary. The code is less and cleaner.
public int solution (int [] A){
int answer = 1;
var set = new HashSet<int>(A);
while (set.Contains(answer)){
answer++;
}
return answer;
}
This snippet should work correctly.
using System;
using System.Collections.Generic;
public class Program
{
public static void Main()
{
int result = 1;
List<int> lst = new List<int>();
lst.Add(1);
lst.Add(2);
lst.Add(3);
lst.Add(18);
lst.Add(4);
lst.Add(1000);
lst.Add(-1);
lst.Add(-1000);
lst.Sort();
foreach(int curVal in lst)
{
if(curVal <=0)
result=1;
else if(!lst.Contains(curVal+1))
{
result = curVal + 1 ;
}
Console.WriteLine(result);
}
}
}
I'm working on a simple algorithm problem for practice and i'm trying to figure out why on about 20 percent of test cases it fails. The problem is thus, given an array of ints find the average of all valid ints in the array.
An int is valid if
It is greater than or equal to -273
at least one of the previous two or next two ints are two points away from the current one
if the int is invalid it should not be included in calculating the average. Also, I don't believe the problem wants the solution to be cyclic (not sure though just thought about it while writing this so will try) i.e. if you are at the first int array[0], then there are no previous two ints as opposed to the last two being the previous two in a cyclic array.
my strategy is summed up in the code below:
public double averageTemperature(int[] measuredValues)
{
Queue<int> qLeft = new Queue<int>(2);
Queue<int> qRight = new Queue<int>(2);
double sum = 0d;
int cnt = 0;
for (int i = 0; i < measuredValues.Length; i++)
{
if (measuredValues[i] < -273)
continue;
if (qLeft.Count == 3)
qLeft.Dequeue();
for (int j = i + 1; j < measuredValues.Length; j++)
{
if (qRight.Count == 2)
{
break;
}
qRight.Enqueue(measuredValues[j]);
}
if (b(qLeft, qRight, measuredValues[i]) == true)
{
sum += measuredValues[i];
cnt++;
qLeft.Enqueue(measuredValues[i]);
}
qRight.Clear();
}
if (cnt > 0)
return sum / cnt;
return -300.0;
}
bool b(Queue<int> a, Queue<int> b, int c)
{
foreach (int q in a)
{
if (Math.Abs(q - c) <= 2)
return true;
}
foreach (int w in b)
{
if (Math.Abs(w - c) <= 2)
return true;
}
return false;
}
However, my strategy fails for this test case
{-13, 12, -14, 11, -15, 10, -16, 9, -17, 8, -18, 7, 6, -19, 5, -400, -400, 4, -390, -300, -270, 3, -12, 3, 2}
I don't understand why. I'm i missing something obvious? i know they're might be another more efficient way of solving this but i don't want to try them until i know why my "naive" way does not work.
Well I finally figured out why thanks to you guys. Here is my revised code for those who may find it helpful:
public double averageTemperature(int[] measuredValues)
{
Queue<int> qLeft = new Queue<int>(2);
Queue<int> qRight = new Queue<int>(2);
double sum = 0d;
int cnt = 0;
for (int i = 0; i < measuredValues.Length; i++)
{
if (qLeft.Count == 3)
qLeft.Dequeue();
for (int j = i + 1; j < measuredValues.Length; j++)
{
if (qRight.Count == 2)
{
break;
}
qRight.Enqueue(measuredValues[j]);
}
if (isValid(qLeft, qRight, measuredValues[i]) == true)
{
sum += measuredValues[i];
cnt++;
}
qLeft.Enqueue(measuredValues[i]);
qRight.Clear();
}
if (cnt > 0)
return sum / cnt;
return -300.0;
}
bool isValid(Queue<int> a, Queue<int> b, int c)
{
foreach (int q in a)
{
if (c >=-273 && Math.Abs(q - c) <= 2)
return true;
}
foreach (int w in b)
{
if (c >=-273 && Math.Abs(w - c) <= 2)
return true;
}
return false;
}
try starting at the same point in the nested for() loop when comparing. like this: what do you get when you run it?
