I am currently writing a kiosk style app in UWP (windows IoT Core), for use on embedded devices (e.g. pi3, etc.).
The device has several sensors, which are being output in real time into various graphs/charts in a single screen in the app, but I'm running into performance problems. The sensors are being read in separate threads (using Task.Run() => {}), but after analysis, this doesn't seem to cost that much cpu time at all.
It seems that updating the graphs take too much time and this isnt being distributed over the cores, since there is only a single UI thread. CPU usage doesnt get past 25%, the UI responsiveness just gets slow.
I tried several optimizations (e.g. reducing the amount of data points, etc.), which helps, but its not enough. Maybe there are faster chart components out there (currently using Telerik uwp component), but I was looking for another approach.
So summary of my question: Is there any way to have the charts each render in separate UI threads (and thus be distributed over the other cores somewhat)?
[UPDATE some time later]
Seems like the new win IoT release is a bit faster, as well as the newer chart component.
Can't speak strictly for UWP but from my experience of WPF having multiple UI threads is a hassle which you should avoid if at all possible (not to speak of the limitations they introduce).
When dealing with your sensor data what kind of polling rate are you looking at? Many sensors have a data rate which far outstrips what is useful to display to the user, would it be possible to have your worker thread compute an averaged value for a larger time frame and populate your graph with that? I doubt your users will see much of a benefit from updating them more than 20 times a second.
You can update the Graphs using Tasks too, just remember to use a dispatcher inside them, because changing UI from non UI threads is illegal.
For more info check this out:
https://learn.microsoft.com/en-us/windows/uwp/debug-test-perf/keep-the-ui-thread-responsive
and
https://learn.microsoft.com/en-us/uwp/api/windows.ui.core.coredispatcher
Related
I'm currently attempting to create a Bitcoin Miner written in C# XNA.
https://github.com/Generalkidd/XNAMiner
Now the problem is, the actual number crunching of the Miner seems to be taking up too much CPU time and therefore, the UI of the program pretty much freezes at launch, although I do believe the calculations are still happening in the background despite the window being frozen and unresponsive. I tried implementing Aphid's ParallelTasks library and migrated some of the for-loops into a different thread. I didn't fully understand how these parallel for-loops worked and thus the version I created did not iterate correctly, however, the program did speed up a lot. There were still a couple for-loops left as well as a bunch of foreach loops.
What's the easiest and most efficient way to optimize my code? Should I try moving each loop into its own thread? Or try moving entire methods into their own threads? Or would it be possible to use the GPU for these calculations (it'd ultimately be better that way given the state of CPU mining).
I hope you are doing this as an educational effort, as CPU/GPU mining has become obsolete since 2011. You can barely make your hardware investment even with free electricity. ASICs are the new thing for mining now.
Different GPU/CPU hash rates
Mining Calculator
Recently I've been analyzing how my parallel computations actually speed up on 16-core processor. And the general formula that I concluded - the more threads you have the less speed per core you get - is embarassing me. Here are the diagrams of my cpu load and processing speed:
So, you can see that processor load increases, but speed increases much slower. I want to know why such an effect takes place and how to get the reason of unscalable behaviour.
I've made sure to use Server GC mode.
I've made sure that I'm parallelizing appropriate code as soon as code does nothing more than
Loads data from RAM (server has 96 GB of RAM, swap file shouldn't be hit)
Performs not complex calculations
Stores data in RAM
I've profiled my application carefully and found no bottlenecks - looks like each operation becomes slower as thread number grows.
I'm stuck, what's wrong with my scenario?
I use .Net 4 Task Parallel Library.
You will always get this kind of curve, it's called Amdahl's law.
The question is how soon it will level off.
You say you checked your code for bottlenecks, let's assume that's correct. Then there is still the memory bandwidth and other hardware factors.
The key to a linear scalability - in the context of where going from one to two cores doubles the throughput - is to use shared resources as little as possible. This means:
don't use hyperthreading (because the two threads share the same core resource)
tie every thread to a specific core (otherwise the OS will juggle the
threads between cores)
don't use more threads than there are cores (the OS will swap in and
out)
stay inside the core's own caches - nowadays the L1 & L2 caches
don't venture into the L3 cache or RAM unless it is absolutely
necessary
minimize/economize on critical section/synchronization usage
If you've come this far you've probably profiled and hand-tuned your code too.
Thread pools are a compromise and not suited for uncompromising, high-performance applications. Total thread control is.
