Related
Suppose I have a class that provides some data to my application. Data initially comes from database, and I provide it through some methods that handle the whole database thing and present the result as a usable class instead of raw query result. This class has to do some setup (not complex) to make sure any method called can use the database (e.g. connect to database, make sure it contains some critical info, etc). So, were I to put it in a method (say, method Init(), that would handle checking for database, connecting to it, verifying that it does contain the info), I would have to make sure that this method is called before any other method.
So, I usually find that instead of doing this:
public class DataProvider
{
private SqlController controller;
public void Init()
{
controller = new SqlController();
controller.Init();
controller.ConnectToDataBase();
CheckForCriticalInfoInDatabase();
}
public Data GetData()
{
// get data from database (not actually going to use raw queries like that, just an example)
var queryResult = sqlController.RunQuery("SELECT something FROM SOME_TABLE");
// and present it as usable class
Data usefulData = QueryResultToUsefulData(queryResult);
return usefulData;
}
...
}
and then always making sure I call Init() before GetData(), i do something like
private SqlController _controller;
private SqlController controller
{
get
{
if (_controller == null)
{
_controller = new SqlController();
_controller.Init();
_controller.ConnectToDataBase();
CheckForCriticalInfoInDatabase();
}
return controller;
}
}
So, now i can be sure that i won't use an uninitialised SqlController, and I don't have to do that same null check in every method that uses it. However, I never noticed getters being used this way in other peoples' code.
Is there some pitfall I don't see? To me it looks like it's the same as lazy initialization, with the exception being that I use it not because the initialization is heavy or long, but because I don't want to check the order in which I call methods. This question points out that it's not thread-safe (not a concern in my case, plus I imagine it could be made thread-safe with some locks) and that setting the property to null will result in unintuitive behaviour (not a concern, because I don't have a setter at all and the backing field shouldn't be touched either way).
Also, if this kind of code IS bas practice, what is the proper way to ensure that my methods don't rely on order in which they are called?
As #madreflection said in the OP comments, use a method for anything that is possibly going to be slow. Getters and setters should just be quick ways of getting and setting a value.
Connections to dbs can be slow or fail to connect so you may have catches setup to try different connection methods etc.
You could also have the checking occur in the constructor of the object, that way the object cannot be used without init() being run in a different function, saving on time tracing where an error is actually occurring.
For example if you had one function create the object, do a bunch of 'stuff' then try to use the object without running init(), then you get the error after all of the 'stuff' not where you created the object. This could lead you to think there is something wrong in whatever way you are using the object, not that it has not been initialised.
When implementing a custom StructureMap (2.6) lifecycle (by inheriting from ILifecycle), its responsibility is to return an IObjectCache instance - depending on how long the lifetime is, this can be a filled or an empty object cache.
But I want to pre-initialize that cache, so that at the start of the lifecycle, I can specify what instance to use for a specific interface, which StructureMap will then
keep returning for the duration of the lifecycle.
Right now, the only option I see to specify a specific instance is in the ObjectFactory.Configure:
StructureMap.ObjectFactory.Configure(x =>
{
x.For<IPluginExecutionContext>()
.LifecycleIs(new PluginCallLifecycle())
.Use(myExecutionContext);
}
But this would mean that I would have call Configure() every time an ILifecycle starts. For one thing, this isn't thread-safe in my situation, and to me it doesn't seem good practice to reconfigure the container like this every time.
How can I manually add a value to the IObjectCache, so that StructureMap will return that value for the duration of the ILifecycle?
I've looked at the IObjectCache's methods, but most of them require a StructureMap.Pipeline.Instance, which doesn't seem trivial to create or obtain...
Why do you want to pre-fill the cache? StructureMap should do this for you when an instance of the IPluginExecutionContext is requested.
If you are simply trying to implement a lifecycle which keeps returning the same object for a given time and only then creates a new one, take a look at this post by Adam Bar.
If you want to accomplish something different, can you describe your scenario in more details?
