Do we really need interfaces for multiple inheritance in c#? - c#

As I was learning about interfaces I came across the fact that they can be used to implement Multiple Interface Inheritance and that Multiple Class Inheritance is not possible in C#. So, I found the following code which implements multiple interface inheritance.
using System;
namespace Test
{
interface IB
{
void PrintB();
}
class A
{
public void PrintA()
{
Console.WriteLine("PrintA() Method.");
}
}
class B : IB
{
public void PrintB()
{
Console.WriteLine("PrintB() Method.");
}
}
class C : A, IB
{
B bObject = new B();
public void PrintB()
{
bObject.PrintB();
}
}
class Program
{
public static void Main()
{
C cObject = new C();
cObject.PrintA();
cObject.PrintB();
}
}
}
But in this code we are inheriting Class A directly. But for inheriting the method of Class B we are using interface IB.
Now, I can't see the advantage of doing so. We could write this code without using interface IB like this.
using System;
namespace Test
{
class A
{
public void PrintA()
{
Console.WriteLine("PrintA() Method.");
}
}
class B
{
public void PrintB()
{
Console.WriteLine("PrintB() Method.");
}
}
class C : A
{
B bObject = new B();
public void PrintB()
{
bObject.PrintB();
}
}
class Program
{
public static void Main()
{
C cObject = new C();
cObject.PrintA();
cObject.PrintB();
}
}
}
Now, why did we used interface in the first place, if we could write it without the interface?
Does this mean multiple inheritance can be done without using interfaces?
Or multiple inheritance cannot be done even using interfaces?

You are missing a point about virtual methods. We want to be able to do this:
interface IPrint
{
void Print();
}
class A : IPrint
{
public void Print()
{
}
}
class B : IPrint
{
public void Print()
{
}
}
...
foreach (IPrint p in printables)
{
p.Print();
}
Your approach cannot do that, because your PrintB in class C is just a method. Inheritance is not about having methods with the same name, but about defining verbs that perform an action on the instance of the class they are designed for.

Multiple Inheritance leads to the Diamond Problem. And that Diamond is a Programmers worst enemy.
So the designers of .NET or the CLI (I can never remember wich) decided they are were not going to deal with that, and mandated "single Inheritance only". Wich is one of the common strategies to deal with that "Diamond of Death".
As only allowing single Inheritance meant somet things would be missing, they Implemented Interfaces to offset it. It is one of the many ways in wich .NET is more restrictive then say Native C++ and had to invent a replacement for something trivial. But in the long run it prooved to be slightly better doing it this way.

Related

Multiple inheritance without multiple inheritance and without code duplication

I have a theoretical question concerning how to deal with the following scenario in a language which does not allow multiple inheritance.
Imagine I have a base class Foo and from it I am wishing to create three sub-classes:
Class Bar inherits Foo and implements functionality "A"
Class Baz inherits Foo and implements functionality "B"
Class Qux inherits Foo and implements functionalities "A" and "B"
Imagine that the code to implement functionalities "A" and "B" is always the same. Is there a way to write the code for "A" and "B" only once, and then have the appropriate classes apply (or "inherit") it?
Well the only way I can see you achieving this in C#/Java is by composition. Consider this:
class Foo {
}
interface A {
public void a();
}
interface B {
public void b();
}
class ImplA implements A {
#Override
public void a() {
System.out.println("a");
}
}
class ImplB implements B {
#Override
public void b() {
System.out.println("b");
}
}
class Bar extends Foo {
A a = new ImplA();
public void a() {
a.a();
}
}
class Baz extends Foo {
B b = new ImplB();
public void b() {
b.b();
}
}
class Qux extends Foo {
A a = new ImplA();
B b = new ImplB();
public void b() {
b.b();
}
public void a() {
a.a();
}
}
Now Qux has both the functionality of Foo via normal inheritance but also the implementations of A and B by composition.
The more general term for this is a Mixin. Some languages provide support out of the box, such as Scala and D. There are various ways to achieve the same results in other languages though.
One way you can create a pseudo-mixin in C# is to use empty interfaces and provide the methods with extension methods.
interface A { }
static class AMixin {
public static void aFunc(this A inst) {
... //implementation to work for all A.
}
}
interface B { }
static class BMixin {
public static void bFunc(this B inst) {
...
}
}
class Qux : Foo, A, B {
...
}
This is achievable in languages providing traits (here: scala):
class Foo {
def fooM() {}
}
trait A {
def aFunc() {}
}
trait B {
def bFunc() {}
}
class Bar extends Foo with A {}
class Baz extends Foo with B {}
class Qux extends Foo with A with B {}
Because Scala runs on top of Java (having neither multiple inheritance nor traits) it is translated into something like this (simplified) - which might be a hint how to implement it in Java/C# manually:
class Foo {
}
interface A {
void aFunc();
}
interface B {
void bFunc();
}
class Bar extends Foo implements A {
public void aFunc() {
$A.aFunc();
}
}
class Baz extends Foo implements B {
public void bFunc() {
$B.bFunc();
}
}
class Qux extends Foo implements A, B {
public void aFunc() {
$A.aFunc();
}
public void bFunc() {
$B.bFunc();
}
}
class $A {
public static void aFunc() {}
}
class $B {
public static void bFunc() {}
}
There are several ways to do something like this. More specifically, if we abandon the inheritance aspect for a moment, there are ways to introduce the same unit of functionality to different classes, while writing the unit only once.
Okay, I love AOP Frameworks, and they exist for many languages (C# and Java having several). AOP Frameworks basically allow you add self-contained functionality into different classes throughout your inheritance structure.
For C#, you have PostSharp and for Java you have AspectJ, among many others.
Many AOP frameworks allow 'hijacking' or 'overriding' method calls without using inheritance.

