C# Find Properties of Classes in a .dll - c#

I'm trying to create a method that counts the properties of a given class.
I want to pass in the class name as a string perhaps and then can turn the string into a reference of the given class. I have literally hundreds of classes (generated by Thrift) that could be passed in, so its not practical to give each class its own property counter.
My purpose is to provide arguments to a class that dynamically creates a UI based on what will need to be input by the user for each specific method and what will be returned. To save myself from having to manually write a UI for every method.
Is there a good way to do this?
Here's what I have so far.
class PropertyCounter
{
public int PropertyCounter(string nameOfClass)
{
int count = typeof(nameOfClass).GetProperties().Count();
return count
}
}

I got this working... using Assembly. Took some doing but it does what i need it to do.
Now, I was thinking of making these into a list of 'class' objects, but I'm thinking a string would work just as well for an argument.
Thanks to all who offered assistance.
class Discover
{
public void DiscoverProperties()
{
var me = Assembly.GetExecutingAssembly().Location;
var dir = Path.GetDirectoryName(me);
var theClasses = dir + #"dllName.dll";
var assembly = Assembly.LoadFrom(theClasses);
var types = assembly.ExportedTypes.ToList();
int propCount;
string propertiesList;
string cName;
string tempString;
foreach (var t in types)
{
propertiesList = "";
propCount = 0;
cName = t.Name;
foreach (var prop in t.GetProperties())
{
propCount++;
tempString = $"{prop.Name}:{prop.PropertyType.Name} ";
propertiesList = propertiesList += tempString;
}
}
}
}

You could use Activator.CreateInstance, with the overload which accepts two strings: one for the assembly in which the type is located, and one which specifies the type (in your case, class).
https://msdn.microsoft.com/en-us/library/d133hta4(v=vs.110).aspx
public int PropertyCounter(string nameOfClass) {
return Activator.CreateInstance(nameOfAssembly,
nameOfClass).GetType().GetProperties().Count();
}
You should check for failure

Related

C# get current namespace dynamically in a variable [duplicate]

I am writing a program which needs the namespace of the program but I cant seem to figure out how to retrieve it. I would like the end result to be in a string.
I was able to find an MSDN page about this topic but it proved to be unhelpful to myself.
http://msdn.microsoft.com/en-us/library/system.type.namespace.aspx
Any help would be appreciated. The program is written in C#.
EDIT: Sorry guys, this is not a console application.
This should work:
var myType = typeof(MyClass);
var n = myType.Namespace;
Write out to the console:
Type myType = typeof(MyClass);
Console.WriteLine("Namespace: {0}.", myType.Namespace);
Setting a WinForm label:
Type myType = typeof(MyClass);
namespaceLabel.Text = myType.Namespace;
Or create a method in the relevant class and use anywhere:
public string GetThisNamespace()
{
return GetType().Namespace;
}
To add to all the answers.
Since C# 6.0 there is the nameof keyword.
string name = nameof(MyNamespace);
This has several advantages:
The name is resolved at compile-time
The name will change when refactoring the namespace
It is syntax checked, so the name must exist
cleaner code
Note: This doesn't give the full namespace though. In this case, name will be equal to Bar:
namespace Foo.Bar
{
string name = nameof(Foo.Bar);
}
Put this to your assembly:
public static string GetCurrentNamespace()
{
return System.Reflection.Assembly.GetExecutingAssembly().EntryPoint.DeclaringType.Namespace;
}
Or if you want this method to be in a library used by your program, write it like this:
[System.Runtime.CompilerServices.MethodImpl(MethodImplOptions.NoInlining)]
public static string GetCurrentNamespace()
{
return System.Reflection.Assembly.GetCallingAssembly().EntryPoint.DeclaringType.Namespace;
}
This can't go wrong:
MethodBase.GetCurrentMethod().DeclaringType.Namespace
if you have item x of class A in namespace B you can use:
string s = x.GetType().Namespace;
no s contains "B"
you can also use x.GetType().Name to get the type name or x.GetType().FullName to get both
You could simply use typeof and then pass in the class (I.e. Program):
Console.WriteLine(typeof(Program).Namespace);
Which would print:
ConsoleApplication1
Type myType = typeof(MyClass);
// Get the namespace of the myClass class.
Console.WriteLine("Namespace: {0}.", myType.Namespace);
Building on Joe's comment you can still use
Type myType = typeof(MyClass);
// Get the namespace of the myClass class.
var namespaceName = myType.Namespace.ToString();
with namespaceName being a variable to access the namespace name as a string value.
If you're executing it from a class in the namespace you need to capture then you can just use:
GetType().Namespace
This works nicely as it then allows you to refactor the namespace and will still work.
as a roll upp all post answers:
getting all columns' values from a table given as a string tableName:
var tableName = "INVENTORY_PRICE";
var assembly = Assembly.GetExecutingAssembly();
var tip = typeof(Form3);
var t = assembly.GetType(tip.Namespace + "." + tableName);
if (t != null)
{
var foos = db.GetTable(t);
foreach (var f in foos)
{
Console.WriteLine(f + ":");
foreach (var property in f.GetType().GetProperties())
if (property != null)
{
var pv = property.GetValue(f, null);
Console.WriteLine(" " + property.Name + ":" + pv);
}
Console.WriteLine("------------------------------------------------");
}
}
it is very easy if we use ado, this sample uses LINQ context...

