c# Apply 64 bit XOR on byte Array - c#

I want to Apply 64 XOR operation of two byte array. Is this right approach to do with using unsafe
I have tried below approach without using unsafe. but i want little faster than this
for (int i=0; i< oldBlock.Length;i++)
{
{
oldblock[i] ^= (newblock[i]);
}
Below XOR operation miss last bytes as below code XOR 8 bytes each time.
How to accomplish this.
static void Main(string[] args)
{
byte[] a = new byte[10];
byte[] b = new byte[10];
Random r = new Random();
r.NextBytes(a);
a.CopyTo(b, 0);
XOr64(a, b);
foreach (byte c in a)
{
Console.WriteLine(c);
}
Console.ReadKey();
}
public static unsafe void XOr64(byte[] oldBlock, byte[] newblock)
{
try
{
fixed (byte* byteA = oldBlock)
fixed (byte* byteB = newblock)
{
long* ppA = (long*)byteA;
long* ppB = (long*)byteB;
for (int p = 0; p < oldBlock.Length/8; p++)
{
*ppA ^= *ppB;
ppA++;
ppB++;
}
}
}
catch
{
}
}

If the 8-byte-at-a-time aspect is working well for you and you're sure you need the extra performance, you can just extend that method to cover the remaining bytes individually - which will be at most 7 bytes:
public static unsafe void XOr64(byte[] oldBlock, byte[] newBlock)
{
// First XOR as many 64-bit blocks as possible, for the sake of speed
fixed (byte* byteA = oldBlock)
fixed (byte* byteB = newBlock)
{
long* ppA = (long*) byteA;
long* ppB = (long*) byteB;
int chunks = oldBlock.Length / 8;
for (int p = 0; p < chunks; p++)
{
*ppA ^= *ppB;
ppA++;
ppB++;
}
}
// Now cover any remaining bytes one byte at a time. We've
// already handled chunks * 8 bytes, so start there.
for (int index = chunks * 8; index < oldBlock.Length; index++)
{
oldBlock[index] ^= newBlock[index];
}
}

Here is #Jon Skeet algorithm implemented using Span<> instead of unsafe code:
public static void Xor64(Span<byte> bytes, ReadOnlySpan<byte> mask) {
int chunks = mask.Length / 8;
int chunksBounds = chunks * 8;
Xor64(MemoryMarshal.Cast<byte, long>(bytes[..chunksBounds]), MemoryMarshal.Cast<byte, long>(mask[..chunksBounds]));
for (int i = chunksBounds;i < mask.Length;i++) {
bytes[i] ^= mask[i];
}
}
public static void Xor64(Span<long> longs, ReadOnlySpan<long> mask) {
for (int i = 0;i < longs.Length;i++) {
longs[i] ^= mask[i];
}
}