Is it possible to add methods to classes with PostSharp? If yes, is it possible to then reference those methods from other classes?

Let's say I have a class Abc:
class Abc {
}
and that I'd like to externally add some method m() to it. I guess it's probably possible to do this, although I am not sure how. Assuming it is possible to do that, let's then say Abc does have, from now on, a m() method.
Now, imagine I have other class Def:
class Def {
public void x(Abc abc) {
abc.m();
}
}
Would this code run with PostSharp? To the more distracted reader, the problem with this is that in a standard C# class program, our compiler might not know the Abc class has a m() method.
My gut feeling is that this wouldn't work with PostSharp. Am I mistaken?
(Maybe you can use the DLR to accomplish if my PostSharp solutions aren't sufficient?)
Yes you can. You would use introducemember attribute in an instance scoped aspect. Your best bet is to implement an interface using postshsrp then reference your target class as that interface to expose the method. You can also use Post.Cast<>() to access it at design time.
Here are two methods to do this. The first is via an interface, the second is using stubs.
Method 1 - Interface
public class Program
{
static void Main(string[] args)
{
Customer c = new Customer();
var cc = Post.Cast<Customer, ISomething>(c);
cc.SomeMethod();
}
}
public interface ISomething
{
void SomeMethod();
}
[AddMethodAspect]
public class Customer
{
}
[Serializable]
[IntroduceInterface(typeof(ISomething))]
public class AddMethodAspect : InstanceLevelAspect, ISomething
{
#region ISomething Members
public void SomeMethod()
{
Console.WriteLine("Hello");
}
#endregion
}
Method 2 - stubs
public class Program
{
static void Main(string[] args)
{
Customer c = new Customer();
c.SomeMethod();
}
}
[AddMethodAspect]
public class Customer
{
public void SomeMethod() { }
}
[Serializable]
public class AddMethodAspect : InstanceLevelAspect
{
[IntroduceMember(OverrideAction = MemberOverrideAction.OverrideOrFail)]
public void SomeMethod()
{
Console.WriteLine("Hello");
}
}
More Info
Just in case there are some issues with using the Cast<>() function, it doesn't do an actual cast. The compiled result looks like:
private static void Main(string[] args)
{
Customer c = new Customer();
ISomething cc = c;
cc.SomeMethod();
}
You can do it if the class is in a different assembly.
On the other hand, if the classes are in the same module, then you are right, the C# compiler won't compile it. Why not implement m() like this in C#, then replace the implementation with PostSharp?
class Abc
{
public void m()
{
throw new NotImplementedException ();
}
}
Edit:
What if you put m() in an interface, then use PostSharp to implement the interface on your class? Then you can call the method by casting to that interface.
interface IM
{
void m();
}
class Def {
public void x(Abc abc) {
if (abc is IM)
((IM) abc).m();
}
}

How to call base.base.method()?