public double averageTemperature(int[] measuredValues)
{
Queue<int> qLeft = new Queue<int>(2);
Queue<int> qRight = new Queue<int>(2);
double sum = 0d;
int cnt = 0;
for (int i = 0; i < measuredValues.Length; i++)
{
if (measuredValues[i] < -273)
continue;
if (qLeft.Count == 3)
qLeft.Dequeue();
for (int j = 0; j < measuredValues.Length; j++)
{
if (qRight.Count == 2)
{
break;
}
qRight.Enqueue(measuredValues[j]);
}
if (b(qLeft, qRight, measuredValues[i]) == true)
{
sum += measuredValues[i];
cnt++;
qLeft.Enqueue(measuredValues[i]);
}
qRight.Clear();
}
if (cnt > 0)
return sum / cnt;
return -300.0;
}
bool b(Queue<int> a, Queue<int> b, int c)
{
foreach (int q in a)
{
if (Math.Abs(q - c) <= 2)
return true;
}
foreach (int w in b)
{
if (Math.Abs(w - c) <= 2)
return true;
}
return false;
}
is it adding one each direction to put you two away like you were before?
You are enqueuing into qLeft only when the current value in the array is valid, but this is not right. You need to enqueue into qLeft at each iteration of the outer for-loop that is being controlled by i.
See the following code:
for (int i = 0; i < measuredValues.Length; i++)
{
if (measuredValues[i] < -273)
continue;
if (qLeft.Count == 3)
qLeft.Dequeue();
for (int j = i + 1; j < measuredValues.Length; j++)
{
if (qRight.Count == 2)
{
break;
}
qRight.Enqueue(measuredValues[j]);
}
if (b(qLeft, qRight, measuredValues[i]) == true)
{
sum += measuredValues[i];
cnt++;
}
qLeft.Enqueue(measuredValues[i]); // YOU NEED TO ENQUEUE INTO qLeft EACH TIME REGARDLESS OF IT IS VALID OR INVALID
qRight.Clear();
}
I've adapted QuickSort Method to sort Array's Row.
Here's the code:
That one works fine
static void QuickSort(int lowBound, int highBound, int[] a)
{
int temp = 0;
int x = random.Next(lowBound, highBound);
int pivot = a[x];
int i = lowBound;
int j = highBound;
do
{
while (a[i] < pivot) i++;
while (pivot < a[j]) j--;
if (i <= j)
{
temp = a[i]; //changes an element smaller than the pivot...
a[i] = a[j];//... with the greater one
a[j] = temp;
i++; j--;
}
}
while (i <= j);
if (lowBound < j) { QuickSort(lowBound, j, a); }//recursion
if (i < highBound){ QuickSort(i,highBound, a); }
}
Here's the problematic method
static void QuickSortMatrix(int[,] a)
{
int n = a.GetLength(0);
int m = a.GetLength(1);
for (int i = 0; i < n; i++)
{
QuickSortRow(0, m - 1, i, a);
}
for (int j = 0; j < m; j++)
{
QuickSortRow(0, n - 1, j, a);
}
}
static void QuickSortRow(int lowBound, int highBound, int row, int[,] a)
{
int temp = 0;
int x = random.Next(lowBound, highBound);
int pivot = a[row,x];
int p = lowBound;
int q = highBound;
do
{
while (a[row,p] < pivot) p++;
while (pivot < a[row,q]) q--;
if (p <= q)
{
temp = a[row,p];
a[row,p] = a[row,q];
a[row,q] = temp;
p++; q--;
}
}
while (p <= q);
if (lowBound < q) { QuickSortRow(lowBound, q, row, a); }
if (p < highBound) { QuickSortRow(p, highBound,row, a); }
}
At first when the "for" loop is executed everything's ok bur for some reason when executed recursively the row that should be constant when calling the method goes outside the matrix boundaries.
Here's my array and rows reaches value of 4
int[,] matrix =
{
{7,8,9,10,11,5},
{3,6,4,16,22,4},
{7,9,17,8,3,21},
{24,7,11,19,3,4}
};
I hope my explanation was clear enough.
Could anybody advise me? What I'm missing here?
Thank you for your kind help!