Related

Optimize summing 2 arrays of bytes

I am iterating through an array of bytes and add values of another array of bytes in a for loop.
var random = new Random();
byte[] bytes = new byte[20_000_000];
byte[] bytes2 = new byte[20_000_000];
for (int i = 0; i < bytes.Length; i++)
{
bytes[i] = (byte)random.Next(255);
}
for (int i = 0; i < bytes.Length; i++)
{
bytes2[i] = (byte)random.Next(255);
}
//how to optimize the part below
for (int i = 0; i < bytes.Length; i++)
{
bytes[i] += bytes2[i];
}
Is there any way to speed up the process, so it can be faster than linear.
You could use Vector:
static void Add(Span<byte> dst, ReadOnlySpan<byte> src)
{
Span<Vector<byte>> dstVec = MemoryMarshal.Cast<byte, Vector<byte>>(dst);
ReadOnlySpan<Vector<byte>> srcVec = MemoryMarshal.Cast<byte, Vector<byte>>(src);
for (int i = 0; i < dstVec.Length; ++i)
{
dstVec[i] += srcVec[i];
}
for (int i = dstVec.Length * Vector<byte>.Count; i < dst.Length; ++i)
{
dst[i] += src[i];
}
}
Will go even faster if you use a pointer here to align one of your arrays.
Pad the array length to the next highest multiple of 8.(It already is in your example.)
Use an unsafe context to create two ulong arrays pointing to the start of the existing byte arrays. Use a for loop to iterate bytes.Length / 8 times adding 8 bytes at a time.
On my system this runs for less than 13 milliseconds. Compared to 105 milliseconds for the original code.
You must add the /unsafe option to use this code. Open the project properties and select "allow unsafe code".
var random = new Random();
byte[] bytes = new byte[20_000_000];
byte[] bytes2 = new byte[20_000_000];
int Len = bytes.Length >> 3; // >>3 is the same as / 8
ulong MASK = 0x8080808080808080;
ulong MASKINV = 0x7f7f7f7f7f7f7f7f;
//Sanity check
if((bytes.Length & 7) != 0) throw new Exception("bytes.Length is not a multiple of 8");
if((bytes2.Length & 7) != 0) throw new Exception("bytes2.Length is not a multiple of 8");
unsafe
{
//Add 8 bytes at a time, taking into account overflow between bytes
fixed (byte* pbBytes = &bytes[0])
fixed (byte* pbBytes2 = &bytes2[0])
{
ulong* pBytes = (ulong*)pbBytes;
ulong* pBytes2 = (ulong*)pbBytes2;
for (int i = 0; i < Len; i++)
{
pBytes[i] = ((pBytes2[i] & MASKINV) + (pBytes[i] & MASKINV)) ^ ((pBytes[i] ^ pBytes2[i]) & MASK);
}
}
}
You can utilize all your processors/cores, assuming that your machine has more than one.
Parallel.ForEach(Partitioner.Create(0, bytes.Length), range =>
{
for (int i = range.Item1; i < range.Item2; i++)
{
bytes[i] += bytes2[i];
}
});
Update: The Vector<T> class can also be used in .NET Framework. It requires the package System.Numerics.Vectors. It offers the advantage of parallelization in a single core, by issuing a Single Instruction to Multiple Data (SIMD). Most current processors are SIMD-enabled. It is only enabled for 64-bit processes, so the flag [Prefer 32-bit] must be unchecked. On 32-bit processes the property Vector.IsHardwareAccelerated returns false, and the performance is bad.
using System.Numerics;
/// <summary>Adds each pair of elements in two arrays, and replaces the
/// left array element with the result.</summary>
public static void Add_UsingVector(byte[] left, byte[] right, int start, int length)
{
int i = start;
int step = Vector<byte>.Count; // the step is 16
int end = start + length - step + 1;
for (; i < end; i += step)
{
// Vectorize 16 bytes from each array
var vector1 = new Vector<byte>(left, i);
var vector2 = new Vector<byte>(right, i);
vector1 += vector2; // Vector arithmetic is unchecked only
vector1.CopyTo(left, i);
}
for (; i < start + length; i++) // Process the last few elements
{
unchecked { left[i] += right[i]; }
}
}
This runs 4-5 times faster than a simple loop, without utilizing more than one thread (25% CPU consumption in a 4-core PC).

