Related
I am trying to understand some code (for performance reasons) that is processing tasks from a queue. The code is C# .NET Framework 4.8 (And I didn't write this stuff)
I have this code creating a timer that from what I can tell should use a new thread every 10 seconds
_myTimer = new Timer(new TimerCallback(OnTimerGo), null, 0, 10000 );
Inside the onTimerGo it calls DoTask() inside of DoTask() it grabs a task off a queue and then does this
System.Threading.Tasks.Task.Factory.StartNew(ProcessTask, task).ContinueWith(c => DoTask());
My reading of this is that a new thread should start running OnTimerGo every 10 seconds, and that thread should in parralel run ProcessTask on tasks as fast as it can get them from the queue.
I inserted some code to call ThreadPool.GetMaxThreads and ThreadPool.GetAvailableThreads to figure out how many threads were in use. Then I queued up 10,000 things for it to do and let it loose.
I never see more then 4 threads in use at a time. This is running on a c4.4xlarge ec2 instance... so 16 vCPU 30 gb mem. The get max and available return over 2k. So I would expect more threads. By looking at the logging I can see that a total of 50ish different threads (by thread id) end up doing the work over the course of 20 minutes. Since the timer is set to every 10 seconds, I would expect 100 threads to be doing the work (or for it to finish sooner).
Looking at the code, the only time a running thread should stop is if it asks for a task from the queue and doesn't get one. Some other logging shows that there are never more than 2 tasks running in a thread. This is probably because they work is pretty fast. So the threads shouldn't be exiting, and I can even see from the logs that many of them end up doing as many as 500 tasks over the 20 minutes.
so... what am I missing here. Are the ThreadPool.GetMaxThreads and ThreadPool.GetAvailableThreads not accurate if run from inside a thread? Is something shutting down some of the threads while letting others keep going?
EDIT: adding more code
public static void StartScheduler()
{
lock (TimerLock)
{
if (_timerShutdown == false)
{
_myTimer = new Timer(new TimerCallback(OnTimerGo), null, 0, 10 );
const int numberOfSecondsPerMinute = 60;
const int margin = 1;
var pollEventsPerMinute = (numberOfSecondsPerMinute/SystemPreferences.TaskPollingIntervalSeconds);
_numberOfTimerCallsForHeartbeat = pollEventsPerMinute - margin;
}
}
}
private static void OnTimerGo(object state)
{
try
{
_lastTimer = DateTime.UtcNow;
var currentTickCount = Interlocked.Increment(ref _timerCallCount);
if (currentTickCount == _numberOfTimerCallsForHeartbeat)
{
Interlocked.Exchange(ref _timerCallCount, 0);
MonitoringTools.SendHeartbeatMetric(Heartbeat);
}
CheckForTasks();
}
catch (Exception e)
{
Log.Warn("Scheduler: OnTimerGo exception", e);
}
}
public static void CheckForTasks()
{
try
{
if (DoTask())
_lastStart = DateTime.UtcNow;
_lastStartOrCheck = DateTime.UtcNow;
}
catch (Exception e)
{
Log.Error("Unexpected exception checking for tasks", e);
}
}
private static bool DoTask()
{
Func<DataContext, bool> a = db =>
{
var mtid = Thread.CurrentThread.ManagedThreadId;
int totalThreads = Process.GetCurrentProcess().Threads.Count;
int maxWorkerThreads;
int maxPortThreads;
ThreadPool.GetMaxThreads(out maxWorkerThreads, out maxPortThreads);
int AvailableWorkerThreads;
int AvailablePortThreads;
ThreadPool.GetAvailableThreads(out AvailableWorkerThreads, out AvailablePortThreads);
int usedWorkerThreads = maxWorkerThreads - AvailableWorkerThreads;
string usedThreadMessage = $"Thread {mtid}: Threads in Use count: {usedWorkerThreads}";
Log.Info(usedThreadMessage);
var taskTypeAndTasks = GetTaskListTypeAndTasks();
var task = GetNextTask(db, taskTypeAndTasks.Key, taskTypeAndTasks.Value);
if (_timerShutdown)
{
Log.Debug("Task processing stopped.");
return false;
}
if (task == null)
{
Log.DebugFormat("DoTask: Idle in thread {0} ({1} tasks running)", mtid, _processingTaskLock);
return false;
}
Log.DebugFormat("DoTask: starting task {2}:{0} on thread {1}", task.Id, mtid, task.Class);
System.Threading.Tasks.Task.Factory.StartNew(ProcessTask, task).ContinueWith(c => DoTask());
Log.DebugFormat("DoTask: done ({0})", mtid);
return true;
};
return DbExtensions.WithDbWrite(ctx => a(ctx));
}
The Task.Factory.StartNew by default doesn't create a new thread. It borrows a thread from the ThreadPool instead.