Don't worry about the OS scheduler. If your application is CPU-bound with long computations that mostly does local L1 & L2 memory accesses it's a better performance bet to tie each thread to its own core. Sure the OS will come in but compared to the work being performed by your threads the OS work is negligible.
Also I should say that my threading experience is mostly from Windows NT-engine machines.
_______EDIT_______
Not all memory accesses have to do with data reads and writes (see comment above). An often overlooked memory access is that of fetching code to be executed. So my statement about staying inside the core's own caches implies making sure that ALL necessary data AND code reside in these caches. Remember also that even quite simple OO code may generate hidden calls to library routines. In this respect (the code generation department), OO and interpreted code is a lot less WYSIWYG than perhaps C (generally WYSIWYG) or, of course, assembly (totally WYSIWYG).
A general decrease in return with more threads could indicate some kind of bottle neck.
Are there ANY shared resources, like a collection or queue or something or are you using some external functions that might be dependent on some limited resource?
The sharp break at 8 threads is interesting and in my comment I asked if the CPU is a true 16 core or an 8 core with hyper threading, where each core appears as 2 cores to the OS.
If it is hyper threading, you either have so much work that the hyper threading cannot double the performance of the core, or the memory pipe to the core cannot handle twice the data through put.
Are the work performed by the threads even or are some threads doing more than others, that could also indicate resource starvation.
Since your added that threads query for data very often, that indicates a very large risk of waiting.
Is there any way to let the threads get more data each time? Like reading 10 items instead of one?
If you are doing memory intensive stuff, you could be hitting cache capacity.
You could maybe test this with mock algorithm which just processes same small bit if data over and over so it all should fit in cache.
If it indeed is cache, possible solutions could be making the threads work on same data somehow (like different parts of small data window), or just tweaking the algorithm to be more local (like in sorting, merge sort is generally slower than quick sort, but it is more cache friendly which still makes it better in some cases).
Are your threads reading and writing to items close together in memory? Then you're probably running into false sharing. If thread 1 works with data[1] and thread2 works with data[2], then even though in an ideal world we know that two consecutive reads of data[2] by thread2 will always produce the same result, in the actual world, if thread1 updates data[1] sometime between those two reads, then the CPU will mark the cache as dirty and update it. http://msdn.microsoft.com/en-us/magazine/cc872851.aspx. To solve it, make sure the data each thread is working with is adequately far away in memory from the data the other threads are working with.
That could give you a performance boost, but likely won't get you to 16x—there are lots of things going on under the hood and you'll just have to knock them out one-by-one. And really it's not that your algorithm is running at 30% speed when multithreaded; it's more that your single-threaded algorithm is running at 300% speed, enabled by all sorts of CPU and caching awesomeness that running multithreaded has a harder time taking advantage of. So there's nothing to be "embarrassed" about. But with some diligence, you can perhaps get the multithreaded version working at nearly 300% speed as well.
Also, if you're counting hyperthreaded cores as real cores, well, they're not. They only allow threads to swap really fast when one is blocked. But they'll never let you run at double speed unless your threads are getting blocked half the time anyway, in which case that already means you have opportunity for speedup.
I have a WPF application where I need to add a feature that will display a series of full screen bitmaps very fast. In most cases it will be only two images, essentially toggling the two images. The rate they are displayed should be constant, around 10-20ms per image. I tried doing this directly in WPF using a timer, but the display rate appeared to vary quit a bit. I also tried using SharpGL (a .Net wrapper on OpenGL), but it was very slow when using large images (I may not have been doing the best way). I will have all the bitmaps upfront, before compile time, so the format could be changed as long as the pixels are not altered.
What would be the best way to do this?
I'm already behind schedule so I don't have time to learn lots of APIs or experiment with lots of options.
"I tried doing this directly in WPF using a timer, but the display rate appeared to vary quit a bit."
Instead of using a Timer, use Thread.Sleep(20) as it wont hog as many system resources. This should give you an immediate improvement.
It also sounds as though there will be user interaction with the application while the images are rapidly toggling, in this case put the code that toggles the images in a background thread. Remember though that the UI- is not thread safe.
These are just quick wins, but you might need to use DirectX for Hardware Acceleration to get around HAL:
The Windows' Hardware Abstraction Layer (HAL) is implemented in
Hal.dll. The HAL implements a number of functions that are
implemented in different ways by different hardware platforms, which
in this context, refers mostly to the Chipset. Other components in the
operating system can then call these functions in the same way on all
platforms, without regard for the actual implementation.