Summing N arrays of bytes efficiently

Below is the code to visualize what's need to be done. I am looking for a solution that can do it faster. One of them is to Sum to arrays using bit manipulation (https://stackoverflow.com/a/55945544/4791668). I wonder if there is any way to do it the way described in the link and find the average at the same time.
var random = new Random();
byte[] bytes = new byte[20_000_000];
byte[] bytes2 = new byte[20_000_000];
for (int i = 0; i < bytes.Length; i++)
{
bytes[i] = (byte)random.Next(255);
}
for (int i = 0; i < bytes.Length; i++)
{
bytes2[i] = (byte)random.Next(255);
}
//how to optimize the part below
for (int i = 0; i < bytes.Length; i++)
{
bytes[i] = (byte)((bytes[i] + bytes2[i]) / 2);
}
/////////// Solution that needs to be improved. It doesn't do the average part.
var random = new Random();
byte[] bytes = new byte[20_000_000];
byte[] bytes2 = new byte[20_000_000];
int Len = bytes.Length >> 3; // >>3 is the same as / 8
ulong MASK = 0x8080808080808080;
ulong MASKINV = 0x7f7f7f7f7f7f7f7f;
//Sanity check
if((bytes.Length & 7) != 0) throw new Exception("bytes.Length is not a multiple of 8");
if((bytes2.Length & 7) != 0) throw new Exception("bytes2.Length is not a multiple of 8");
unsafe
{
//Add 8 bytes at a time, taking into account overflow between bytes
fixed (byte* pbBytes = &bytes[0])
fixed (byte* pbBytes2 = &bytes2[0])
{
ulong* pBytes = (ulong*)pbBytes;
ulong* pBytes2 = (ulong*)pbBytes2;
for (int i = 0; i < Len; i++)
{
pBytes[i] = ((pBytes2[i] & MASKINV) + (pBytes[i] & MASKINV)) ^ ((pBytes[i] ^ pBytes2[i]) & MASK);
}
}
}
Using bit manipulation, you can compute the average of the bytes in parallel:
ulong NOLOW = 0xfefefefefefefefe;
unsafe {
//Add 8 bytes at a time, taking into account overflow between bytes
fixed (byte* pbBytes = &bytes[0])
fixed (byte* pbBytes2 = &bytes2[0])
fixed (byte* pbAns2 = &ans2[0]) {
ulong* pBytes = (ulong*)pbBytes;
ulong* pBytes2 = (ulong*)pbBytes2;
ulong* pAns2 = (ulong*)pbAns2;
for (int i = 0; i < Len; i++) {
pAns2[i] = (pBytes2[i] & pBytes[i]) + (((pBytes[i] ^ pBytes2[i]) & NOLOW) >> 1);
}
}
}
I modified the code to store in a separate ans byte array since I needed the source arrays to compare the two methods. Obviously you could store back to the original bytes[] if desired.
This is based on this formula: x+y == (x&y)+(x|y) == (x&y)*2 + (x^y) == (x&y)<<1 + (x^y), which means you can compute (x+y)/2 == (x&y)+((x^y) >> 1). Since we know we are computing 8 bytes at a time, we can mask the low order bit out of every byte so we shift in a 0 bit for the high order bit of every byte when we shift all 8 bytes.
On my PC this runs 2x to 3x faster (trending to 2x for longer arrays) than the (byte) sum.

can i use this same as with byte to other types values / objects?