The ThreadPool is intended as a small pool of reusable threads, to help amortize the cost of running frequent and lightweight operations like callbacks, continuations, event handers etc. Depleting the ThreadPool from available workers by scheduling too much work on it, results in a situation that is called saturation or starvation. And as you've already figured out, it's not a happy situation to be.
You can prevent the saturation of the ThreadPool by running your long-running work on dedicated threads instead of ThreadPool threads. This can be done by passing the TaskCreationOptions.LongRunning as argument to the Task.Factory.StartNew:
_ = Task.Factory.StartNew(ProcessTask, task, CancellationToken.None,
TaskCreationOptions.LongRunning,
TaskScheduler.Default).ContinueWith(t => DoTask(), CancellationToken.None,
TaskContinuationOptions.ExecuteSynchronously,
TaskScheduler.Default);
The above code schedules the ProcessTask(task) on a new thread, and after the invocation is completed either successfully or unsuccessfully, the DoTask will be invoked on the same thread. Finally the thread will be terminated. The discard _ signifies that the continuation Task (the task returned by the ContinueWith) is fire-and-forget. Which, to put it mildly, is architecturally suspicious. 😃
In case you are wondering why I pass the TaskScheduler.Default explicitly as argument to StartNew and ContinueWith, check out this link.
My reading of this is that a new thread should start running OnTimerGo every 10 seconds, and that thread should in parralel run ProcessTask on tasks as fast as it can get them from the queue.
Well, that is definitely not what's happening. It's a lot of uncertainty about your code, but it's clear that another DoTask is starting AFTER ProcessTask completes. And that is not parallel execution. Your line of code is this
System.Threading.Tasks.Task.Factory.StartNew(ProcessTask, task).ContinueWith(c => DoTask());
I suggest you to start another DoTask right there like this:
System.Threading.Tasks.Task.Factory.StartNew(ProcessTask, task);
DoTask();
Make sure your code is ready for parallel execution, though.
We could abort a Thread like this:
Thread thread = new Thread(SomeMethod);
.
.
.
thread.Abort();
But can I abort a Task (in .Net 4.0) in the same way not by cancellation mechanism. I want to kill the Task immediately.
The guidance on not using a thread abort is controversial. I think there is still a place for it but in exceptional circumstance. However you should always attempt to design around it and see it as a last resort.
Example;
You have a simple windows form application that connects to a blocking synchronous web service. Within which it executes a function on the web service within a Parallel loop.
CancellationTokenSource cts = new CancellationTokenSource();
ParallelOptions po = new ParallelOptions();
po.CancellationToken = cts.Token;
po.MaxDegreeOfParallelism = System.Environment.ProcessorCount;
Parallel.ForEach(iListOfItems, po, (item, loopState) =>
{
Thread.Sleep(120000); // pretend web service call
});
Say in this example, the blocking call takes 2 mins to complete. Now I set my MaxDegreeOfParallelism to say ProcessorCount. iListOfItems has 1000 items within it to process.
The user clicks the process button and the loop commences, we have 'up-to' 20 threads executing against 1000 items in the iListOfItems collection. Each iteration executes on its own thread. Each thread will utilise a foreground thread when created by Parallel.ForEach. This means regardless of the main application shutdown, the app domain will be kept alive until all threads have finished.
However the user needs to close the application for some reason, say they close the form.
These 20 threads will continue to execute until all 1000 items are processed. This is not ideal in this scenario, as the application will not exit as the user expects and will continue to run behind the scenes, as can be seen by taking a look in task manger.
Say the user tries to rebuild the app again (VS 2010), it reports the exe is locked, then they would have to go into task manager to kill it or just wait until all 1000 items are processed.
I would not blame you for saying, but of course! I should be cancelling these threads using the CancellationTokenSource object and calling Cancel ... but there are some problems with this as of .net 4.0. Firstly this is still never going to result in a thread abort which would offer up an abort exception followed by thread termination, so the app domain will instead need to wait for the threads to finish normally, and this means waiting for the last blocking call, which would be the very last running iteration (thread) that ultimately gets to call po.CancellationToken.ThrowIfCancellationRequested.