// Cannot change source code
class Base
{
public virtual void Say()
{
Console.WriteLine("Called from Base.");
}
}
// Cannot change source code
class Derived : Base
{
public override void Say()
{
Console.WriteLine("Called from Derived.");
base.Say();
}
}
class SpecialDerived : Derived
{
public override void Say()
{
Console.WriteLine("Called from Special Derived.");
base.Say();
}
}
class Program
{
static void Main(string[] args)
{
SpecialDerived sd = new SpecialDerived();
sd.Say();
}
}
The result is:
Called from Special Derived.
Called from Derived. /* this is not expected */
Called from Base.
How can I rewrite SpecialDerived class so that middle class "Derived"'s method is not called?
UPDATE:
The reason why I want to inherit from Derived instead of Base is Derived class contains a lot of other implementations. Since I can't do base.base.method() here, I guess the best way is to do the following?
// Cannot change source code
class Derived : Base
{
public override void Say()
{
CustomSay();
base.Say();
}
protected virtual void CustomSay()
{
Console.WriteLine("Called from Derived.");
}
}
class SpecialDerived : Derived
{
/*
public override void Say()
{
Console.WriteLine("Called from Special Derived.");
base.Say();
}
*/
protected override void CustomSay()
{
Console.WriteLine("Called from Special Derived.");
}
}
Just want to add this here, since people still return to this question even after many time. Of course it's bad practice, but it's still possible (in principle) to do what author wants with:
class SpecialDerived : Derived
{
public override void Say()
{
Console.WriteLine("Called from Special Derived.");
var ptr = typeof(Base).GetMethod("Say").MethodHandle.GetFunctionPointer();
var baseSay = (Action)Activator.CreateInstance(typeof(Action), this, ptr);
baseSay();
}
}
This is a bad programming practice, and not allowed in C#. It's a bad programming practice because
The details of the grandbase are implementation details of the base; you shouldn't be relying on them. The base class is providing an abstraction overtop of the grandbase; you should be using that abstraction, not building a bypass to avoid it.
To illustrate a specific example of the previous point: if allowed, this pattern would be yet another way of making code susceptible to brittle-base-class failures. Suppose C derives from B which derives from A. Code in C uses base.base to call a method of A. Then the author of B realizes that they have put too much gear in class B, and a better approach is to make intermediate class B2 that derives from A, and B derives from B2. After that change, code in C is calling a method in B2, not in A, because C's author made an assumption that the implementation details of B, namely, that its direct base class is A, would never change. Many design decisions in C# are to mitigate the likelihood of various kinds of brittle base failures; the decision to make base.base illegal entirely prevents this particular flavour of that failure pattern.
You derived from your base because you like what it does and want to reuse and extend it. If you don't like what it does and want to work around it rather than work with it, then why did you derive from it in the first place? Derive from the grandbase yourself if that's the functionality you want to use and extend.
The base might require certain invariants for security or semantic consistency purposes that are maintained by the details of how the base uses the methods of the grandbase. Allowing a derived class of the base to skip the code that maintains those invariants could put the base into an inconsistent, corrupted state.
You can't from C#. From IL, this is actually supported. You can do a non-virt call to any of your parent classes... but please don't. :)
The answer (which I know is not what you're looking for) is:
class SpecialDerived : Base
{
public override void Say()
{
Console.WriteLine("Called from Special Derived.");
base.Say();
}
}