EDIT:
If you really need the first cached object to be a specific instance (thought I don't know why you'd want that), you can also (maybe in addition to using the solution I linked to) change your registration to:
StructureMap.ObjectFactory.Configure(x =>
{
x.For<IPluginExecutionContext>()
.LifecycleIs(new PluginCallLifecycle()) // or TimeExpiringLifecycle
.Use(ctx => getMyExecutionContext(ctx));
}
where getMyExecutionContext would be a method which returns your predefined instance (myExecutionContext) on the first call and creates a new one on subsequent calls. Combined with Adam Bar's TimeExpiringLifecycle, this would give you a cached instance which changes every time a given timeout expires, while allowing you to manually inject the first cached instance.
I have a non-static class called ImplementHeaderButtons which contains a non-static public method called Implement. The name of the class and method are not important, what's important is that they are not static, so they need to be instantiated in order to be used, right?
So I used to do this:
var implementHeaderButtons = new ImplementHeaderButtons();
implementHeaderButtons.Implement(this, headerButtons);
But then I decided to play around a bit with it (actually I was looking for a way to make it a one-liner) and I concluded that the following code works just as well:
new ImplementHeaderButtons().Implement(this, headerButtons);
Now, I do not need a variable to hold the instance, but my question is: how come I can create a new instance of a class on the fly and call a method of it without having a variable to store the instance?
I wouldn't be surprised if it didn't work as intended, but it does.
they are not static, so they need to be instantiated in order to be used, right?
Yes, but you are still instantiating the class with new ImplementHeaderButtons(), you just aren't storing a reference to that newly created instance anywhere.
You can still call a method on this instance as you have done in your example, but you will not be able to do anything else with it afterwards without a reference. Eventually the instance will be cleaned up by the garbage collector (provided the method you call does not store a reference to the object somewhere).
A variable is just a reference, for your convenience. You are not naming it, but it is just there, on the top of the stack (in general ;-) ). Do you can call it's methods as long as you can refer to the variable, either by using it's name (which you do not have) or by working on the "unnamed" object you've just created.
Your call to new ImplementHeaderButtons() returns an instance of ImplementHeaderButtons. Then, you call .Implement() on that instance.
Think of it like this:
(new ImplementHeaderButtons()).Implement(this, headerButtons);
Let's have an object created in a getter like this :
public class Class1
{
public string Id { get; set; }
public string Oz { get; set; }
public string Poznamka { get; set; }
public Object object
{
get
{
// maybe some more code
return new Object { Id = Id, poznamla = Poznamka, Oz = OZ };
}
}
}
Or should I rather create a Method that will create and return the object ?
Yes, it is bad practice.
Ideally, a getter should not be changing or creating anything (aside from lazy loading, and even then I think it leads to less clear code...). That way you minimise the risk of unintentional side effects.
Properties look like fields but they are methods. This has been known to cause a phenomenal amount of confusion. When a programmer sees code that appears to be accessing a field, there are many assumptions that the programmer makes that may not be true for a property.So there are some common properties design guidelines.
Avoid returning different values from the property getter. If called multiple times in a row, a property method may return a different value each time; a field returns the same value each time.
A property method may require additional memory or return a reference to something that is not actually part of the object's state, so modifying the returned object has no effect on the original object; querying a field always returns a reference to an object that is guaranteed to be part of the original object's state. Working with a property that returns a copy can be very confusing to developers, and this characteristic is frequently not documented.
Consider that a property cannot be passed as an out or ref parameter to a method; a field can.
Avoid long running property getters. A property method can take a long time to execute; field access always completes immediately.
Avoid throwing exceptions from getters.
Do preserve previous values if a property setter throws an exception
Avoid observable side effects.
Allow properties to be set in any order even if this results in a temporary invalid state of objects.
Sources
"CLR via C#", Jeffrey Richter. Chapter 9. Defining Properties Intelligently
"Framework Design Guidelines" 2nd edition, Brad Abrams, Krzysztof Cwalina, Chapter 5.2 Property Design
If you want your getter to create a new object every time it is accessed, that's the way to do it. This pattern is normally refered to as a Factory Method.