BR
Stephan
n is the number of rows in the matrix (4)
m is the number of columns in the matrix (6)
In your second loop you are going 0..m and passing that value to the row parameter. It blows up because there are more columns in the matrix than rows. i.e. It tries to read matrix[4, 0].
Note: as far as I can tell you don't need the second loop because your rows are already sorted after the first loop. Remove that and it won't throw an exception.
I am practising a C# console application, and I am trying to get the function to verify if the number appears in a fibonacci series or not but I'm getting errors.
What I did was:
class Program
{
static void Main(string[] args)
{
System.Console.WriteLine(isFibonacci(20));
}
static int isFibonacci(int n)
{
int[] fib = new int[100];
fib[0] = 1;
fib[1] = 1;
for (int i = 2; i <= 100; i++)
{
fib[i] = fib[i - 1] + fib[i - 2];
if (n == fib[i])
{
return 1;
}
}
return 0;
}
}
Can anybody tell me what am I doing wrong here?
Here's a fun solution using an infinite iterator block:
IEnumerable<int> Fibonacci()
{
int n1 = 0;
int n2 = 1;
yield return 1;
while (true)
{
int n = n1 + n2;
n1 = n2;
n2 = n;
yield return n;
}
}
bool isFibonacci(int n)
{
foreach (int f in Fibonacci())
{
if (f > n) return false;
if (f == n) return true;
}
}
I actually really like this kind of Fibonacci implementation vs the tradition recursive solution, because it keeps the work used to complete a term available to complete the next. The traditional recursive solution duplicates some work, because it needs two recursive calls each term.
The problem lies in <= the following statement:
for (int i = 2; i <= 100; i++)
more to the point the =. There is no fib[100] (C# zero counts) so when you check on i=100 you get an exception.
the proper statement should be
for (int i = 2; i < 100; i++)
or even better
for (int i = 2; i < fib.Length; i++)
And here is a solution that beats all of yours!
Because, why iteration when you have smart mathematicians doing closed-form solutions for you? :)
static bool IsFibonacci(int number)
{
//Uses a closed form solution for the fibonacci number calculation.
//http://en.wikipedia.org/wiki/Fibonacci_number#Closed-form_expression
double fi = (1 + Math.Sqrt(5)) / 2.0; //Golden ratio
int n = (int) Math.Floor(Math.Log(number * Math.Sqrt(5) + 0.5, fi)); //Find's the index (n) of the given number in the fibonacci sequence
int actualFibonacciNumber = (int)Math.Floor(Math.Pow(fi, n) / Math.Sqrt(5) + 0.5); //Finds the actual number corresponding to given index (n)
return actualFibonacciNumber == number;
}
Well, for starters your array is only 10 long and you're filling it with ~100 items (out-of-range-exception) - but there are better ways to do this...
for example, using this post:
long val = ...
bool isFib = Fibonacci().TakeWhile(x => x <= val).Last() == val;
int[] fib = new int[10];
for (int i = 2; i <= *100*; i++)
You're going out of the bounds of your array because your loop conditional is too large. A more traditional approach would be to bound the loop by the size of the array:
for (int i = 2; i < fib.Length; i++)
And make your array bigger, but as Marc said, there are better ways to do this, and I would advise you spend some time reading the wikipedia article on Fibonacci numbers.
One thing you can do is check for an early exit. Since you're trying to determine if a given number is in the Fibonacci sequence, you can do bounds checking to exit early.
Example:
static bool isFibonacci(int n)
{
int[] fib = new int[100];
fib[0] = 1;
fib[1] = 1;
for (int i = 2; i <= fib.Length; i++)
{
fib[i] = fib[i - 1] + fib[i - 2];
if (n == fib[i])
{
return true;
}
else if (n < fib[i])
{
return false; //your number has been surpassed in the fib seq
}
}
return false;
}
public static int FibNo(int n) {
int result = 0; int No = 0; int N1 = 1;
if (n< 0)
{ throw new ArguementException("number must be a positive value"); }
if (n <= 1)
{ result = n; return result; }
for(int x=1; x < n; x++)
{ result = No + N1; No = N1; N1=result; }
return result;
}