In the example this would mean the app domain could still stay alive for up to 2 mins, even though the form has been closed and cancel called.
Note that Calling Cancel on CancellationTokenSource does not throw an exception on the processing thread(s), which would indeed act to interrupt the blocking call similar to a thread abort and stop the execution. An exception is cached ready for when all the other threads (concurrent iterations) eventually finish and return, the exception is thrown in the initiating thread (where the loop is declared).
I chose not to use the Cancel option on a CancellationTokenSource object. This is wasteful and arguably violates the well known anti-patten of controlling the flow of the code by Exceptions.
Instead, it is arguably 'better' to implement a simple thread safe property i.e. Bool stopExecuting. Then within the loop, check the value of stopExecuting and if the value is set to true by the external influence, we can take an alternate path to close down gracefully. Since we should not call cancel, this precludes checking CancellationTokenSource.IsCancellationRequested which would otherwise be another option.
Something like the following if condition would be appropriate within the loop;
if (loopState.ShouldExitCurrentIteration || loopState.IsExceptional || stopExecuting) {loopState.Stop(); return;}
The iteration will now exit in a 'controlled' manner as well as terminating further iterations, but as I said, this does little for our issue of having to wait on the long running and blocking call(s) that are made within each iteration (parallel loop thread), since these have to complete before each thread can get to the option of checking if it should stop.
In summary, as the user closes the form, the 20 threads will be signaled to stop via stopExecuting, but they will only stop when they have finished executing their long running function call.
We can't do anything about the fact that the application domain will always stay alive and only be released when all foreground threads have completed. And this means there will be a delay associated with waiting for any blocking calls made within the loop to complete.
Only a true thread abort can interrupt the blocking call, and you must mitigate leaving the system in a unstable/undefined state the best you can in the aborted thread's exception handler which goes without question. Whether that's appropriate is a matter for the programmer to decide, based on what resource handles they chose to maintain and how easy it is to close them in a thread's finally block. You could register with a token to terminate on cancel as a semi workaround i.e.
CancellationTokenSource cts = new CancellationTokenSource();
ParallelOptions po = new ParallelOptions();
po.CancellationToken = cts.Token;
po.MaxDegreeOfParallelism = System.Environment.ProcessorCount;
Parallel.ForEach(iListOfItems, po, (item, loopState) =>
{
using (cts.Token.Register(Thread.CurrentThread.Abort))
{
Try
{
Thread.Sleep(120000); // pretend web service call
}
Catch(ThreadAbortException ex)
{
// log etc.
}
Finally
{
// clean up here
}
}
});
but this will still result in an exception in the declaring thread.
All things considered, interrupt blocking calls using the parallel.loop constructs could have been a method on the options, avoiding the use of more obscure parts of the library. But why there is no option to cancel and avoid throwing an exception in the declaring method strikes me as a possible oversight.
But can I abort a Task (in .Net 4.0) in the same way not by
cancellation mechanism. I want to kill the Task immediately.
Other answerers have told you not to do it. But yes, you can do it. You can supply Thread.Abort() as the delegate to be called by the Task's cancellation mechanism. Here is how you could configure this:
class HardAborter
{
public bool WasAborted { get; private set; }
private CancellationTokenSource Canceller { get; set; }
private Task<object> Worker { get; set; }
public void Start(Func<object> DoFunc)
{
WasAborted = false;
// start a task with a means to do a hard abort (unsafe!)
Canceller = new CancellationTokenSource();
Worker = Task.Factory.StartNew(() =>
{
try
{
// specify this thread's Abort() as the cancel delegate
using (Canceller.Token.Register(Thread.CurrentThread.Abort))
{
return DoFunc();
}
}
catch (ThreadAbortException)
{
WasAborted = true;
return false;
}
}, Canceller.Token);
}
public void Abort()
{
Canceller.Cancel();
}
}
disclaimer: don't do this.