As my goal is to out perform the List<T>
i am testing arrays and found few starting points to get on testing
i have tested this before trying to capture bitmaps off screen,
and tests proved the usage is suffice.
my question is what data types could use this Copy() code except for byte[]
say i want a data storage unit to take the advantage of unmanaged / unsafe
public unsafe struct NusT
{
public unsafe int vi;
public unsafe bool vb;
}
instead of populating a list
i initialise the struct as follows : 1)
NusT n;
n.vi= 90;
n.vb=true
i have tested this after testing the folowing: 2)
NusT n = new NusT(){vi=90, vb=true};
this test was after testing :3)
NusT n = new NusT("90", true);
i think both last had same results but the first one is blazing fast, as i do not create an object so
NusT n-> instructions- 1
n.vi=90 -> instructions- 1
n.vb=true -> instructions- 1
now i minimized what i could and this started at the begining with a class:
whitch was even worse than 2 & 3 above as it also uses properties
class bigAndSlow
{
public int a { get; private set;}
public bool b { get; private set;}
public string c { get; private set;}
public bigAndSlow(int .. ,boo .. , string.. )
{
initialise ...
}
}
so now when the final decision is
public unsafe struct NusT
{
public unsafe int vi;
public unsafe bool vb;
}
how can i implement this blazingly fast data unit to use Copy() on
NusT[] NustyArr;
static unsafe void Copy(byte[] src, int srcIndex,
byte[] dst, int dstIndex, int count)
{
if (src == null || srcIndex < 0 ||
dst == null || dstIndex < 0 || count < 0)
{
throw new ArgumentException();
}
int srcLen = src.Length;
int dstLen = dst.Length;
if (srcLen - srcIndex < count ||
dstLen - dstIndex < count)
{
throw new ArgumentException();
}
// The following fixed statement pins the location of
// the src and dst objects in memory so that they will
// not be moved by garbage collection.
fixed (byte* pSrc = src, pDst = dst)
{
byte* ps = pSrc;
byte* pd = pDst;
// Loop over the count in blocks of 4 bytes, copying an
// integer (4 bytes) at a time:
for (int n = 0; n < count / 4; n++)
{
*((int*)pd) = *((int*)ps);
pd += 4;
ps += 4;
}
// Complete the copy by moving any bytes that weren't
// moved in blocks of 4:
for (int n = 0; n < count % 4; n++)
{
*pd = *ps;
pd++;
ps++;
}
}
}
static void Main(string[] args)
{
byte[] a = new byte[100];
byte[] b = new byte[100];
for (int i = 0; i < 100; ++i)
a[i] = (byte)i;
Copy(a, 0, b, 0, 100);
Console.WriteLine("The first 10 elements are:");
for (int i = 0; i < 10; ++i)
Console.Write(b[i] + " ");
Console.WriteLine("\n");
}
Yes, you can do this with any blittable type. The blittable types are primitive types (integer and float types, but not bool), one-dimensional arrays of blittable types and structures containing fields of blittable types only.
The structure NusT is not blittable because it contains bool field. Just change it to byte and you will get a blittable structure for which you can obtain a pointer.
Here is the code that works for any type:
static unsafe void UnsafeCopy<T>(T[] src, int srcIndex, T[] dst, int dstIndex, int count) where T : struct
{
if (src == null || srcIndex < 0 || dst == null || dstIndex < 0 || count < 0 || srcIndex + count > src.Length || dstIndex + count > dst.Length)
{
throw new ArgumentException();
}
int elem_size = Marshal.SizeOf(typeof(T));
GCHandle gch1 = GCHandle.Alloc(src, GCHandleType.Pinned);
GCHandle gch2 = GCHandle.Alloc(dst, GCHandleType.Pinned);
byte* ps = (byte*)gch1.AddrOfPinnedObject().ToPointer() + srcIndex * elem_size;
byte* pd = (byte*)gch2.AddrOfPinnedObject().ToPointer() + dstIndex * elem_size;
int len = count * elem_size;
try
{
// Loop over the count in blocks of 4 bytes, copying an
// integer (4 bytes) at a time:
for (int n = 0; n < len / 4; n++)
{
*((int*)pd) = *((int*)ps);
pd += 4;
ps += 4;
}
// Complete the copy by moving any bytes that weren't
// moved in blocks of 4:
for (int n = 0; n < len % 4; n++)
{
*pd = *ps;
pd++;
ps++;
}
}
finally
{
gch1.Free();
gch2.Free();
}
}
But I strongly advice you to use Array.Copy. It is already the most efficient way to copy arrays. See the benchmarks of copying array of 1M elements below:
byte[] Array.Copy: 57,491 us
byte[] FastCopy: 138,198 us
byte[] JustCopy: 792,399 us
byte[] UnsafeCopy: 138,575 us
byte[] MemCpy: 57,667 us
NusT[] Array.Copy: 1,197 ms
NusT[] JustCopy: 1,843 ms
NusT[] UnsafeCopy: 1,550 ms
NusT[] MemCpy: 1,208 ms
FastCopy is your copy function, UnsafeCopy is my templated function, JustCopy is a simple implementation for (int i = 0; i < src.Length; i++) dst[i] = src[i];. MemCpy is PInvoke call of msvcrt memcpy function.
The verdict is: using pointers in C# for performance improvement is a bad practice. JIT does not optimize the unsafe code. The best solution is to move performance critical code to native DLLs.