Get name of variable in extension Method [duplicate]

Let me use the following example to explain my question:
public string ExampleFunction(string Variable) {
return something;
}
string WhatIsMyName = "Hello World";
string Hello = ExampleFunction(WhatIsMyName);
When I pass the variable WhatIsMyName to the ExampleFunction, I want to be able to get a string of the original variable's name. Perhaps something like:
Variable.OriginalName.ToString() // == "WhatIsMyName"
Is there any way to do this?
What you want isn't possible directly but you can use Expressions in C# 3.0:
public void ExampleFunction(Expression<Func<string, string>> f) {
Console.WriteLine((f.Body as MemberExpression).Member.Name);
}
ExampleFunction(x => WhatIsMyName);
Note that this relies on unspecified behaviour and while it does work in Microsoft’s current C# and VB compilers, and in Mono’s C# compiler, there’s no guarantee that this won’t stop working in future versions.
This isn't exactly possible, the way you would want. C# 6.0 they Introduce the nameof Operator which should help improve and simplify the code. The name of operator resolves the name of the variable passed into it.
Usage for your case would look like this:
public string ExampleFunction(string variableName) {
//Construct your log statement using c# 6.0 string interpolation
return $"Error occurred in {variableName}";
}
string WhatIsMyName = "Hello World";
string Hello = ExampleFunction(nameof(WhatIsMyName));
A major benefit is that it is done at compile time,
The nameof expression is a constant. In all cases, nameof(...) is evaluated at compile-time to produce a string. Its argument is not evaluated at runtime, and is considered unreachable code (however it does not emit an "unreachable code" warning).
More information can be found here
Older Version Of C 3.0 and above
To Build on Nawfals answer
GetParameterName2(new { variable });
//Hack to assure compiler warning is generated specifying this method calling conventions
[Obsolete("Note you must use a single parametered AnonymousType When Calling this method")]
public static string GetParameterName<T>(T item) where T : class
{
if (item == null)
return string.Empty;
return typeof(T).GetProperties()[0].Name;
}
I know this post is really old, but since there is now a way in C#10 compiler, I thought I would share so others know.
You can now use CallerArgumentExpressionAttribute as shown
// Will throw argument exception if string IsNullOrEmpty returns true
public static void ValidateNotNullorEmpty(
this string str,
[CallerArgumentExpression("str")]string strName = null
)
{
if (string.IsNullOrEmpty(str))
{
throw new ArgumentException($"'{strName}' cannot be null or empty.", strName);
}
}
Now call with:
param.ValidateNotNullorEmpty();
will throw error: "param cannot be null or empty."
instead of "str cannot be null or empty"
static void Main(string[] args)
{
Console.WriteLine("Name is '{0}'", GetName(new {args}));
Console.ReadLine();
}
static string GetName<T>(T item) where T : class
{
var properties = typeof(T).GetProperties();
Enforce.That(properties.Length == 1);
return properties[0].Name;
}
More details are in this blog post.
Three ways:
1) Something without reflection at all:
GetParameterName1(new { variable });
public static string GetParameterName1<T>(T item) where T : class
{
if (item == null)
return string.Empty;
return item.ToString().TrimStart('{').TrimEnd('}').Split('=')[0].Trim();
}
2) Uses reflection, but this is way faster than other two.
GetParameterName2(new { variable });
public static string GetParameterName2<T>(T item) where T : class
{
if (item == null)
return string.Empty;
return typeof(T).GetProperties()[0].Name;
}
3) The slowest of all, don't use.
GetParameterName3(() => variable);
public static string GetParameterName3<T>(Expression<Func<T>> expr)
{
if (expr == null)
return string.Empty;
return ((MemberExpression)expr.Body).Member.Name;
}
To get a combo parameter name and value, you can extend these methods. Of course its easy to get value if you pass the parameter separately as another argument, but that's inelegant. Instead:
1)
public static string GetParameterInfo1<T>(T item) where T : class
{
if (item == null)
return string.Empty;
var param = item.ToString().TrimStart('{').TrimEnd('}').Split('=');
return "Parameter: '" + param[0].Trim() +
"' = " + param[1].Trim();
}
2)
public static string GetParameterInfo2<T>(T item) where T : class
{
if (item == null)
return string.Empty;
var param = typeof(T).GetProperties()[0];
return "Parameter: '" + param.Name +
"' = " + param.GetValue(item, null);
}
3)
public static string GetParameterInfo3<T>(Expression<Func<T>> expr)
{
if (expr == null)
return string.Empty;
var param = (MemberExpression)expr.Body;
return "Parameter: '" + param.Member.Name +
"' = " + ((FieldInfo)param.Member).GetValue(((ConstantExpression)param.Expression).Value);
}
1 and 2 are of comparable speed now, 3 is again sluggish.
Yes! It is possible. I have been looking for a solution to this for a long time and have finally come up with a hack that solves it (it's a bit nasty). I would not recommend using this as part of your program and I only think it works in debug mode. For me this doesn't matter as I only use it as a debugging tool in my console class so I can do:
int testVar = 1;
bool testBoolVar = True;
myConsole.Writeline(testVar);
myConsole.Writeline(testBoolVar);
the output to the console would be:
testVar: 1
testBoolVar: True
Here is the function I use to do that (not including the wrapping code for my console class.
public Dictionary<string, string> nameOfAlreadyAcessed = new Dictionary<string, string>();
public string nameOf(object obj, int level = 1)
{
StackFrame stackFrame = new StackTrace(true).GetFrame(level);
string fileName = stackFrame.GetFileName();
int lineNumber = stackFrame.GetFileLineNumber();
string uniqueId = fileName + lineNumber;
if (nameOfAlreadyAcessed.ContainsKey(uniqueId))
return nameOfAlreadyAcessed[uniqueId];
else
{
System.IO.StreamReader file = new System.IO.StreamReader(fileName);
for (int i = 0; i < lineNumber - 1; i++)
file.ReadLine();
string varName = file.ReadLine().Split(new char[] { '(', ')' })[1];
nameOfAlreadyAcessed.Add(uniqueId, varName);
return varName;
}
}
Continuing with the Caller* attribute series (i.e CallerMemberName, CallerFilePath and CallerLineNumber), CallerArgumentExpressionAttribute is available since C# Next (more info here).
The following example is inspired by Paul Mcilreavy's The CallerArgumentExpression Attribute in C# 8.0:
public static void ThrowIfNullOrWhitespace(this string self,
[CallerArgumentExpression("self")] string paramName = default)
{
if (self is null)
{
throw new ArgumentNullException(paramName);
}
if (string.IsNullOrWhiteSpace(self))
{
throw new ArgumentOutOfRangeException(paramName, self, "Value cannot be whitespace");
}
}
This would be very useful to do in order to create good exception messages causing people to be able to pinpoint errors better. Line numbers help, but you might not get them in prod, and when you do get them, if there are big statements in code, you typically only get the first line of the whole statement.
For instance, if you call .Value on a nullable that isn't set, you'll get an exception with a failure message, but as this functionality is lacking, you won't see what property was null. If you do this twice in one statement, for instance to set parameters to some method, you won't be able to see what nullable was not set.
Creating code like Verify.NotNull(myvar, nameof(myvar)) is the best workaround I've found so far, but would be great to get rid of the need to add the extra parameter.
No, but whenever you find yourself doing extremely complex things like this, you might want to re-think your solution. Remember that code should be easier to read than it was to write.
System.Environment.StackTrace will give you a string that includes the current call stack. You could parse that to get the information, which includes the variable names for each call.
Well Try this Utility class,
public static class Utility
{
public static Tuple<string, TSource> GetNameAndValue<TSource>(Expression<Func<TSource>> sourceExpression)
{
Tuple<String, TSource> result = null;
Type type = typeof (TSource);
Func<MemberExpression, Tuple<String, TSource>> process = delegate(MemberExpression memberExpression)