However, this is not normally needed on properties (ie. getters and setters), and as such is considered bad practice.
yes, it is ... from the outside, it should be transparent, whether you access a property or a field ...
when reading twice from field, or a property, you expect two things:
there is no impact on the object's (external) behaviour
you get identical results
I have no real knowledge of C#, but I hope, the following makes my point clear. let's start like this:
Object o1 = myInst.object;
Object o2 = myInst.object;
o1.poznamka = "some note";
in the case of a field, conditions like the following will be true:
o1 == o2;
o2.poznamka == "some note";
if you use a property with a getter, that returns a new object every time called, both conditions will be false ...
your getter seems to be meant to produce a temporary snapshot of your instance ... if that is what you want to do, than make it a plain method ... it avoids any ambiguities ...
A property should, to all intents and purposes, act like a field. That means no exceptions should be thrown, and no new objects should be created (so you don't create lots of unneccessary objects if the property is used in a loop)
Use a wrapper class or similar instead.
According to me if something is 'property' the getter should return you a property (basically a data that is already existing) relevant to the object.
In your case, you are returning something that is not a property of that object at that moment. You are not returning a property of your object but a product of some action.
I would go with a method something like GetMyObject() instead. Especially if there is an 'action' will take place, I think it is most of the time best to have a method than a property name.
And try to imagine what would other developers who are not familiar with your code expect after seeing your property.
A property is just a convenient way to express a calculated field.
It should still represent something about an object, regardless of how the value itself is arrived at. For example, if the object in question is an invoice, you might have to add up the cost of each line item, and return the total.
What's written in the question breaks that rule, because returning a copy of the object isn't something that describes the object. If the return value changes between calls to the property without an explicit change of object state, then the object model is broken.
Speaking in generalities, returning a new object like this will just about always break the rule (I can't think of a counter-example right now), so I would say that it's bad practice.
There's also the gotcha of properties where you can so easily and innocently call on a property multiple times and end up running the same code (which hopefully isn't slow!).
For writing code that is easily tested, you have to maintain separation of Object initialization.
i.e while in test cases you do not have hold on test some specific items.
like in House object you dont want to test anything related to kitchen object.
and you wana test only the garden. so while you initiate a house class and initiate object in some constructors or in getters you wont be coding good that will support testing.
As an aside to the comments already made, you can run into some real debugging headaches when lazy loading fields via a property.
I had a class with
private Collection<int> moo;
public Collection<int> Moo
{
get
{
if (this.moo == null) this.moo = new Collection<int>();
return this.moo;
}
}
Then somewhere else in the class there was a public method that referenced
this.moo.Add(baa);
without checking it was instantiated.
It threw a null reference exception, as expected. But the exception was on a UI thread so not immediately obvious where it was coming from. I started tracing through, and everytime I traced through, the error dissapeared.
For a while I have to admit I thought I was going crazy. Debugger - no error. Runtime, error. Much scratching of head later I spotted the error, and realised that the Visual Studio debugger was instantiating the Collection as it displayed the public properties of the class.
It's maybe at most acceptable for structs. For reference types, I would only create a new object in a getter when it's only done once using some lazy-load pattern.
It depends on the use of the getter. It's a great place to include this kind of code for lazy loading.
It is a bad practice. In your example, you should be able to expect the same Object every time you access the object property.
As you have it it is bad but not dis similar to an acceptable practice called lazy loading which can be read about here.
http://www.aspcode.net/Lazy-loading-of-structures-in-C-howto-part-8.aspx
It is a bad practice. But if you are thinking of objects as a bunch of getters & setters you should check the classical discussions about the topic.
As some folks mentioned, lazy loading could be a reason to do so. Depends on the actual business logic you are modeling here. You should create a separate method if it is better for legibility purposes, but if the code to create the object is simple you could avoid the indirection.
Short Version
For those who don't have the time to read my reasoning for this question below:
Is there any way to enforce a policy of "new objects only" or "existing objects only" for a method's parameters?
Long Version
There are plenty of methods which take objects as parameters, and it doesn't matter whether the method has the object "all to itself" or not. For instance:
var people = new List<Person>();
Person bob = new Person("Bob");
people.Add(bob);
people.Add(new Person("Larry"));
Here the List<Person>.Add method has taken an "existing" Person (Bob) as well as a "new" Person (Larry), and the list contains both items. Bob can be accessed as either bob or people[0]. Larry can be accessed as people[1] and, if desired, cached and accessed as larry (or whatever) thereafter.