Convert from BitArray to Byte

I have a BitArray with the length of 8, and I need a function to convert it to a byte. How to do it?
Specifically, I need a correct function of ConvertToByte:
BitArray bit = new BitArray(new bool[]
{
false, false, false, false,
false, false, false, true
});
//How to write ConvertToByte
byte myByte = ConvertToByte(bit);
var recoveredBit = new BitArray(new[] { myByte });
Assert.AreEqual(bit, recoveredBit);
This should work:
byte ConvertToByte(BitArray bits)
{
if (bits.Count != 8)
{
throw new ArgumentException("bits");
}
byte[] bytes = new byte[1];
bits.CopyTo(bytes, 0);
return bytes[0];
}
A bit late post, but this works for me:
public static byte[] BitArrayToByteArray(BitArray bits)
{
byte[] ret = new byte[(bits.Length - 1) / 8 + 1];
bits.CopyTo(ret, 0);
return ret;
}
Works with:
string text = "Test";
byte[] bytes = System.Text.Encoding.ASCII.GetBytes(text);
BitArray bits = new BitArray(bytes);
bytes[] bytesBack = BitArrayToByteArray(bits);
string textBack = System.Text.Encoding.ASCII.GetString(bytesBack);
// bytes == bytesBack
// text = textBack
.
A poor man's solution:
protected byte ConvertToByte(BitArray bits)
{
if (bits.Count != 8)
{
throw new ArgumentException("illegal number of bits");
}
byte b = 0;
if (bits.Get(7)) b++;
if (bits.Get(6)) b += 2;
if (bits.Get(5)) b += 4;
if (bits.Get(4)) b += 8;
if (bits.Get(3)) b += 16;
if (bits.Get(2)) b += 32;
if (bits.Get(1)) b += 64;
if (bits.Get(0)) b += 128;
return b;
}
Unfortunately, the BitArray class is partially implemented in .Net Core class (UWP). For example BitArray class is unable to call the CopyTo() and Count() methods. I wrote this extension to fill the gap:
public static IEnumerable<byte> ToBytes(this BitArray bits, bool MSB = false)
{
int bitCount = 7;
int outByte = 0;
foreach (bool bitValue in bits)
{
if (bitValue)
outByte |= MSB ? 1 << bitCount : 1 << (7 - bitCount);
if (bitCount == 0)
{
yield return (byte) outByte;
bitCount = 8;
outByte = 0;
}
bitCount--;
}
// Last partially decoded byte
if (bitCount < 7)
yield return (byte) outByte;
}
The method decodes the BitArray to a byte array using LSB (Less Significant Byte) logic. This is the same logic used by the BitArray class. Calling the method with the MSB parameter set on true will produce a MSB decoded byte sequence. In this case, remember that you maybe also need to reverse the final output byte collection.
This should do the trick. However the previous answer is quite likely the better option.
public byte ConvertToByte(BitArray bits)
{
if (bits.Count > 8)
throw new ArgumentException("ConvertToByte can only work with a BitArray containing a maximum of 8 values");
byte result = 0;
for (byte i = 0; i < bits.Count; i++)
{
if (bits[i])
result |= (byte)(1 << i);
}
return result;
}
In the example you posted the resulting byte will be 0x80. In other words the first value in the BitArray coresponds to the first bit in the returned byte.
That's should be the ultimate one. Works with any length of array.
private List<byte> BoolList2ByteList(List<bool> values)
{
List<byte> ret = new List<byte>();
int count = 0;
byte currentByte = 0;
foreach (bool b in values)
{
if (b) currentByte |= (byte)(1 << count);
count++;
if (count == 7) { ret.Add(currentByte); currentByte = 0; count = 0; };
}
if (count < 7) ret.Add(currentByte);
return ret;
}
In addition to #JonSkeet's answer you can use an Extension Method as below:
public static byte ToByte(this BitArray bits)
{
if (bits.Count != 8)
{
throw new ArgumentException("bits");
}
byte[] bytes = new byte[1];
bits.CopyTo(bytes, 0);
return bytes[0];
}
And use like:
BitArray foo = new BitArray(new bool[]
{
false, false, false, false,false, false, false, true
});
foo.ToByte();
byte GetByte(BitArray input)
{
int len = input.Length;
if (len > 8)
len = 8;
int output = 0;
for (int i = 0; i < len; i++)
if (input.Get(i))
output += (1 << (len - 1 - i)); //this part depends on your system (Big/Little)
//output += (1 << i); //depends on system
return (byte)output;
}
Cheers!
Little endian byte array converter : First bit (indexed with "0") in the BitArray
assumed to represents least significant bit (rightmost bit in the bit-octet) which interpreted as "zero" or "one" as binary.
public static class BitArrayExtender {
public static byte[] ToByteArray( this BitArray bits ) {
const int BYTE = 8;
int length = ( bits.Count / BYTE ) + ( (bits.Count % BYTE == 0) ? 0 : 1 );
var bytes = new byte[ length ];
for ( int i = 0; i < bits.Length; i++ ) {
int bitIndex = i % BYTE;
int byteIndex = i / BYTE;
int mask = (bits[ i ] ? 1 : 0) << bitIndex;
bytes[ byteIndex ] |= (byte)mask;
}//for
return bytes;
}//ToByteArray
}//class