{
ConstantExpression constantExpression = (ConstantExpression)memberExpression.Expression;
var name = memberExpression.Member.Name;
var value = ((FieldInfo)memberExpression.Member).GetValue(constantExpression.Value);
return new Tuple<string, TSource>(name, (TSource) value);
};
Expression exception = sourceExpression.Body;
if (exception is MemberExpression)
{
result = process((MemberExpression)sourceExpression.Body);
}
else if (exception is UnaryExpression)
{
UnaryExpression unaryExpression = (UnaryExpression)sourceExpression.Body;
result = process((MemberExpression)unaryExpression.Operand);
}
else
{
throw new Exception("Expression type unknown.");
}
return result;
}
}
And User It Like
/*ToDo : Test Result*/
static void Main(string[] args)
{
/*Test : primivit types*/
long maxNumber = 123123;
Tuple<string, long> longVariable = Utility.GetNameAndValue(() => maxNumber);
string longVariableName = longVariable.Item1;
long longVariableValue = longVariable.Item2;
/*Test : user define types*/
Person aPerson = new Person() { Id = "123", Name = "Roy" };
Tuple<string, Person> personVariable = Utility.GetNameAndValue(() => aPerson);
string personVariableName = personVariable.Item1;
Person personVariableValue = personVariable.Item2;
/*Test : anonymous types*/
var ann = new { Id = "123", Name = "Roy" };
var annVariable = Utility.GetNameAndValue(() => ann);
string annVariableName = annVariable.Item1;
var annVariableValue = annVariable.Item2;
/*Test : Enum tyoes*/
Active isActive = Active.Yes;
Tuple<string, Active> isActiveVariable = Utility.GetNameAndValue(() => isActive);
string isActiveVariableName = isActiveVariable.Item1;
Active isActiveVariableValue = isActiveVariable.Item2;
}
Do this
var myVariable = 123;
myVariable.Named(() => myVariable);
var name = myVariable.Name();
// use name how you like
or naming in code by hand
var myVariable = 123.Named("my variable");
var name = myVariable.Name();
using this class
public static class ObjectInstanceExtensions
{
private static Dictionary<object, string> namedInstances = new Dictionary<object, string>();
public static void Named<T>(this T instance, Expression<Func<T>> expressionContainingOnlyYourInstance)
{
var name = ((MemberExpression)expressionContainingOnlyYourInstance.Body).Member.Name;
instance.Named(name);
}
public static T Named<T>(this T instance, string named)
{
if (namedInstances.ContainsKey(instance)) namedInstances[instance] = named;
else namedInstances.Add(instance, named);
return instance;
}
public static string Name<T>(this T instance)
{
if (namedInstances.ContainsKey(instance)) return namedInstances[instance];
throw new NotImplementedException("object has not been named");
}
}
Code tested and most elegant I can come up with.
Thanks for all the responses. I guess I'll just have to go with what I'm doing now.
For those who wanted to know why I asked the above question. I have the following function:
string sMessages(ArrayList aMessages, String sType) {
string sReturn = String.Empty;
if (aMessages.Count > 0) {
sReturn += "<p class=\"" + sType + "\">";
for (int i = 0; i < aMessages.Count; i++) {
sReturn += aMessages[i] + "<br />";
}
sReturn += "</p>";
}
return sReturn;
}
I send it an array of error messages and a css class which is then returned as a string for a webpage.
Every time I call this function, I have to define sType. Something like:
output += sMessages(aErrors, "errors");
As you can see, my variables is called aErrors and my css class is called errors. I was hoping my cold could figure out what class to use based on the variable name I sent it.
Again, thanks for all the responses.
thanks to visual studio 2022 , you can use this
function
public void showname(dynamic obj) {
obj.GetType().GetProperties().ToList().ForEach(state => {
NameAndValue($"{state.Name}:{state.GetValue(obj, null).ToString()}");
});
}
to use
var myname = "dddd";
showname(new { myname });
The short answer is no ... unless you are really really motivated.
The only way to do this would be via reflection and stack walking. You would have to get a stack frame, work out whereabouts in the calling function you where invoked from and then using the CodeDOM try to find the right part of the tree to see what the expression was.
For example, what if the invocation was ExampleFunction("a" + "b")?
No. A reference to your string variable gets passed to the funcion--there isn't any inherent metadeta about it included. Even reflection wouldn't get you out of the woods here--working backwards from a single reference type doesn't get you enough info to do what you need to do.
Better go back to the drawing board on this one!
rp
You could use reflection to get all the properties of an object, than loop through it, and get the value of the property where the name (of the property) matches the passed in parameter.
Well had a bit of look. of course you can't use any Type information.
Also, the name of a local variable is not available at runtime
because their names are not compiled into the assembly's metadata.
GateKiller, what's wrong with my workaround? You could rewrite your function trivially to use it (I've taken the liberty to improve the function on the fly):
static string sMessages(Expression<Func<List<string>>> aMessages) {
var messages = aMessages.Compile()();
if (messages.Count == 0) {
return "";
}
StringBuilder ret = new StringBuilder();
string sType = ((MemberExpression)aMessages.Body).Member.Name;
ret.AppendFormat("<p class=\"{0}\">", sType);
foreach (string msg in messages) {
ret.Append(msg);
ret.Append("<br />");
}
ret.Append("</p>");
return ret.ToString();
}
Call it like this:
var errors = new List<string>() { "Hi", "foo" };
var ret = sMessages(() => errors);
A way to get it can be reading the code file and splitting it with comma and parenthesis...
var trace = new StackTrace(true).GetFrame(1);
var line = File.ReadAllLines(trace.GetFileName())[trace.GetFileLineNumber()];
var argumentNames = line.Split(new[] { ",", "(", ")", ";" },
StringSplitOptions.TrimEntries)
.Where(x => x.Length > 0)
.Skip(1).ToList();
Extending on the accepted answer for this question, here is how you'd do it with #nullable enable source files:
internal static class StringExtensions
{
public static void ValidateNotNull(
[NotNull] this string? theString,
[CallerArgumentExpression("theString")] string? theName = default)
{
if (theString is null)
{
throw new ArgumentException($"'{theName}' cannot be null.", theName);
}
}
public static void ValidateNotNullOrEmpty(
[NotNull] this string? theString,
[CallerArgumentExpression("theString")] string? theName = default)
{
if (string.IsNullOrEmpty(theString))
{
throw new ArgumentException($"'{theName}' cannot be null or empty.", theName);
}
}
public static void ValidateNotNullOrWhitespace(
[NotNull] this string? theString,
[CallerArgumentExpression("theString")] string? theName = default)
{
if (string.IsNullOrWhiteSpace(theString))
{
throw new ArgumentException($"'{theName}' cannot be null or whitespace", theName);
}
}
}
What's nice about this code is that it uses [NotNull] attribute, so the static analysis will cooperate:
If I understand you correctly, you want the string "WhatIsMyName" to appear inside the Hello string.
string Hello = ExampleFunction(WhatIsMyName);
If the use case is that it increases the reusability of ExampleFunction and that Hello shall contain something like "Hello, Peter (from WhatIsMyName)", then I think a solution would be to expand the ExampleFunction to accept:
string Hello = ExampleFunction(WhatIsMyName,nameof(WhatIsMyName));
So that the name is passed as a separate string. Yes, it is not exactly what you asked and you will have to type it twice. But it is refactor safe, readable, does not use the debug interface and the chance of Error is minimal because they appear together in the consuming code.
string Hello1 = ExampleFunction(WhatIsMyName,nameof(WhatIsMyName));
string Hello2 = ExampleFunction(SomebodyElse,nameof(SomebodyElse));
string Hello3 = ExampleFunction(HerName,nameof(HerName));
No. I don't think so.
The variable name that you use is for your convenience and readability. The compiler doesn't need it & just chucks it out if I'm not mistaken.
If it helps, you could define a new class called NamedParameter with attributes Name and Param. You then pass this object around as parameters.