OK, fine. But sometimes a method really shouldn't be passed a new object. Take, for example, Array.Sort<T>. The following doesn't make a whole lot of sense:
Array.Sort<int>(new int[] {5, 6, 3, 7, 2, 1});
All the above code does is take a new array, sort it, and then forget it (as its reference count reaches zero after Array.Sort<int> exits and the sorted array will therefore be garbage collected, if I'm not mistaken). So Array.Sort<T> expects an "existing" array as its argument.
There are conceivably other methods which may expect "new" objects (though I would generally think that to have such an expectation would be a design mistake). An imperfect example would be this:
DataTable firstTable = myDataSet.Tables["FirstTable"];
DataTable secondTable = myDataSet.Tables["SecondTable"];
firstTable.Rows.Add(secondTable.Rows[0]);
As I said, this isn't a great example, since DataRowCollection.Add doesn't actually expect a new DataRow, exactly; but it does expect a DataRow that doesn't already belong to a DataTable. So the last line in the code above won't work; it needs to be:
firstTable.ImportRow(secondTable.Rows[0]);
Anyway, this is a lot of setup for my question, which is: is there any way to enforce a policy of "new objects only" or "existing objects only" for a method's parameters, either in its definition (perhaps by some custom attributes I'm not aware of) or within the method itself (perhaps by reflection, though I'd probably shy away from this even if it were available)?
If not, any interesting ideas as to how to possibly accomplish this would be more than welcome. For instance I suppose if there were some way to get the GC's reference count for a given object, you could tell right away at the start of a method whether you've received a new object or not (assuming you're dealing with reference types, of course--which is the only scenario to which this question is relevant anyway).
EDIT:
The longer version gets longer.
All right, suppose I have some method that I want to optionally accept a TextWriter to output its progress or what-have-you:
static void TryDoSomething(TextWriter output) {
// do something...
if (output != null)
output.WriteLine("Did something...");
// do something else...
if (output != null)
output.WriteLine("Did something else...");
// etc. etc.
if (output != null)
// do I call output.Close() or not?
}
static void TryDoSomething() {
TryDoSomething(null);
}
Now, let's consider two different ways I could call this method:
string path = GetFilePath();
using (StreamWriter writer = new StreamWriter(path)) {
TryDoSomething(writer);
// do more things with writer
}
OR:
TryDoSomething(new StreamWriter(path));
Hmm... it would seem that this poses a problem, doesn't it? I've constructed a StreamWriter, which implements IDisposable, but TryDoSomething isn't going to presume to know whether it has exclusive access to its output argument or not. So the object either gets disposed prematurely (in the first case), or doesn't get disposed at all (in the second case).
I'm not saying this would be a great design, necessarily. Perhaps Josh Stodola is right and this is just a bad idea from the start. Anyway, I asked the question mainly because I was just curious if such a thing were possible. Looks like the answer is: not really.
No, basically.
There's really no difference between:
var x = new ...;
Foo(x);
and
Foo(new ...);
and indeed sometimes you might convert between the two for debugging purposes.
Note that in the DataRow/DataTable example, there's an alternative approach though - that DataRow can know its parent as part of its state. That's not the same thing as being "new" or not - you could have a "detach" operation for example. Defining conditions in terms of the genuine hard-and-fast state of the object makes a lot more sense than woolly terms such as "new".
Yes, there is a way to do this.
Sort of.
If you make your parameter a ref parameter, you'll have to have an existing variable as your argument. You can't do something like this:
DoSomething(ref new Customer());
If you do, you'll get the error "A ref or out argument must be an assignable variable."
Of course, using ref has other implications. However, if you're the one writing the method, you don't need to worry about them. As long as you don't reassign the ref parameter inside the method, it won't make any difference whether you use ref or not.
I'm not saying it's good style, necessarily. You shouldn't use ref or out unless you really, really need to and have no other way to do what you're doing. But using ref will make what you want to do work.
No. And if there is some reason that you need to do this, your code has improper architecture.