What is the fastest way to convert a float[] to a byte[]?

I would like to get a byte[] from a float[] as quickly as possible, without looping through the whole array (via a cast, probably). Unsafe code is fine. Thanks!
I am looking for a byte array 4 time longer than the float array (the dimension of the byte array will be 4 times that of the float array, since each float is composed of 4 bytes). I'll pass this to a BinaryWriter.
EDIT:
To those critics screaming "premature optimization":
I have benchmarked this using ANTS profiler before I optimized. There was a significant speed increase because the file has a write-through cache and the float array is exactly sized to match the sector size on the disk. The binary writer wraps a file handle created with pinvoke'd win32 API. The optimization occurs since this lessens the number of function calls.
And, with regard to memory, this application creates massive caches which use plenty of memory. I can allocate the byte buffer once and re-use it many times--the double memory usage in this particular instance amounts to a roundoff error in the overall memory consumption of the app.
So I guess the lesson here is not to make premature assumptions ;)
There is a dirty fast (not unsafe code) way of doing this:
[StructLayout(LayoutKind.Explicit)]
struct BytetoDoubleConverter
{
[FieldOffset(0)]
public Byte[] Bytes;
[FieldOffset(0)]
public Double[] Doubles;
}
//...
static Double Sum(byte[] data)
{
BytetoDoubleConverter convert = new BytetoDoubleConverter { Bytes = data };
Double result = 0;
for (int i = 0; i < convert.Doubles.Length / sizeof(Double); i++)
{
result += convert.Doubles[i];
}
return result;
}
This will work, but I'm not sure of the support on Mono or newer versions of the CLR. The only strange thing is that the array.Length is the bytes length. This can be explained because it looks at the array length stored with the array, and because this array was a byte array that length will still be in byte length. The indexer does think about the Double being eight bytes large so no calculation is necessary there.
I've looked for it some more, and it's actually described on MSDN, How to: Create a C/C++ Union by Using Attributes (C# and Visual Basic), so chances are this will be supported in future versions. I am not sure about Mono though.
Premature optimization is the root of all evil! #Vlad's suggestion to iterate over each float is a much more reasonable answer than switching to a byte[]. Take the following table of runtimes for increasing numbers of elements (average of 50 runs):
Elements BinaryWriter(float) BinaryWriter(byte[])
-----------------------------------------------------------
10 8.72ms 8.76ms
100 8.94ms 8.82ms
1000 10.32ms 9.06ms
10000 32.56ms 10.34ms
100000 213.28ms 739.90ms
1000000 1955.92ms 10668.56ms
There is little difference between the two for small numbers of elements. Once you get into the huge number of elements range, the time spent copying from the float[] to the byte[] far outweighs the benefits.
So go with what is simple:
float[] data = new float[...];
foreach(float value in data)
{
writer.Write(value);
}