How can I retrieve the namespace to a string C#

I am writing a program which needs the namespace of the program but I cant seem to figure out how to retrieve it. I would like the end result to be in a string.
I was able to find an MSDN page about this topic but it proved to be unhelpful to myself.
http://msdn.microsoft.com/en-us/library/system.type.namespace.aspx
Any help would be appreciated. The program is written in C#.
EDIT: Sorry guys, this is not a console application.
This should work:
var myType = typeof(MyClass);
var n = myType.Namespace;
Write out to the console:
Type myType = typeof(MyClass);
Console.WriteLine("Namespace: {0}.", myType.Namespace);
Setting a WinForm label:
Type myType = typeof(MyClass);
namespaceLabel.Text = myType.Namespace;
Or create a method in the relevant class and use anywhere:
public string GetThisNamespace()
{
return GetType().Namespace;
}
To add to all the answers.
Since C# 6.0 there is the nameof keyword.
string name = nameof(MyNamespace);
This has several advantages:
The name is resolved at compile-time
The name will change when refactoring the namespace
It is syntax checked, so the name must exist
cleaner code
Note: This doesn't give the full namespace though. In this case, name will be equal to Bar:
namespace Foo.Bar
{
string name = nameof(Foo.Bar);
}
Put this to your assembly:
public static string GetCurrentNamespace()
{
return System.Reflection.Assembly.GetExecutingAssembly().EntryPoint.DeclaringType.Namespace;
}
Or if you want this method to be in a library used by your program, write it like this:
[System.Runtime.CompilerServices.MethodImpl(MethodImplOptions.NoInlining)]
public static string GetCurrentNamespace()
{
return System.Reflection.Assembly.GetCallingAssembly().EntryPoint.DeclaringType.Namespace;
}
This can't go wrong:
MethodBase.GetCurrentMethod().DeclaringType.Namespace
if you have item x of class A in namespace B you can use:
string s = x.GetType().Namespace;
no s contains "B"
you can also use x.GetType().Name to get the type name or x.GetType().FullName to get both
You could simply use typeof and then pass in the class (I.e. Program):
Console.WriteLine(typeof(Program).Namespace);
Which would print:
ConsoleApplication1
Type myType = typeof(MyClass);
// Get the namespace of the myClass class.
Console.WriteLine("Namespace: {0}.", myType.Namespace);
Building on Joe's comment you can still use
Type myType = typeof(MyClass);
// Get the namespace of the myClass class.
var namespaceName = myType.Namespace.ToString();
with namespaceName being a variable to access the namespace name as a string value.
If you're executing it from a class in the namespace you need to capture then you can just use:
GetType().Namespace
This works nicely as it then allows you to refactor the namespace and will still work.
as a roll upp all post answers:
getting all columns' values from a table given as a string tableName:
var tableName = "INVENTORY_PRICE";
var assembly = Assembly.GetExecutingAssembly();
var tip = typeof(Form3);
var t = assembly.GetType(tip.Namespace + "." + tableName);
if (t != null)
{
var foos = db.GetTable(t);
foreach (var f in foos)
{
Console.WriteLine(f + ":");
foreach (var property in f.GetType().GetProperties())
if (property != null)
{
var pv = property.GetValue(f, null);
Console.WriteLine(" " + property.Name + ":" + pv);
}
Console.WriteLine("------------------------------------------------");
}
}
it is very easy if we use ado, this sample uses LINQ context...