Here is an example of what not to do:
var doNotDoThis = new HardAborter();
// start a thread writing to the console
doNotDoThis.Start(() =>
{
while (true)
{
Thread.Sleep(100);
Console.Write(".");
}
return null;
});
// wait a second to see some output and show the WasAborted value as false
Thread.Sleep(1000);
Console.WriteLine("WasAborted: " + doNotDoThis.WasAborted);
// wait another second, abort, and print the time
Thread.Sleep(1000);
doNotDoThis.Abort();
Console.WriteLine("Abort triggered at " + DateTime.Now);
// wait until the abort finishes and print the time
while (!doNotDoThis.WasAborted) { Thread.CurrentThread.Join(0); }
Console.WriteLine("WasAborted: " + doNotDoThis.WasAborted + " at " + DateTime.Now);
Console.ReadKey();
You shouldn't use Thread.Abort()
Tasks can be Cancelled but not aborted.
The Thread.Abort() method is (severely) deprecated.
Both Threads and Tasks should cooperate when being stopped, otherwise you run the risk of leaving the system in a unstable/undefined state.
If you do need to run a Process and kill it from the outside, the only safe option is to run it in a separate AppDomain.
This answer is about .net 3.5 and earlier.
Thread-abort handling has been improved since then, a.o. by changing the way finally blocks work.
But Thread.Abort is still a suspect solution that you should always try to avoid.
And in .net Core (.net 5+) Thread.Abort() will now throw a PlatformNotSupportedException .
Kind of underscoring the 'deprecated' point.
Everyone knows (hopefully) its bad to terminate thread. The problem is when you don't own a piece of code you're calling. If this code is running in some do/while infinite loop , itself calling some native functions, etc. you're basically stuck. When this happens in your own code termination, stop or Dispose call, it's kinda ok to start shooting the bad guys (so you don't become a bad guy yourself).
So, for what it's worth, I've written those two blocking functions that use their own native thread, not a thread from the pool or some thread created by the CLR. They will stop the thread if a timeout occurs:
// returns true if the call went to completion successfully, false otherwise
public static bool RunWithAbort(this Action action, int milliseconds) => RunWithAbort(action, new TimeSpan(0, 0, 0, 0, milliseconds));
public static bool RunWithAbort(this Action action, TimeSpan delay)
{
if (action == null)
throw new ArgumentNullException(nameof(action));
var source = new CancellationTokenSource(delay);
var success = false;
var handle = IntPtr.Zero;
var fn = new Action(() =>
{
using (source.Token.Register(() => TerminateThread(handle, 0)))
{
action();
success = true;
}
});
handle = CreateThread(IntPtr.Zero, IntPtr.Zero, fn, IntPtr.Zero, 0, out var id);
WaitForSingleObject(handle, 100 + (int)delay.TotalMilliseconds);
CloseHandle(handle);
return success;
}
// returns what's the function should return if the call went to completion successfully, default(T) otherwise
public static T RunWithAbort<T>(this Func<T> func, int milliseconds) => RunWithAbort(func, new TimeSpan(0, 0, 0, 0, milliseconds));
public static T RunWithAbort<T>(this Func<T> func, TimeSpan delay)
{
if (func == null)
throw new ArgumentNullException(nameof(func));
var source = new CancellationTokenSource(delay);
var item = default(T);
var handle = IntPtr.Zero;
var fn = new Action(() =>
{
using (source.Token.Register(() => TerminateThread(handle, 0)))
{
item = func();
}
});
handle = CreateThread(IntPtr.Zero, IntPtr.Zero, fn, IntPtr.Zero, 0, out var id);
WaitForSingleObject(handle, 100 + (int)delay.TotalMilliseconds);
CloseHandle(handle);
return item;
}
[DllImport("kernel32")]
private static extern bool TerminateThread(IntPtr hThread, int dwExitCode);
[DllImport("kernel32")]
private static extern IntPtr CreateThread(IntPtr lpThreadAttributes, IntPtr dwStackSize, Delegate lpStartAddress, IntPtr lpParameter, int dwCreationFlags, out int lpThreadId);
[DllImport("kernel32")]
private static extern bool CloseHandle(IntPtr hObject);
[DllImport("kernel32")]
private static extern int WaitForSingleObject(IntPtr hHandle, int dwMilliseconds);
While it's possible to abort a thread, in practice it's almost always a very bad idea to do so. Aborthing a thread means the thread is not given a chance to clean up after itself, leaving resources undeleted, and things in unknown states.
In practice, if you abort a thread, you should only do so in conjunction with killing the process. Sadly, all too many people think ThreadAbort is a viable way of stopping something and continuing on, it's not.
Since Tasks run as threads, you can call ThreadAbort on them, but as with generic threads you almost never want to do this, except as a last resort.
I faced a similar problem with Excel's Application.Workbooks.