Short answer - no there isn't
In the vast majority of cases I usually find that the issues that you've listed above don't really matter all that much. When they do you could overload a method so that you can accept something else as a parameter instead of the object you are worried about sharing.
// For example create a method that allows you to do this:
people.Add("Larry");
// Instead of this:
people.Add(new Person("Larry"));
// The new method might look a little like this:
public void Add(string name)
{
Person person = new Person(name);
this.add(person); // This method could be private if neccessary
}
I can think of a way to do this, but I would definitely not recommend this. Just for argument's sake.
What does it mean for an object to be a "new" object? It means there is only one reference keeping it alive. An "existing" object would have more than one reference to it.
With this in mind, look at the following code:
class Program
{
static void Main(string[] args)
{
object o = new object();
Console.WriteLine(IsExistingObject(o));
Console.WriteLine(IsExistingObject(new object()));
o.ToString(); // Just something to simulate further usage of o. If we didn't do this, in a release build, o would be collected by the GC.Collect call in IsExistingObject. (not in a Debug build)
}
public static bool IsExistingObject(object o)
{
var oRef = new WeakReference(o);
#if DEBUG
o = null; // In Debug, we need to set o to null. This is not necessary in a release build.
#endif
GC.Collect();
GC.WaitForPendingFinalizers();
return oRef.IsAlive;
}
}
This prints True on the first line, False on the second.
But again, please do not use this in your code.
Let me rewrite your question to something shorter.
Is there any way, in my method, which takes an object as an argument, to know if this object will ever be used outside of my method?
And the short answer to that is: No.
Let me venture an opinion at this point: There should not be any such mechanism either.
This would complicate method calls all over the place.
If there was a method where I could, in a method call, tell if the object I'm given would really be used or not, then it's a signal to me, as a developer of that method, to take that into account.
Basically, you'd see this type of code all over the place (hypothetical, since it isn't available/supported:)
if (ReferenceCount(obj) == 1) return; // only reference is the one we have
My opinion is this: If the code that calls your method isn't going to use the object for anything, and there are no side-effects outside of modifying the object, then that code should not exist to begin with.
It's like code that looks like this:
1 + 2;
What does this code do? Well, depending on the C/C++ compiler, it might compile into something that evaluates 1+2. But then what, where is the result stored? Do you use it for anything? No? Then why is that code part of your source code to begin with?
Of course, you could argue that the code is actually a+b;, and the purpose is to ensure that the evaluation of a+b isn't going to throw an exception denoting overflow, but such a case is so diminishingly rare that a special case for it would just mask real problems, and it would be really simple to fix by just assigning it to a temporary variable.
In any case, for any feature in any programming language and/or runtime and/or environment, where a feature isn't available, the reasons for why it isn't available are:
It wasn't designed properly
It wasn't specified properly
It wasn't implemented properly
It wasn't tested properly
It wasn't documented properly
It wasn't prioritized above competing features
All of these are required to get a feature to appear in version X of application Y, be it C# 4.0 or MS Works 7.0.
Nope, there's no way of knowing.
All that gets passed in is the object reference. Whether it is 'newed' in-situ, or is sourced from an array, the method in question has no way of knowing how the parameters being passed in have been instantiated and/or where.
One way to know if an object passed to a function (or a method) has been created right before the call to the function/method is that the object has a property that is initialized with the timestamp passed from a system function; in that way, looking at that property, it would be possible to resolve the problem.
Frankly, I would not use such method because
I don't see any reason why the code should now if the passed parameter is an object right created, or if it has been created in a different moment.
The method I suggest depends from a system function that in some systems could not be present, or that could be less reliable.
With the modern CPUs, which are a way faster than the CPUs used 10 years ago, there could be the problem to use the right value for the threshold value to decide when an object has been freshly created, or not.
The other solution would be to use an object property that is set to a a value from the object creator, and that is set to a different value from all the methods of the object.
In this case the problem would be to forget to add the code to change that property in each method.
Once again I would ask to myself "Is there a really need to do this?".
As a possible partial solution if you only wanted one of an object to be consumed by a method maybe you could look at a Singleton. In this way the method in question could not create another instance if it existed already.