Call function in dynamic linq

I'm trying to call a function in a dynamic linq select statement, but im getting error:
No property or field 'A' exists in type 'Tuple2'
Example code:
void Main()
{
var a = new Tuple<int, int>(1,1);
var b = new[]{ a };
var q = b.AsQueryable().Select("A.Test(it.Item1)");
q.Dump();
}
public static class A
{
public static int Test(int i)
{
return i++;
}
}
How should I change my code to get this working?
If I call built in function Convert.ToInt32 for example it works fine.
var q = b.AsQueryable().Select("Convert.ToInt32(it.Item1)");
Also how do I cast a property using dynamic linq?
var q = b.AsQueryable().Select("((float)it.Item1)");
I'll say that the dynamic-linq isn't "strong enough" to do these things. It looks for methods only in the given objects and some special classes: Math, Convert, the various base types (int, float, string, ...), Guid, Timespan, DateTime
The list of these types is clearly visible if you use ilspy/reflector on the file. They are in System.Linq.Dynamic.ExpressionParser.predefinedTypes .
Now, clearly I could be wrong, but this works: .Select("Guid.NewGuid().ToString()").Cast<string>().ToArray()
showing that it's quite probable that that is the "correct" list.
There is an article here on how to modify Dynamic LINQ if you are interested http://www.krizzcode.com/2012/01/extending-dynamiclinq-language.html
Now, an intelligent man would take the source of dynamic linq and simply expand that array... But here there aren't intelligent men... There are only programmers that want blood! Blood but especially innards!
var type = typeof(DynamicQueryable).Assembly.GetType("System.Linq.Dynamic.ExpressionParser");
FieldInfo field = type.GetField("predefinedTypes", BindingFlags.Static | BindingFlags.NonPublic);
Type[] predefinedTypes = (Type[])field.GetValue(null);
Array.Resize(ref predefinedTypes, predefinedTypes.Length + 1);
predefinedTypes[predefinedTypes.Length - 1] = typeof(A); // Your type
field.SetValue(null, predefinedTypes);
Do this (with the types you want) BEFORE the first call to Dynamic Linq (because after the first call the methods/properties of these types are cached)
Explanation: we use reflection to add our object(s) to this "special list".
I know there is already an accepted answer on this but it did not work for me. I am using Dynamic Linq 1.1.4. I wanted to do a query like this
$.GetNewestRisk() == null
Where GetNewestRisk() is a public method on the object represented by $. I kept getting this error "Error running query, Methods on type 'Patient' are not accessible (at index 2)".
I found in the source code there is a GlobalConfig object that allows a custom provider to be assigned which will hold all of the types you may want to work with. Here is the source code for the custom provider:
public class CustomTypeProvider: IDynamicLinkCustomTypeProvider
{
public HashSet<Type> GetCustomTypes()
{
HashSet<Type> types = new HashSet<Type>();
types.Add(typeof(Patient));
types.Add(typeof(RiskFactorResult));
types.Add(typeof(PatientLabResult));
types.Add(typeof(PatientVital));
return types;
}
}
Here is how I am using it:
System.Linq.Dynamic.GlobalConfig.CustomTypeProvider = new CustomType();
After making this call I am able to call methods on the objects inside of the expression.
#xanatos answer doesn't work for .Net Core version. So I've found something similar related by #Kent on the System.Dynamic.Linq.Core tests DynamicExpressionParserTests written by the library's author himself.
The given TestCustomTypeProviderClass allows you to use the DynamicLinqType class annotation which is pretty usefull for this problem.
To answer to question, you then just needed to defined the class (ensure to annotate with DynamicLinqType) :
[DynamicLinqType]
public static class A
{
public static int Test(int i)
{
return i++;
}
}
Add a customTypeProvider as mentioned above :
private class TestCustomTypeProvider : AbstractDynamicLinqCustomTypeProvider, IDynamicLinkCustomTypeProvider
{
private HashSet<Type> _customTypes;
public virtual HashSet<Type> GetCustomTypes()
{
if (_customTypes != null)
{
return _customTypes;
}
_customTypes = new HashSet<Type>(FindTypesMarkedWithDynamicLinqTypeAttribute(new[] { GetType().GetTypeInfo().Assembly }));
return _customTypes;
}
}
and use a ParsingConfig with the configurable Select to call it :
var config = new ParsingConfig
{
CustomTypeProvider = new TestCustomTypeProvider()
};
var q = b.AsQueryable().Select(config, "A.Test(it.Item1)");
#Armand has put together a brilliant solution for this issue, and being the only solution I was able to find regarding this I want to add to it for anyone who tries the same approach.
The class that is marked with...
[DynamicLinqType]
... must be taken into consideration when you run the following line:
FindTypesMarkedWithDynamicLinqTypeAttribute(new[] { GetType().GetTypeInfo().Assembly })
In the solution provided above, this assumes the class that contains the function to be evaluated is on the same class the code currently resides in. If the methods are to be used outside of said class, the assembly will need to change.
FindTypesMarkedWithDynamicLinqTypeAttribute(new[] { typeof(AnotherClassName).Assembly })
Nothing changes from the solution above, this is just for clarification for anyone attempting to use it.
As regards the current version (1.2.19) of Dynamic LINQ, you will probably get another exception:
System.Linq.Dynamic.Core.Exceptions.ParseException : Enum value 'Test' is not defined in enum type 'A'
To make DLINQ know your type 'A', you have two options:
Set up parsing config with your own custom types provider where you directly specify the type 'A'.
Mark your type with the attribute [DynamicLinqType]. If that type is loaded into the current domain (that's the usual case), you don't have to do anything more since the default custom type provider already scans the current AppDomain for types marked with [DynamicLinqType]. And only if that's not the case, i.e. your type is not loaded into the current domain, you have to do something like in that answer.
What if you would like to use both approaches - the first for type 'A' and the second for type 'B'? In that case, you just have to "merge" your type 'A' with the default provider types:
public class DynamicLinqTests
{
[Test]
public void Test()
{
var a = new Tuple<int, int>(1, 1);
var b = new[] { a };
var parsingConfig = new ParsingConfig
{
ResolveTypesBySimpleName = true,
CustomTypeProvider = new TestCustomTypesProvider()
};
var queryWithA = b.AsQueryable().Select(parsingConfig, "A.Test(it.Item1)");
queryWithA.ToDynamicList();
var queryWithB = b.AsQueryable().Select(parsingConfig, "B.Test(it.Item1)");
queryWithB.ToDynamicList();
}
public static class A
{
public static int Test(int i)
{
return i++;
}
}
[DynamicLinqType]
public static class B
{
public static int Test(int i)
{
return i++;
}
}
public class TestCustomTypesProvider : DefaultDynamicLinqCustomTypeProvider
{
public override HashSet<Type> GetCustomTypes()
{
var customTypes = base.GetCustomTypes();
customTypes.Add(typeof(A));
return customTypes;
}
}
}
I may be confused but your syntax whereby you are using a string in your Selects doesn't compile for me. The following syntax works:
var q = b.AsQueryable().Select(it => A.Test(it.Item1));
var b = new[]{ a };
The above array is don't know what type of array , and it's not type safe ?
Your values are assigned in variant data type so it's not integer value (I think string value) ,when you get this values in your query must need to convert.toint32() because your class parameter data type is integer
Please try it
var b = new **int**[]{ a };
instead of var b = new[]{ a };
The important hint is here (in bold):
No property or field 'xxx' exists in **type** 'xxx'
And Please look this for previous discussion :
Dynamic Linq - no property or field exists in type 'datarow'
The following works for me:
var a = new Tuple<int, int>(1, 1);
var b = new[] { a };
var q = b.AsQueryable().Select(it=>A.Test(it.Item1));
var q1 = b.AsQueryable().Select(it => Convert.ToInt32(it.Item1));
var q2 = b.AsQueryable().Select(it => (float) it.Item1);