If the application is busy, the method hangs eternally. My approach was simply to try to get it in a task and wait, if it takes too long, I just leave the task be and go away (there is no harm "in this case", Excel will unfreeze the moment the user finishes whatever is busy).
In this case, it's impossible to use a cancellation token. The advantage is that I don't need excessive code, aborting threads, etc.
public static List<Workbook> GetAllOpenWorkbooks()
{
//gets all open Excel applications
List<Application> applications = GetAllOpenApplications();
//this is what we want to get from the third party library that may freeze
List<Workbook> books = null;
//as Excel may freeze here due to being busy, we try to get the workbooks asynchronously
Task task = Task.Run(() =>
{
try
{
books = applications
.SelectMany(app => app.Workbooks.OfType<Workbook>()).ToList();
}
catch { }
});
//wait for task completion
task.Wait(5000);
return books; //handle outside if books is null
}
This is my implementation of an idea presented by #Simon-Mourier, using the dotnet thread, short and simple code:
public static bool RunWithAbort(this Action action, int milliseconds)
{
if (action == null) throw new ArgumentNullException(nameof(action));
var success = false;
var thread = new Thread(() =>
{
action();
success = true;
});
thread.IsBackground = true;
thread.Start();
thread.Join(milliseconds);
thread.Abort();
return success;
}
You can "abort" a task by running it on a thread you control and aborting that thread. This causes the task to complete in a faulted state with a ThreadAbortException. You can control thread creation with a custom task scheduler, as described in this answer. Note that the caveat about aborting a thread applies.
(If you don't ensure the task is created on its own thread, aborting it would abort either a thread-pool thread or the thread initiating the task, neither of which you typically want to do.)
using System;
using System.Threading;
using System.Threading.Tasks;
...
var cts = new CancellationTokenSource();
var task = Task.Run(() => { while (true) { } });
Parallel.Invoke(() =>
{
task.Wait(cts.Token);
}, () =>
{
Thread.Sleep(1000);
cts.Cancel();
});
This is a simple snippet to abort a never-ending task with CancellationTokenSource.
I have a program I am writing that will run a variety of tasks. I have set up what I have called a "Task Queue" in which I will continually grab the next task to process (if there is one) and start a new thread to handle that task. However, I want to limit the amount of threads that can spawn at one time for apparent reasons. I created a variable to keep up with the max threads to spawn and one for the current thread count. I was thinking of using a lock to try and accurately keep up with the current thread count. Here is my general idea.
public class Program {
private static int mintThreadCount;
private static int mintMaxThreadCount = 10;
private static object mobjLock = new object();
static void Main(string[] args) {
mintThreadCount = 0;
int i = 100;
while(i > 0) {
StartNewThread();
i--;
}
Console.Read();
}
private static void StartNewThread() {
lock(mobjLock) {
if(mintThreadCount < mintMaxThreadCount) {
Thread newThread = new Thread(StartTask);
newThread.Start(mintThreadCount);
mintThreadCount++;
}
else {
Console.WriteLine("Max Thread Count Reached.");
}
}
}
private static void StartTask(object iCurrentThreadCount) {
int id = new Random().Next(0, 1000000);
Console.WriteLine("New Thread with id of: " + id.ToString() + " Started. Current Thread count: " + ((int)iCurrentThreadCount).ToString());
Thread.Sleep(new Random().Next(0, 3000));
lock(mobjLock) {
Console.WriteLine("Ending thread with id of: " + id.ToString() + " now.");
mintThreadCount--;
Console.WriteLine("Thread space release by id of: " + id.ToString() + " . Thread count now at: " + mintThreadCount);
}
}
}
Since I am locking in two places to access the same variable (increment when starting the new thread and decrement when ending it) is there a chance that the thread waiting on the lock to decrement could get hung up and never end? Thereby reaching max thread count and never being able to start another one? Any alternate suggestions to my method?
Easiest question first… :)
…is there a chance that the thread waiting on the lock to decrement could get hung up and never end?
No, not in the code you posted. None of the code holds a lock while waiting for the count to change, or anything like that. You only ever take the lock, then either modify the count or emit a message, and immediately release the lock. So no thread will hold the lock indefinitely, nor are there nested locks (which could lead to deadlock if done incorrectly).
Now, that said: from the code you posted and your question, it's not entirely clear what the intent here is. The code as written will indeed limit the number of threads created. But once that limit is reached (and it will do so quickly), the main loop will just spin, reporting "Max Thread Count Reached.".