Can C# be used for developing a real-time application that involves taking input from web cam continuously and processing the input?
You cannot use any main stream garbage collected language for “hard real-time systems”, as the garbage collect will sometimes stop the system responding in a defined time. Avoiding allocating object can help, however you need a way to prove you are not creating any garbage and that the garbage collector will not kick in.
However most “real time” systems don’t in fact need to always respond within a hard time limit, so it all comes down do what you mean by “real time”.
Even when parts of the system needs to be “hard real time” often other large parts of the system like the UI don’t.
(I think your app needs to be fast rather than “real time”, if 1 frame is lost every 100 years how many people will get killed?)
I've used C# to create multiple realtime, high speed, machine vision applications that run 24/7 and have moving machinery dependent on the application. If something goes wrong in the software, something immediately and visibly goes wrong in the real world.
I've found that C#/.Net provide pretty good functionality for doing so. As others have said, definitely stay on top of garbage collection. Break up to processing into several logical steps, and have separate threads working each. I've found the Producer Consumer programming model to work well for this, perhaps ConcurrentQueue for starters.
You could start with something like:
Thread 1 captures the camera image, converts it to some format, and puts it into an ImageQueue
Thread 2 consumes from the ImageQueue, processing the image and comes up with a data object that is put onto a ProcessedQueue
Thread 3 consumes from the ProcessedQueue and does something interesting with the results.
If Thread 2 takes too long, Threads 1 and 3 are still chugging along. If you have a multicore processor you'll be throwing more hardware at the math. You could also use several threads in place of any thread that I wrote above, although you'd have to take care of ordering the results manually.
Edit
After reading other peoples answers, you could probably argue my definition of "realtime". In my case, the computer produces targets that it sends to motion controllers which do the actual realtime motion. The motion controllers provide their own safety layers for things like timing, max/min ranges, smooth accel/decelerations and safety sensors. These controllers read sensors across an entire factory with a cycle time of less than 1ms.
Absolutely. The key will be to avoid garbage collection and memory management as much as possible. Try to avoid new-ing objects as much as possible, using buffers or object pools when you can.
Of course, someone has even developed a library to do that: AForge.NET
As with any real-time application and not just C#, you'll have to manage the buffers well as #David suggested.
Not only that, there're also the XNA Framework (for things like 3D games) and you can program DirectX using C# as well which are very real-time.
And did you know that, if you want, you can do pointer manipulations in C# too?
It depends on how 'real-time' it needs to be; ie, what your timing constraints are, and how quickly you need to 'do something'.
If you can handle 'doing something' maybe every 300ms or so in .NET, say on a timer event, I've found Windows to work okay. Note that this is something I found true on multiple systems of different ages and different speeds. As always, YMMV.
But that number is awfully long for a lot of applications. Maybe not for yours.
Do some research, make sure your app responds quickly enough for your application.
On a single processor, Will multi-threading increse the speed of the calculation. As we all know that, multi-threading is used for Increasing the User responsiveness and achieved by sepating UI thread and calculation thread. But lets talk about only console application. Will multi-threading increases the speed of the calculation. Do we get culculation result faster when we calculate through multi-threading.
what about on multi cores, will multi threading increse the speed or not.
Please help me. If you have any material to learn more about threading. please post.
Edit:
I have been asked a question, At any given time, only one thread is allowed to run on a single core. If so, why people use multithreading in a console application.
Thanks in advance,
Harsha
In general terms, no it won't speed up anything.
Presumably the same work overall is being done, but now there is the overhead of additional threads and context switches.
On a single processor with HyperThreading (two virtual processors) then the answer becomes "maybe".
Finally, even though there is only one CPU perhaps some of the threads can be pushed to the GPU or other hardware? This is kinda getting away from the "single processor" scenario but could technically be way of achieving a speed increase from multithreading on a single core PC.
Edit: your question now mentions multithreaded apps on a multicore machine.
Again, in very general terms, this will provide an overall speed increase to your calculation.
However, the increase (or lack thereof) will depend on how parallelizable the algorithm is, the contention for memory and cache, and the skill of the programmer when it comes to writing parallel code without locking or starvation issues.
Few threads on 1 CPU:
may increase performance in case you continue with another thread instead of waiting for I/O bound operation
may decrease performance if let say there are too many threads and work is wasted on context switching
Few threads on N CPUs:
may increase performance if you are able to cut job in independent chunks and process them in independent manner
may decrease performance if you rely heavily on communication between threads and bus becomes a bottleneck.