How can I get the name of a variable passed into a function?

Let me use the following example to explain my question:
public string ExampleFunction(string Variable) {
return something;
}
string WhatIsMyName = "Hello World";
string Hello = ExampleFunction(WhatIsMyName);
When I pass the variable WhatIsMyName to the ExampleFunction, I want to be able to get a string of the original variable's name. Perhaps something like:
Variable.OriginalName.ToString() // == "WhatIsMyName"
Is there any way to do this?
What you want isn't possible directly but you can use Expressions in C# 3.0:
public void ExampleFunction(Expression<Func<string, string>> f) {
Console.WriteLine((f.Body as MemberExpression).Member.Name);
}
ExampleFunction(x => WhatIsMyName);
Note that this relies on unspecified behaviour and while it does work in Microsoft’s current C# and VB compilers, and in Mono’s C# compiler, there’s no guarantee that this won’t stop working in future versions.
This isn't exactly possible, the way you would want. C# 6.0 they Introduce the nameof Operator which should help improve and simplify the code. The name of operator resolves the name of the variable passed into it.
Usage for your case would look like this:
public string ExampleFunction(string variableName) {
//Construct your log statement using c# 6.0 string interpolation
return $"Error occurred in {variableName}";
}
string WhatIsMyName = "Hello World";
string Hello = ExampleFunction(nameof(WhatIsMyName));
A major benefit is that it is done at compile time,
The nameof expression is a constant. In all cases, nameof(...) is evaluated at compile-time to produce a string. Its argument is not evaluated at runtime, and is considered unreachable code (however it does not emit an "unreachable code" warning).
More information can be found here
Older Version Of C 3.0 and above
To Build on Nawfals answer
GetParameterName2(new { variable });
//Hack to assure compiler warning is generated specifying this method calling conventions
[Obsolete("Note you must use a single parametered AnonymousType When Calling this method")]
public static string GetParameterName<T>(T item) where T : class
{
if (item == null)
return string.Empty;
return typeof(T).GetProperties()[0].Name;
}
I know this post is really old, but since there is now a way in C#10 compiler, I thought I would share so others know.
You can now use CallerArgumentExpressionAttribute as shown
// Will throw argument exception if string IsNullOrEmpty returns true
public static void ValidateNotNullorEmpty(
this string str,
[CallerArgumentExpression("str")]string strName = null
)
{
if (string.IsNullOrEmpty(str))
{
throw new ArgumentException($"'{strName}' cannot be null or empty.", strName);
}
}
Now call with:
param.ValidateNotNullorEmpty();
will throw error: "param cannot be null or empty."
instead of "str cannot be null or empty"
static void Main(string[] args)
{
Console.WriteLine("Name is '{0}'", GetName(new {args}));
Console.ReadLine();
}
static string GetName<T>(T item) where T : class
{
var properties = typeof(T).GetProperties();
Enforce.That(properties.Length == 1);
return properties[0].Name;
}
More details are in this blog post.
Three ways:
1) Something without reflection at all:
GetParameterName1(new { variable });
public static string GetParameterName1<T>(T item) where T : class
{
if (item == null)
return string.Empty;
return item.ToString().TrimStart('{').TrimEnd('}').Split('=')[0].Trim();
}
2) Uses reflection, but this is way faster than other two.
GetParameterName2(new { variable });
public static string GetParameterName2<T>(T item) where T : class
{
if (item == null)
return string.Empty;
return typeof(T).GetProperties()[0].Name;
}
3) The slowest of all, don't use.
GetParameterName3(() => variable);
public static string GetParameterName3<T>(Expression<Func<T>> expr)
{
if (expr == null)
return string.Empty;
return ((MemberExpression)expr.Body).Member.Name;
}
To get a combo parameter name and value, you can extend these methods. Of course its easy to get value if you pass the parameter separately as another argument, but that's inelegant. Instead:
1)
public static string GetParameterInfo1<T>(T item) where T : class
{
if (item == null)
return string.Empty;
var param = item.ToString().TrimStart('{').TrimEnd('}').Split('=');
return "Parameter: '" + param[0].Trim() +
"' = " + param[1].Trim();
}
2)
public static string GetParameterInfo2<T>(T item) where T : class
{
if (item == null)
return string.Empty;
var param = typeof(T).GetProperties()[0];
return "Parameter: '" + param.Name +
"' = " + param.GetValue(item, null);
}
3)
public static string GetParameterInfo3<T>(Expression<Func<T>> expr)
{
if (expr == null)
return string.Empty;
var param = (MemberExpression)expr.Body;
return "Parameter: '" + param.Member.Name +
"' = " + ((FieldInfo)param.Member).GetValue(((ConstantExpression)param.Expression).Value);
}
1 and 2 are of comparable speed now, 3 is again sluggish.
Yes! It is possible. I have been looking for a solution to this for a long time and have finally come up with a hack that solves it (it's a bit nasty). I would not recommend using this as part of your program and I only think it works in debug mode. For me this doesn't matter as I only use it as a debugging tool in my console class so I can do:
int testVar = 1;
bool testBoolVar = True;
myConsole.Writeline(testVar);
myConsole.Writeline(testBoolVar);
the output to the console would be:
testVar: 1
testBoolVar: True
Here is the function I use to do that (not including the wrapping code for my console class.