Indeed, with a total loop count of 100, I think it's possible that the entire loop could finish before the first thread even gets to run, depending on what else is tying up CPU cores on your system. If some threads do get to run and it happens that some of them get very low durations to sleep, there's a chance that you might sneak in a few more threads later. But most of the iterations of the loop will see the thread count at the maximum, report the limit has been reached and continue with the next iteration of the loop.
You write in the comments (something you should really put in the question itself, if you think it's relevant) that "the main thread should never be blocked". Of course, the question there is, what is the main thread doing when not blocked? How will the main thread know if and when to try to schedule a new thread?
These are important details, if you want a really useful answer.
Note that you've been offered the suggestion of using a semaphore (specifically, SemaphoreSlim). This could be a good idea, but note that that class is typically used to coordinate multiple threads all competing for the same resource. For it to be useful, you'd actually have more than 10 threads, with the semaphore ensuring that only 10 get to run at a given time.
In your case, it seems to me that you are actually asking how to avoid creating the extra thread in the first place. I.e. you want the main loop to check the count and just not create a thread at all if the maximum count is reached. In that case, one possible solution might be to just use the Monitor class directly:
private static void StartNewThread() {
lock(mobjLock) {
while (mintThreadCount >= mintMaxThreadCount) {
Console.WriteLine("Max Thread Count Reached.");
Monitor.Wait(mobjLock);
}
Thread newThread = new Thread(StartTask);
newThread.Start(mintThreadCount);
mintThreadCount++;
}
}
}
The above will cause the StartNewThread() method to wait until the count is below the maximum, and then will always create a new thread.
Of course, each thread needs to signal that it's updated the count, so that the above loop can be released from the wait and check the count:
private readonly Random _rnd = new Random();
private static void StartTask(object iCurrentThreadCount) {
int id = _rnd.Next(0, 1000000);
Console.WriteLine("New Thread with id of: " + id.ToString() + " Started. Current Thread count: " + ((int)iCurrentThreadCount).ToString());
Thread.Sleep(_rnd.Next(0, 3000));
lock(mobjLock) {
Console.WriteLine("Ending thread with id of: " + id.ToString() + " now.");
mintThreadCount--;
Console.WriteLine("Thread space release by id of: " + id.ToString() + " . Thread count now at: " + mintThreadCount);
Monitor.Pulse(mobjLock);
}
}
The problem with the above is that it will block the main loop. Which if I understood correctly, you don't want.
(Note: you have a common-but-serious bug in your code, in that you create a new Random object each time you want a random number. To use the Random class correctly, you must create just one instance and reuse it as you want new random numbers. I've adjusted the code example above to fix that problem).
One of the other problems, both with the above, and with your original version, is that each new task is assigned a brand new thread. Threads are expensive to create and even to simply exist, which is why thread pools exist. Depending on what your actual scenario is, it's possible that you should just be using e.g. the Parallel, ParallelEnumerable, or Task to manage your tasks.
But if you really want to do this all explicitly, one option is to simply start up ten threads, and have them retrieve data to operate on from a BlockingCollection<T>. Since you start exactly ten threads, you know you'll never have more than that running. When there is enough work for all ten threads to be busy, they will be. Otherwise, the queue will be empty and some or all will be waiting for new data to show in the queue. Idle, but not using any CPU resources.
For example:
private BlockingCollection<int> _queue = new BlockingCollection<int>();
private static void StartThreads() {
for (int i = 0; i < mintMaxThreadCount; i++) {
new Thread(StartTask).Start();
}
}
private static void StartTask() {
// NOTE: a random number can't be a reliable "identification", as two or
// more threads could theoretically get the same "id".
int id = new Random().Next(0, 1000000);
Console.WriteLine("New Thread with id of: " + id.ToString() + " Started.");
foreach (int i in _queue) {
Thread.Sleep(i);
}
Thread.Sleep(new Random().Next(0, 3000));
}
You'd call StartThreads() just once somewhere, rather than calling your other StartNewThread() method multiple times. Presumably, before the while (true) loop you mentioned.
Then as the need to process some task, you just add data to the queue, e.g.:
_queue.Add(_rnd.Next(0, 3000));
When you want the threads to all exit (e.g. after your main loop exits, however that happens):
_queue.CompleteAdding();
That will cause each of the foreach loops in progress to end, letting each thread exit.