The truth is, you only have direct interaction with the class you inherit from. Think of that class as a layer - providing as much or as little of it or its parent's functionality as it desires to its derived classes.
EDIT:
Your edit works, but I think I would use something like this:
class Derived : Base
{
protected bool _useBaseSay = false;
public override void Say()
{
if(this._useBaseSay)
base.Say();
else
Console.WriteLine("Called from Derived");
}
}
Of course, in a real implementation, you might do something more like this for extensibility and maintainability:
class Derived : Base
{
protected enum Mode
{
Standard,
BaseFunctionality,
Verbose
//etc
}
protected Mode Mode
{
get; set;
}
public override void Say()
{
if(this.Mode == Mode.BaseFunctionality)
base.Say();
else
Console.WriteLine("Called from Derived");
}
}
Then, derived classes can control their parents' state appropriately.
Why not simply cast the child class to a specific parent class and invoke the specific implementation then? This is a special case situation and a special case solution should be used. You will have to use the new keyword in the children methods though.
public class SuperBase
{
public string Speak() { return "Blah in SuperBase"; }
}
public class Base : SuperBase
{
public new string Speak() { return "Blah in Base"; }
}
public class Child : Base
{
public new string Speak() { return "Blah in Child"; }
}
public partial class MainWindow : Window
{
public MainWindow()
{
InitializeComponent();
Child childObj = new Child();
Console.WriteLine(childObj.Speak());
// casting the child to parent first and then calling Speak()
Console.WriteLine((childObj as Base).Speak());
Console.WriteLine((childObj as SuperBase).Speak());
}
}
public class A
{
public int i = 0;
internal virtual void test()
{
Console.WriteLine("A test");
}
}
public class B : A
{
public new int i = 1;
public new void test()
{
Console.WriteLine("B test");
}
}
public class C : B
{
public new int i = 2;
public new void test()
{
Console.WriteLine("C test - ");
(this as A).test();
}
}
You can also make a simple function in first level derived class, to call grand base function
My 2c for this is to implement the functionality you require to be called in a toolkit class and call that from wherever you need:
// Util.cs
static class Util
{
static void DoSomething( FooBase foo ) {}
}
// FooBase.cs
class FooBase
{
virtual void Do() { Util.DoSomething( this ); }
}
// FooDerived.cs
class FooDerived : FooBase
{
override void Do() { ... }
}
// FooDerived2.cs
class FooDerived2 : FooDerived
{
override void Do() { Util.DoSomething( this ); }
}
This does require some thought as to access privilege, you may need to add some internal accessor methods to facilitate the functionality.
In cases where you do not have access to the derived class source, but need all the source of the derived class besides the current method, then I would recommended you should also do a derived class and call the implementation of the derived class.
Here is an example:
//No access to the source of the following classes
public class Base
{
public virtual void method1(){ Console.WriteLine("In Base");}
}
public class Derived : Base
{
public override void method1(){ Console.WriteLine("In Derived");}
public void method2(){ Console.WriteLine("Some important method in Derived");}
}
//Here should go your classes
//First do your own derived class
public class MyDerived : Base
{
}
//Then derive from the derived class
//and call the bass class implementation via your derived class
public class specialDerived : Derived
{
public override void method1()
{
MyDerived md = new MyDerived();
//This is actually the base.base class implementation
MyDerived.method1();
}
}
As can be seen from previous posts, one can argue that if class functionality needs to be circumvented then something is wrong in the class architecture. That might be true, but one cannot always restructure or refactor the class structure on a large mature project. The various levels of change management might be one problem, but to keep existing functionality operating the same after refactoring is not always a trivial task, especially if time constraints apply. On a mature project it can be quite an undertaking to keep various regression tests from passing after a code restructure; there are often obscure "oddities" that show up.