public Dictionary<string, string> nameOfAlreadyAcessed = new Dictionary<string, string>();
public string nameOf(object obj, int level = 1)
{
StackFrame stackFrame = new StackTrace(true).GetFrame(level);
string fileName = stackFrame.GetFileName();
int lineNumber = stackFrame.GetFileLineNumber();
string uniqueId = fileName + lineNumber;
if (nameOfAlreadyAcessed.ContainsKey(uniqueId))
return nameOfAlreadyAcessed[uniqueId];
else
{
System.IO.StreamReader file = new System.IO.StreamReader(fileName);
for (int i = 0; i < lineNumber - 1; i++)
file.ReadLine();
string varName = file.ReadLine().Split(new char[] { '(', ')' })[1];
nameOfAlreadyAcessed.Add(uniqueId, varName);
return varName;
}
}
Continuing with the Caller* attribute series (i.e CallerMemberName, CallerFilePath and CallerLineNumber), CallerArgumentExpressionAttribute is available since C# Next (more info here).
The following example is inspired by Paul Mcilreavy's The CallerArgumentExpression Attribute in C# 8.0:
public static void ThrowIfNullOrWhitespace(this string self,
[CallerArgumentExpression("self")] string paramName = default)
{
if (self is null)
{
throw new ArgumentNullException(paramName);
}
if (string.IsNullOrWhiteSpace(self))
{
throw new ArgumentOutOfRangeException(paramName, self, "Value cannot be whitespace");
}
}
This would be very useful to do in order to create good exception messages causing people to be able to pinpoint errors better. Line numbers help, but you might not get them in prod, and when you do get them, if there are big statements in code, you typically only get the first line of the whole statement.
For instance, if you call .Value on a nullable that isn't set, you'll get an exception with a failure message, but as this functionality is lacking, you won't see what property was null. If you do this twice in one statement, for instance to set parameters to some method, you won't be able to see what nullable was not set.
Creating code like Verify.NotNull(myvar, nameof(myvar)) is the best workaround I've found so far, but would be great to get rid of the need to add the extra parameter.
No, but whenever you find yourself doing extremely complex things like this, you might want to re-think your solution. Remember that code should be easier to read than it was to write.
System.Environment.StackTrace will give you a string that includes the current call stack. You could parse that to get the information, which includes the variable names for each call.
Well Try this Utility class,
public static class Utility
{
public static Tuple<string, TSource> GetNameAndValue<TSource>(Expression<Func<TSource>> sourceExpression)
{
Tuple<String, TSource> result = null;
Type type = typeof (TSource);
Func<MemberExpression, Tuple<String, TSource>> process = delegate(MemberExpression memberExpression)
{
ConstantExpression constantExpression = (ConstantExpression)memberExpression.Expression;
var name = memberExpression.Member.Name;
var value = ((FieldInfo)memberExpression.Member).GetValue(constantExpression.Value);
return new Tuple<string, TSource>(name, (TSource) value);
};
Expression exception = sourceExpression.Body;
if (exception is MemberExpression)
{
result = process((MemberExpression)sourceExpression.Body);
}
else if (exception is UnaryExpression)
{
UnaryExpression unaryExpression = (UnaryExpression)sourceExpression.Body;
result = process((MemberExpression)unaryExpression.Operand);
}
else
{
throw new Exception("Expression type unknown.");
}
return result;
}
}
And User It Like
/*ToDo : Test Result*/
static void Main(string[] args)
{
/*Test : primivit types*/
long maxNumber = 123123;
Tuple<string, long> longVariable = Utility.GetNameAndValue(() => maxNumber);
string longVariableName = longVariable.Item1;
long longVariableValue = longVariable.Item2;
/*Test : user define types*/
Person aPerson = new Person() { Id = "123", Name = "Roy" };
Tuple<string, Person> personVariable = Utility.GetNameAndValue(() => aPerson);
string personVariableName = personVariable.Item1;
Person personVariableValue = personVariable.Item2;
/*Test : anonymous types*/
var ann = new { Id = "123", Name = "Roy" };
var annVariable = Utility.GetNameAndValue(() => ann);
string annVariableName = annVariable.Item1;
var annVariableValue = annVariable.Item2;
/*Test : Enum tyoes*/
Active isActive = Active.Yes;
Tuple<string, Active> isActiveVariable = Utility.GetNameAndValue(() => isActive);
string isActiveVariableName = isActiveVariable.Item1;
Active isActiveVariableValue = isActiveVariable.Item2;
}
Do this
var myVariable = 123;
myVariable.Named(() => myVariable);
var name = myVariable.Name();
// use name how you like
or naming in code by hand
var myVariable = 123.Named("my variable");
var name = myVariable.Name();
using this class
public static class ObjectInstanceExtensions
{
private static Dictionary<object, string> namedInstances = new Dictionary<object, string>();
public static void Named<T>(this T instance, Expression<Func<T>> expressionContainingOnlyYourInstance)
{
var name = ((MemberExpression)expressionContainingOnlyYourInstance.Body).Member.Name;
instance.Named(name);
}
public static T Named<T>(this T instance, string named)
{
if (namedInstances.ContainsKey(instance)) namedInstances[instance] = named;
else namedInstances.Add(instance, named);
return instance;
}
public static string Name<T>(this T instance)
{
if (namedInstances.ContainsKey(instance)) return namedInstances[instance];
throw new NotImplementedException("object has not been named");
}
}
Code tested and most elegant I can come up with.