Of course, the T type parameter for BlockingCollection<T> can be anything. Presumably, it will be whatever in your case actually represents a "task". I used int, only because that was effectively your "task" in your example (i.e. the number of milliseconds the thread should sleep).
Then your main thread can just do whatever it normally does, calling the Add() method to dispatch new work to your consumer threads as needed.
Again, without more details I can't really comment on whether this approach would be better than using one of the built-in task-running mechanisms in .NET. But it should work well, given what you've explained so far.
I have a Thread (STAThread) in a Windows Service, which performs a big amount of work. When the windows service is restarted I want to stop this thread gracefully.
I know of a couple of ways
A volatile boolean
ManualResetEvent
CancellationToken
As far as I have found out Thread.Abort is a no go...
What is the best practice ?
The work is perfomed in another class than the one where the thread is started, so it is necessary to either introduce a cancellationToken parameter in a constructor or for example have a volatile variable. But I just can't figure out what is smartest.
Update
Just to clarify a little I have wrapped up a very simple example of what I'm talking about. As said earlier, this is being done in a windows service. Right now I'm thinking a volatile boolean that is checked on in the loop or a cancellationToken....
I cannot wait for the loop to finish, as stated below it can take several minutes, making the system administrators of the server believe that something is wrong with the service when they need to restart it.... I can without problems just drop all the work within the loop without problems, however I cannot do this with a Thread.Abort it is "evil" and furthermore a COM interface is called, so a small clean up is needed.
Class Scheduler{
private Thread apartmentThread;
private Worker worker;
void Scheduling(){
worker = new Worker();
apartmentThread = new Thread(Run);
apartmentThread.SetApartmentState(ApartmentState.STA);
apartmentThread.Start();
}
private void Run() {
while (!token.IsCancellationRequested) {
Thread.Sleep(pollInterval * MillisecondsToSeconds);
if (!token.IsCancellationRequested) {
worker.DoWork();
}
}
}
}
Class Worker{
//This will take several minutes....
public void DoWork(){
for(int i = 0; i < 50000; i++){
//Do some work including communication with a COM interface
//Communication with COM interface doesn't take long
}
}
}
UPDATE
Just examined performance, using a cancellationToken where the isCancelled state is "examined" in the code, is much faster than using a waitOne on a ManualResetEventSlim. Some quick figuers, an if on the cancellationToken iterating 100.000.000 times in a for loop costs me approx. 500 ms, where the WaitOne costs approx. 3 seconds. So performance in this scenario it is faster to use the cancellationToken.
You haven't posted enough of your implementation but I would highly recommend a CancellationToken if that is available to you. It's simple enough to use and understand from a maintainability standpoint. You can setup cooperative cancellation as well too if you decide to have more than one worker thread.
If you find yourself in a situation where this thread may block for long periods of time, it's best to setup your architecture so that this doesn't occur. You shouldn't be starting threads that won't play nice when you tell them to stop. If they don't stop when you ask them, the only real way is to tear down the process and let the OS kill them.
Eric Lippert posted a fantastic answer to a somewhat-related question here.
I tend to use a bool flag, a lock object and a Terminate() method, such as:
object locker = new object();
bool do_term = false;
Thread thread = new Thread(ThreadStart(ThreadProc));
thread.Start();
void ThreadProc()
{
while (true) {
lock (locker) {
if (do_term) break;
}
... do work...
}
}
void Terminate()
{
lock (locker) {
do_term = true;
}
}
Asides from Terminate() all the other fields and methods are private to the "worker" class.
Use a WaitHandle, most preferably a ManualResetEvent. Your best bet is to let whatever is in your loop finish. This is the safest way to accomplish your goal.
ManualResetEvent _stopSignal = new ManualResetEvent(false); // Your "stopper"
ManualResetEvent _exitedSignal = new ManualResetEvent(false);
void DoProcessing() {
try {
while (!_stopSignal.WaitOne(0)) {
DoSomething();
}
}
finally {
_exitedSignal.Set();
}
}
void DoSomething() {
//Some work goes here
}
public void Terminate() {
_stopSignal.Set();
_exitedSignal.WaitOne();
}
Then to use it:
Thread thread = new Thread(() => { thing.DoProcessing(); });
thread.Start();
//Some time later...
thing.Terminate();
If you have a particularly long-running process in your "DoSomething" implementation, you may want to call that asynchronously, and provide it with state information. That can get pretty complicated, though -- better to just wait until your process is finished, then exit, if you are able.