We had a similar problem in some cases inherited functionality should not execute (or should perform something else). The approach we followed below, was to put the base code that need to be excluded in a separate virtual function. This function can then be overridden in the derived class and the functionality excluded or altered. In this example "Text 2" can be prevented from output in the derived class.
public class Base
{
public virtual void Foo()
{
Console.WriteLine("Hello from Base");
}
}
public class Derived : Base
{
public override void Foo()
{
base.Foo();
Console.WriteLine("Text 1");
WriteText2Func();
Console.WriteLine("Text 3");
}
protected virtual void WriteText2Func()
{
Console.WriteLine("Text 2");
}
}
public class Special : Derived
{
public override void WriteText2Func()
{
//WriteText2Func will write nothing when
//method Foo is called from class Special.
//Also it can be modified to do something else.
}
}
There seems to be a lot of these questions surrounding inheriting a member method from a Grandparent Class, overriding it in a second Class, then calling its method again from a Grandchild Class. Why not just inherit the grandparent's members down to the grandchildren?
class A
{
private string mystring = "A";
public string Method1()
{
return mystring;
}
}
class B : A
{
// this inherits Method1() naturally
}
class C : B
{
// this inherits Method1() naturally
}
string newstring = "";
A a = new A();
B b = new B();
C c = new C();
newstring = a.Method1();// returns "A"
newstring = b.Method1();// returns "A"
newstring = c.Method1();// returns "A"
Seems simple....the grandchild inherits the grandparents method here. Think about it.....that's how "Object" and its members like ToString() are inherited down to all classes in C#. I'm thinking Microsoft has not done a good job of explaining basic inheritance. There is too much focus on polymorphism and implementation. When I dig through their documentation there are no examples of this very basic idea. :(
I had the same problem as the OP, where I only wanted to override a single method in the middle Class, leaving all other methods alone. My scenario was:
Class A - base class, DB access, uneditable.
Class B : A - "record type" specific functionality (editable, but only if backward compatible).
Class C : B - one particular field for one particular client.
I did very similar to the second part of the OP posting, except I put the base call into it's own method, which I called from from Say() method.
class Derived : Base
{
public override void Say()
{
Console.WriteLine("Called from Derived.");
BaseSay();
}
protected virtual void BaseSay()
{
base.Say();
}
}
class SpecialDerived : Derived
{
public override void Say()
{
Console.WriteLine("Called from Special Derived.");
base.BaseSay();
}
}
You could repeat this ad infinitum, giving, for example SpecialDerived a BaseBaseSay() method if you needed an ExtraSpecialDerived override to the SpecialDerived.
The best part of this is that if the Derived changes its inheritance from Base to Base2, all other overrides follow suit without needing changes.
If you want to access to base class data you must use "this" keyword or you use this keyword as reference for class.
namespace thiskeyword
{
class Program
{
static void Main(string[] args)
{
I i = new I();
int res = i.m1();
Console.WriteLine(res);
Console.ReadLine();
}
}
public class E
{
new public int x = 3;
}
public class F:E
{
new public int x = 5;
}
public class G:F
{
new public int x = 50;
}
public class H:G
{
new public int x = 20;
}
public class I:H
{
new public int x = 30;
public int m1()
{
// (this as <classname >) will use for accessing data to base class
int z = (this as I).x + base.x + (this as G).x + (this as F).x + (this as E).x; // base.x refer to H
return z;
}
}
}