Thanks for all the responses. I guess I'll just have to go with what I'm doing now.
For those who wanted to know why I asked the above question. I have the following function:
string sMessages(ArrayList aMessages, String sType) {
string sReturn = String.Empty;
if (aMessages.Count > 0) {
sReturn += "<p class=\"" + sType + "\">";
for (int i = 0; i < aMessages.Count; i++) {
sReturn += aMessages[i] + "<br />";
}
sReturn += "</p>";
}
return sReturn;
}
I send it an array of error messages and a css class which is then returned as a string for a webpage.
Every time I call this function, I have to define sType. Something like:
output += sMessages(aErrors, "errors");
As you can see, my variables is called aErrors and my css class is called errors. I was hoping my cold could figure out what class to use based on the variable name I sent it.
Again, thanks for all the responses.
thanks to visual studio 2022 , you can use this
function
public void showname(dynamic obj) {
obj.GetType().GetProperties().ToList().ForEach(state => {
NameAndValue($"{state.Name}:{state.GetValue(obj, null).ToString()}");
});
}
to use
var myname = "dddd";
showname(new { myname });
The short answer is no ... unless you are really really motivated.
The only way to do this would be via reflection and stack walking. You would have to get a stack frame, work out whereabouts in the calling function you where invoked from and then using the CodeDOM try to find the right part of the tree to see what the expression was.
For example, what if the invocation was ExampleFunction("a" + "b")?
No. A reference to your string variable gets passed to the funcion--there isn't any inherent metadeta about it included. Even reflection wouldn't get you out of the woods here--working backwards from a single reference type doesn't get you enough info to do what you need to do.
Better go back to the drawing board on this one!
rp
You could use reflection to get all the properties of an object, than loop through it, and get the value of the property where the name (of the property) matches the passed in parameter.
Well had a bit of look. of course you can't use any Type information.
Also, the name of a local variable is not available at runtime
because their names are not compiled into the assembly's metadata.
GateKiller, what's wrong with my workaround? You could rewrite your function trivially to use it (I've taken the liberty to improve the function on the fly):
static string sMessages(Expression<Func<List<string>>> aMessages) {
var messages = aMessages.Compile()();
if (messages.Count == 0) {
return "";
}
StringBuilder ret = new StringBuilder();
string sType = ((MemberExpression)aMessages.Body).Member.Name;
ret.AppendFormat("<p class=\"{0}\">", sType);
foreach (string msg in messages) {
ret.Append(msg);
ret.Append("<br />");
}
ret.Append("</p>");
return ret.ToString();
}
Call it like this:
var errors = new List<string>() { "Hi", "foo" };
var ret = sMessages(() => errors);
A way to get it can be reading the code file and splitting it with comma and parenthesis...
var trace = new StackTrace(true).GetFrame(1);
var line = File.ReadAllLines(trace.GetFileName())[trace.GetFileLineNumber()];
var argumentNames = line.Split(new[] { ",", "(", ")", ";" },
StringSplitOptions.TrimEntries)
.Where(x => x.Length > 0)
.Skip(1).ToList();
Extending on the accepted answer for this question, here is how you'd do it with #nullable enable source files:
internal static class StringExtensions
{
public static void ValidateNotNull(
[NotNull] this string? theString,
[CallerArgumentExpression("theString")] string? theName = default)
{
if (theString is null)
{
throw new ArgumentException($"'{theName}' cannot be null.", theName);
}
}
public static void ValidateNotNullOrEmpty(
[NotNull] this string? theString,
[CallerArgumentExpression("theString")] string? theName = default)
{
if (string.IsNullOrEmpty(theString))
{
throw new ArgumentException($"'{theName}' cannot be null or empty.", theName);
}
}
public static void ValidateNotNullOrWhitespace(
[NotNull] this string? theString,
[CallerArgumentExpression("theString")] string? theName = default)
{
if (string.IsNullOrWhiteSpace(theString))
{
throw new ArgumentException($"'{theName}' cannot be null or whitespace", theName);
}
}
}
What's nice about this code is that it uses [NotNull] attribute, so the static analysis will cooperate:
If I understand you correctly, you want the string "WhatIsMyName" to appear inside the Hello string.
string Hello = ExampleFunction(WhatIsMyName);
If the use case is that it increases the reusability of ExampleFunction and that Hello shall contain something like "Hello, Peter (from WhatIsMyName)", then I think a solution would be to expand the ExampleFunction to accept:
string Hello = ExampleFunction(WhatIsMyName,nameof(WhatIsMyName));
So that the name is passed as a separate string. Yes, it is not exactly what you asked and you will have to type it twice. But it is refactor safe, readable, does not use the debug interface and the chance of Error is minimal because they appear together in the consuming code.
string Hello1 = ExampleFunction(WhatIsMyName,nameof(WhatIsMyName));
string Hello2 = ExampleFunction(SomebodyElse,nameof(SomebodyElse));
string Hello3 = ExampleFunction(HerName,nameof(HerName));
No. I don't think so.
The variable name that you use is for your convenience and readability. The compiler doesn't need it & just chucks it out if I'm not mistaken.
If it helps, you could define a new class called NamedParameter with attributes Name and Param. You then pass this object around as parameters.

Categories