There is a way which avoids memory copying and iteration.
You can use a really ugly hack to temporary change your array to another type using (unsafe) memory manipulation.
I tested this hack in both 32 & 64 bit OS, so it should be portable.
The source + sample usage is maintained at https://gist.github.com/1050703 , but for your convenience I'll paste it here as well:
public static unsafe class FastArraySerializer
{
[StructLayout(LayoutKind.Explicit)]
private struct Union
{
[FieldOffset(0)] public byte[] bytes;
[FieldOffset(0)] public float[] floats;
}
[StructLayout(LayoutKind.Sequential, Pack = 1)]
private struct ArrayHeader
{
public UIntPtr type;
public UIntPtr length;
}
private static readonly UIntPtr BYTE_ARRAY_TYPE;
private static readonly UIntPtr FLOAT_ARRAY_TYPE;
static FastArraySerializer()
{
fixed (void* pBytes = new byte[1])
fixed (void* pFloats = new float[1])
{
BYTE_ARRAY_TYPE = getHeader(pBytes)->type;
FLOAT_ARRAY_TYPE = getHeader(pFloats)->type;
}
}
public static void AsByteArray(this float[] floats, Action<byte[]> action)
{
if (floats.handleNullOrEmptyArray(action))
return;
var union = new Union {floats = floats};
union.floats.toByteArray();
try
{
action(union.bytes);
}
finally
{
union.bytes.toFloatArray();
}
}
public static void AsFloatArray(this byte[] bytes, Action<float[]> action)
{
if (bytes.handleNullOrEmptyArray(action))
return;
var union = new Union {bytes = bytes};
union.bytes.toFloatArray();
try
{
action(union.floats);
}
finally
{
union.floats.toByteArray();
}
}
public static bool handleNullOrEmptyArray<TSrc,TDst>(this TSrc[] array, Action<TDst[]> action)
{
if (array == null)
{
action(null);
return true;
}
if (array.Length == 0)
{
action(new TDst[0]);
return true;
}
return false;
}
private static ArrayHeader* getHeader(void* pBytes)
{
return (ArrayHeader*)pBytes - 1;
}
private static void toFloatArray(this byte[] bytes)
{
fixed (void* pArray = bytes)
{
var pHeader = getHeader(pArray);
pHeader->type = FLOAT_ARRAY_TYPE;
pHeader->length = (UIntPtr)(bytes.Length / sizeof(float));
}
}
private static void toByteArray(this float[] floats)
{
fixed(void* pArray = floats)
{
var pHeader = getHeader(pArray);
pHeader->type = BYTE_ARRAY_TYPE;
pHeader->length = (UIntPtr)(floats.Length * sizeof(float));
}
}
}
And the usage is:
var floats = new float[] {0, 1, 0, 1};
floats.AsByteArray(bytes =>
{
foreach (var b in bytes)
{
Console.WriteLine(b);
}
});
If you do not want any conversion to happen, I would suggest Buffer.BlockCopy().
public static void BlockCopy(
Array src,
int srcOffset,
Array dst,
int dstOffset,
int count
)
For example:
float[] floatArray = new float[1000];
byte[] byteArray = new byte[floatArray.Length * 4];
Buffer.BlockCopy(floatArray, 0, byteArray, 0, byteArray.Length);
You're better-off letting the BinaryWriter do this for you. There's going to be iteration over your entire set of data regardless of which method you use, so there's no point in playing with bytes.
Although you can obtain a byte* pointer using unsafe and fixed, you cannot convert the byte* to byte[] in order for the writer to accept it as a parameter without performing data copy. Which you do not want to do as it will double your memory footprint and add an extra iteration over the inevitable iteration that needs to be performed in order to output the data to disk.