There are two situations in which you may find your thread:
Processing.
Blocking.
In the case where your thread is processing something, you must wait for your thread to finish processing in order for it to safely exit. If it's part of a work loop, then you can use a boolean flag to terminate the loop.
In the case where your thread is blocking, then you need to wake your thread and get it processing again. A thread may be blocking on a ManualResetEvent, a database call, a socket call or whatever else you could block on. In order to wake it up, you must call the Thread.Interrupt() method which will raise a ThreadInterruptedException.
It may look something like this:
private object sync = new object():
private bool running = false;
private void Run()
{
running = true;
while(true)
{
try
{
lock(sync)
{
if(!running)
{
break;
}
}
BlockingFunction();
}
catch(ThreadInterruptedException)
{
break;
}
}
}
public void Stop()
{
lock(sync)
{
running = false;
}
}
And here is how you can use it:
MyRunner r = new MyRunner();
Thread t = new Thread(()=>
{
r.Run();
});
t.IsBackground = true;
t.Start();
// To stop the thread
r.Stop();
// Interrupt the thread if it's in a blocking state
t.Interrupt();
// Wait for the thread to exit
t.Join();
I have scenarios where I need a main thread to wait until every one of a set of possible more than 64 threads have completed their work, and for that I wrote the following helper utility, (to avoid the 64 waithandle limit on WaitHandle.WaitAll())
public static void WaitAll(WaitHandle[] handles)
{
if (handles == null)
throw new ArgumentNullException("handles",
"WaitHandle[] handles was null");
foreach (WaitHandle wh in handles) wh.WaitOne();
}
With this utility method, however, each waithandle is only examined after every preceding one in the array has been signalled... so it is in effect synchronous, and will not work if the waithandles are autoResetEvent wait handles (which clear as soon as a waiting thread has been released)
To fix this issue I am considering changing this code to the following, but would like others to check and see if it looks like it will work, or if anyone sees any issues with it, or can suggest a better way ...
Thanks in advance:
public static void WaitAllParallel(WaitHandle[] handles)
{
if (handles == null)
throw new ArgumentNullException("handles",
"WaitHandle[] handles was null");
int actThreadCount = handles.Length;
object locker = new object();
foreach (WaitHandle wh in handles)
{
WaitHandle qwH = wh;
ThreadPool.QueueUserWorkItem(
delegate
{
try { qwH.WaitOne(); }
finally { lock(locker) --actThreadCount; }
});
}
while (actThreadCount > 0) Thread.Sleep(80);
}
If you know how many threads you have, you can use an interlocked decrement. This is how I usually do it:
{
eventDone = new AutoResetEvent();
totalCount = 128;
for(0...128) {ThreadPool.QueueUserWorkItem(ThreadWorker, ...);}
}
void ThreadWorker(object state)
try
{
... work and more work
}
finally
{
int runningCount = Interlocked.Decrement(ref totalCount);
if (0 == runningCount)
{
// This is the last thread, notify the waiters
eventDone.Set();
}
}
Actually, most times I don't even signal but instead invoke a callback continues the processing from where the waiter would continue. Less blocked threads, more scalability.
I know is different and may not apply to your case (eg. for sure will not work if some of thoe handles are not threads, but I/O or events), but it may worth thinking about this.
I'm not sure what exactly you're trying to do, but would a CountdownEvent (.NET 4.0) conceptually solve your problem?
I'm not a C# or .NET programmer, but you could use a semaphore that is posted when one of your worker threads exits. The monitoring thread would simply wait on the semaphore n times where n is the number of worker threads. Semaphores are traditionally used to count resources in use but they can be used to count jobs completed by waiting on the same semaphore for n times.
When working with lots of simultaneous threads, I prefer to add each thread's ManagedThreadId into a Dictionary when I start the thread, and then have each thread invoke a callback routine that removes the dying thread's id from the Dictionary. The Dictionary's Count property tells you how many threads are active. Use the value side of the key/value pair to hold info that your UI thread can use to report status. Wrap the Dictionary with a lock to keep things safe.
ThreadPool.QueueUserWorkItem(o =>
{
try
{
using (var h = (o as WaitHandle))
{
if (!h.WaitOne(100000))
{
// Alert main thread of the timeout
}
}
}
finally
{
Interlocked.Decrement(ref actThreadCount);
}
}, wh);