How can I factor out the code duplication here?

So, I'd like to hear what you all think about this.
I have a project where three different inheritance paths need to all implement another base class. This would be multiple inheritance and isn't allowed in C#. I am curious how I can implement this without code duplication.
EDIT: I don't own the three classes. The three classes are from 3rd party code. So I cannot make them all extend my base class.
Right now I am using three different classes, each one extending a different base class. Then I have the same code in each of the three abstract classes.
I could use a single interface, but I would still need to duplicate the code.
I could make some kind of static class that implements the code and then reference that in each of the 3 abstract classes. It would eliminate the duplication, but, I am not sure how I feel about this. I could implement Extensions methods on the interface, but then the interface itself would be empty and the extension methods (containing the duplicate code) would be in a totally different file, which seems not quite right. Plus I can't implement properties in extension methods...
How can I factor out the code duplication here?
EDIT, inheritance tree:
class Class1 : 3rdPartyBaseClass1 { }
class Class2 : 3rdPartyBaseClass2 { }
class Class3 : 3rdPartyBaseClass3 { }
I have code I want to be in each of the above Classes, but I cannot add it to the 3rdPartyClasses.
Create an interface that Class1, Class2, and Class3 can implement. Then put your code in extension methods so it will apply to all.
interface IMyInterface {
void Foo(); //these are the methods that these
//classes actually have in common
void Bar();
}
public class Class1 : 3rdPartyBaseClass1, IMyInterface {
// whatever
}
public static class IMyInterfaceExtensions {
public static void CommonMethod(this IMyInterface obj) {
obj.Foo();
obj.Bar();
}
}
public static class Program {
public static void Main() {
var instance = new Class1();
instance.CommonMethod();
}
}
OK, you can do something similar to my previous suggestion, and also similar to recursive's suggestion. For the functionality you require in all three of your derived classes, you can create a single Interface along with a single class (call it "Implementer" for kicks) that implements that Interface (and that has the actual code you want executed with each call).
In each of your derived classes, then, you implement the Interface and create a private instance of Implementer. In each of the interface methods, you just pass the call along to the private instance of Implementer. Because Implementer and your derived classes all implement your Interface, any changes you make to the Interface will require you to modify Implementer and the derived classes accordingly.
And all your code is in one place, except for all the lines passings the calls on to the private instance of Implementer (obviously multiple inheritance would be better than this, but you go to war with the army you have, not the army you wish you had).
Update: what about just adding a public instance of your class to each of the derived classes?
public class DerivedClass1 : ThirdPartyClass1
{
public MyClass myClass = new MyClass();
}
Or if you care who Demeter is and you get paid by LOC:
public class DerivedClass1 : ThirdPartyClass1
{
private MyClass _myClass = new MyClass();
public MyClass myClass
{
get
{
return _myClass;
}
}
}
Then you'd just call the MyClass methods like this:
DerivedClass1 dc1 = new DerivedClass1();
dc1.myClass.DoSomething();
This way, we could all go to sleep.
Similar to MusiGenesis's suggestion, if you need the functionality of the 3rd party classes but do not have to descend from them, you could use composition as follows:
class ThirdPartyBaseClass1
{
public void DoOne() {}
}
class ThirdPartyBaseClass2
{
public void DoTwo() { }
}
class ThirdPartyBaseClass3
{
public void DoThree() { }
}
abstract class Base
{
public void DoAll() { }
}
class Class1 : Base
{
public void DoOne() { _doer.DoOne(); }
private readonly ThirdPartyBaseClass1 _doer = new ThirdPartyBaseClass1();
}
class Class2 : Base
{
public void DoTwo() { _doer.DoTwo(); }
private readonly ThirdPartyBaseClass2 _doer = new ThirdPartyBaseClass2();
}
class Class3 : Base
{
public void DoThree() { _doer.DoThree(); }
private readonly ThirdPartyBaseClass3 _doer = new ThirdPartyBaseClass3();
}
This also gives you the freedom to define whatever interfaces you want and implement them on your classes.
Sounds like you need to insert the new abstract class into the inheritance tree at whatever point those three paths come together, but there really isn't enough information to tell. If you could post some of your inheritance tree, that would help a lot.
I think you may want to use composition instead of inheritance. Exactly how to do this depends on what the third party classes look like, and what your own code looks like. Some more specific code relating to your problem would be helpful, but for example, suppose you want to have three different third party GUI widgets that all need to be customized with your own initializer code.
Case 1: Suppose your third party widgets look like:
public interface IThirdPartyWidget {
public void doWidgetStuff();
}
public class ThirdPartyWidget1: ThirdyPartyWidget implements IThirdPartyWidget {
...
}
public class ThirdPartyWidget2: ThirdPartyWidget implements IThirdPartyWidget {
...
}
You can do:
public class MyWidget implements IThirdPartyWidget {
private IThirdPartyWidget delegateWidget;
public MyWidget(IThirdPartyWidget delegateWidget) {
this.delegateWidget = delegateWidget;
}
public void doWidgetStuff() {
delegateWidget.doWidgetStuff();
}
}
Case 2: Suppose you absolutely need to extend those widgets, and you have to refactor your own code:
public class MyWidget1: ThirdPartyWidget1 {
public void myMethod() {
runMyCode();
}
private void runMyCode() {
//something complicated happens
}
}
public class MyWidget2: ThirdPartyWidget2 {
public void myMethod() {
runMyCode();
}
private void runMyCode() {
//something complicated happens
}
}
This can become:
public class MyCodeRunner {
public void runMyCode() {
//...
}
}
public class MyWidget1: ThirdPartyWidget1 {
private MyCodeRunner myCode = new MyCodeRunner();
public void myMethod() {
myCode .runMyCode();
}
}
public class MyWidget2: ThirdPartyWidget2 {
private MyCodeRunner myCode = new MyCodeRunner();
public void myMethod() {
myCode .runMyCode();
}
}
Hope this makes sense!