Instead, you are still better off iterating over the array of floats and writing each float to the writer individually, using the Write(double) method. It will still be fast because of buffering inside the writer. See sixlettervariables's numbers.
Using the new Span<> in .Net Core 2.1 or later...
byte[] byteArray2 = MemoryMarshal.Cast<float, byte>(floatArray).ToArray();
Or, if Span can be used instead, then a direct reinterpret cast can be done: (very fast - zero copying)
Span<byte> byteArray3 = MemoryMarshal.Cast<float, byte>(floatArray);
// with span we can get a byte, set a byte, iterate, and more.
byte someByte = byteSpan[2];
byteSpan[2] = 33;
I did some crude benchmarks. The time taken for each is in the comments. [release/no debugger/x64]
float[] floatArray = new float[100];
for (int i = 0; i < 100; i++) floatArray[i] = i * 7.7777f;
Stopwatch start = Stopwatch.StartNew();
for (int j = 0; j < 100; j++)
{
start.Restart();
for (int k = 0; k < 1000; k++)
{
Span<byte> byteSpan = MemoryMarshal.Cast<float, byte>(floatArray);
}
long timeTaken1 = start.ElapsedTicks; ////// 0 ticks //////
start.Restart();
for (int k = 0; k < 1000; k++)
{
byte[] byteArray2 = MemoryMarshal.Cast<float, byte>(floatArray).ToArray();
}
long timeTaken2 = start.ElapsedTicks; ////// 26 ticks //////
start.Restart();
for (int k = 0; k < 1000; k++)
{
byte[] byteArray = new byte[sizeof(float) * floatArray.Length];
for (int i = 0; i < floatArray.Length; i++)
BitConverter.GetBytes(floatArray[i]).CopyTo(byteArray, i * sizeof(float));
}
long timeTaken3 = start.ElapsedTicks; ////// 1310 ticks //////
start.Restart();
for (int k = 0; k < 1000; k++)
{
byte[] byteArray = new byte[sizeof(float) * floatArray.Length];
Buffer.BlockCopy(floatArray, 0, byteArray, 0, byteArray.Length);
}
long timeTaken4 = start.ElapsedTicks; ////// 33 ticks //////
start.Restart();
for (int k = 0; k < 1000; k++)
{
byte[] byteArray = new byte[sizeof(float) * floatArray.Length];
MemoryStream memStream = new MemoryStream();
BinaryWriter writer = new BinaryWriter(memStream);
foreach (float value in floatArray)
writer.Write(value);
writer.Close();
}
long timeTaken5 = start.ElapsedTicks; ////// 1080 ticks //////
Console.WriteLine($"{timeTaken1/10,6} {timeTaken2 / 10,6} {timeTaken3 / 10,6} {timeTaken4 / 10,6} {timeTaken5 / 10,6} ");
}
We have a class called LudicrousSpeedSerialization and it contains the following unsafe method:
static public byte[] ConvertFloatsToBytes(float[] data)
{
int n = data.Length;
byte[] ret = new byte[n * sizeof(float)];
if (n == 0) return ret;
unsafe
{
fixed (byte* pByteArray = &ret[0])
{
float* pFloatArray = (float*)pByteArray;
for (int i = 0; i < n; i++)
{
pFloatArray[i] = data[i];
}
}
}
return ret;
}
Although it basically does do a for loop behind the scenes, it does do the job in one line
byte[] byteArray = floatArray.Select(
f=>System.BitConverter.GetBytes(f)).Aggregate(
(bytes, f) => {List<byte> temp = bytes.ToList(); temp.AddRange(f); return temp.ToArray(); });

Categories