So actually it's very task specific - you can parallel one things very easy while it's almost impossible for others. Perhaps it's a bit advanced reading for new person but there are 2 great resources on this topic in C# world:
Joe Duffy's web log
PFX team blog - they have a very good set of articles for parallel programming in .NET world including patterns and practices.
What is your calculation doing? You won't be able to speed it up by using multithreading if it a processor bound, but if for some reason your calculation writes to disk or waits for some other sort of IO you may be able to improve performance using threading. However, when you say "calculation" I assume you mean some sort of processor intensive algorithm, so adding threads is unlikely to help, and could even slow you down as the context switch between threads adds extra work.
If the task is compute bound, threading will not make it faster unless the calculation can be split in multiple independent parts. Even so you will only be able to achieve any performance gains if you have multiple cores available. From the background in your question it will just add overhead.
However, you may still want to run any complex and long running calculations on a separate thread in order to keep the application responsive.
No, no and no.
Unless you write parallelizing code to take advantage of multicores, it will always be slower if you have no other blocking functions.
Exactly like the user input example, one thread might be waiting for a disk operation to complete, and other threads can take that CPU time.
As described in the other answers, multi-threading on a single core won't give you any extra performance (hyperthreading notwithstanding). However, if your machine sports an Nvidia GPU you should be able to use the CUDA to push calculations to the GPU. See http://www.hoopoe-cloud.com/Solutions/CUDA.NET/Default.aspx and C#: Perform Operations on GPU, not CPU (Calculate Pi).
Above mention most.
Running multiple threads on one processor can increase performance, if you can manage to get more work done at the same time, instead of let the processor wait between different operations. However, it could also be a severe loss of performance due to for example synchronization or that the processor is overloaded and cant step up to the requirements.
As for multiple cores, threading can improve the performance significantly. However, much depends on finding the hotspots and not overdo it. Using threads everywhere and the need of synchronization can even lower the performance. Optimizing using threads with multiple cores takes a lot of pre-studies and planning to get a good result. You need for example to think about how many threads to be use in different situations. You do not want the threads to sit and wait for information used by another thread.
http://www.intel.com/intelpress/samples/mcp_samplech01.pdf
https://computing.llnl.gov/tutorials/parallel_comp/
https://computing.llnl.gov/tutorials/pthreads/
http://en.wikipedia.org/wiki/Superscalar
http://en.wikipedia.org/wiki/Simultaneous_multithreading
I have been doing some intensive C++ mathematical simulation runs using 24 core servers. If I run 24 separate simulations in parallel on the 24 cores of a single server, then I get a runtime for each of my simulations of say X seconds.
The bizarre thing I have noticed is that, when running only 12 simulations, using 12 of the 24 cores, with the other 12 cores idle, then each of the simulations runs at a runtime of Y seconds, where Y is much greater than X! When viewing the task manager graph of the processor usage, it is obvious that a process does not stick to only one core, but alternates between a number of cores. That is to say, the switching between cores to use all the cores slows down the calculation process.
The way I maintained the runtime when running only 12 simulations, is to run another 12 "junk" simulations on the side, using the remaining 12 cores!
Conclusion: When using multi-cores, use them all at 100%, for lower utilisation, the runtime increases!
For single core CPU,
Actually the performance depends on the job you are referring.
In your case, for calculation done by CPU, in that case OverClocking would help if your parentBoard supports it. Otherwise there is no way for CPU to do calculations that are faster than the speed of CPU.
For the sake of Multicore CPU
As the above answers say, if properly designed the performance may increase, if all cores are fully used.
In single core CPU, if the threads are implemented in User Level then multithreading wont matter if there are blocking system calls in the thread, like an I/O operation. Because kernel won't know about the userlevel threads.
So if the process does I/O then you can implement the threads in Kernel space and then you can implement different threads for different job.
(The answer here is on theory based.)
Even a CPU bound task might run faster multi-threaded if properly designed to take advantage of cache memory and pipelineing done by the processor. Modern processors spend a lot of time
twiddling their thumbs, even when nominally fully "busy".
Imagine a process that used a small chunk of memory very intensively. Processing
the same chunk of memory 1000 times would be much faster than processing 1000 chunks
of similar memory.
You could certainly design a multi threaded program that would be faster than a single thread.
Treads don't increase performance. Threads sacrifice performance in favor of keeping parts of the code responsive.
The only exception is if you are doing a computation that is so parallelizeable that you can run different threads on different cores (which is the exception, not the rule).