I would like to override a method in C#, but I have a different signature

The base class user should access the original method
class A
public init()
The derived class user should aceess ONLY the derived method.
class B
public init(int info)
I cannot use "override" bc there's a different signature.
What options do I have so that the derived class user does not see two methods.
Notes.
All in all I just need two classes that share some code. Inheritance is not a must.
But simplicity for the user of B is a priority.
This is a big code smell (and violates some basic OOP tenets) and, to the best of my knowledge, can not be done in any language. In OOP, an instance of B is an instance of A; this is polymorphism. So if A has a public method named init accepting no parameters, then so does B.
What are you trying to do this for?
Edit: Now that you've added the edit that states that inheritance is not a must, just use composition to share code. Give B a private instance of A, for example.
According to the Liskov principle you simply cannot do that, because it would violate this principle. The best thing you can to is override init() in the derived class and make it throw an exception every time it's invoked, stating that the user should use init(int info) and rely on the test to catch the errors.
Why you can't simple replace the init() method or even make it protected?
The Liskov principle states (rephrased) that where an instance of class A is required, an isntance of class B extends A can be passed.
If a method expects A and wants to call init() on it and you pass B (which extends A) to it with a protected init() the method will fail. This is the reason why the code will not even compile.
What you're asking for is impossible, due to the nature of the type system. Any instance of B can be thought of as an A, so you can call any of A's methods (including Init()). The best you can do is overload Init() in B and throw an exception to catch this at runtime.
public class B
{
void Init()
{
throw new NotSupportedException();
}
}
Contrary to some answers/comments here, what you are asking for would have a real use if it existed:
class Derived : Base
{
This can be seen by considering the workaround:
class Derived
{
private Base _base = new Base();
In other words, it's not really a base class at all, but a hidden part of the implementation.
The downside with this workaround is: what Base has an abstract method that you have to supply? You have to write this:
class Derived
{
class ActualDerived : Base
{
// override abstract method(s)
}
private Base _base = new ActualDerived();
This is the whole point of private inheritance (as found in C++) - it's for situations when you want to inherit the implementation but not the "interface" (in the informal sense).
But in C#, it's not available.
Presumabely A and B have something in common. Can you factor that out into a different base class?
public class Base
{
... common stuff ...
}
public class A : Base
{
public void Init()
{
}
}
public class B : Base
{
public void Init(int info)
{
}
}
if you need polymorphism then references to Base or, better yet, Thomas' interface are the way to go.
Instead of inheritance, use an interface as a "middle man":
public interface IAllThatYouNeed
{
public void DoSomeStuff();
}
public class A : IAllThatYouNeed
{
public void Init() {
// do stuff
}
}
public class B : IAllThatYouNeed
{
public void Init(int info) {
// do stuff
}
}
it looks like it's not yet possible
i tried to do something like this:
public class B : A
{
private override void Init() { }
public void Init(int x)
{ }
}
but Init() it's still visible from the A class
There is no perfect solution here. Some possible ways to do it:
An approach would be to make A.Init() virtual, override it in B and make it throw a NotImplementedException/InvalidOperationException.
Init() stays visible, but the user finds out very quickly that it is not to be used (make it explicit that Init(int info) is to be used in the XML documentation and in the message of the exception).
If you don't care about the inheritance part and just want to use the functionalities of class A in class B, don't have B deriving from A and make B instantiate A and use its functionalities.
Edit:
You can use an interface implementing the common operations in order to retain inheritance while avoiding to implement Init() in B:
public interface IOperations
{
void DoStuff();
void Foo();
}
public class A : IOperations
{
public void Init()
{
// Do class A init stuff
}
#region IOperations Members
public void DoStuff()
{
// ...
}
public void Foo()
{
// ...
}
#endregion
}
public class B : IOperations
{
A _operations = new A();
public void Init(int initData)
{
_operations.Init();
// Do class B init stuff
}
#region IOperations Members
public void DoStuff()
{
_operations.DoStuff();
}
public void Foo()
{
_operations.Foo();
}
#endregion
}
This can be made even better by using a factory:
public static class OperationsFactory
{
public static IOperations CreateOperations()
{
A result = new A();
result.Init();
return result;
}
public static IOperations CreateOperations(int initData)
{
B result = new B();
result.Init(initData);
return result;
}
}
This way instantiation code is well encapsulated, the difference between the two Init() methods is hidden from the user code.

Categories