C# .NET Parallel I/O operation (with throttling) [duplicate] - c#

I would like to run a bunch of async tasks, with a limit on how many tasks may be pending completion at any given time.
Say you have 1000 URLs, and you only want to have 50 requests open at a time; but as soon as one request completes, you open up a connection to the next URL in the list. That way, there are always exactly 50 connections open at a time, until the URL list is exhausted.
I also want to utilize a given number of threads if possible.
I came up with an extension method, ThrottleTasksAsync that does what I want. Is there a simpler solution already out there? I would assume that this is a common scenario.
Usage:
class Program
{
static void Main(string[] args)
{
Enumerable.Range(1, 10).ThrottleTasksAsync(5, 2, async i => { Console.WriteLine(i); return i; }).Wait();
Console.WriteLine("Press a key to exit...");
Console.ReadKey(true);
}
}
Here is the code:
static class IEnumerableExtensions
{
public static async Task<Result_T[]> ThrottleTasksAsync<Enumerable_T, Result_T>(this IEnumerable<Enumerable_T> enumerable, int maxConcurrentTasks, int maxDegreeOfParallelism, Func<Enumerable_T, Task<Result_T>> taskToRun)
{
var blockingQueue = new BlockingCollection<Enumerable_T>(new ConcurrentBag<Enumerable_T>());
var semaphore = new SemaphoreSlim(maxConcurrentTasks);
// Run the throttler on a separate thread.
var t = Task.Run(() =>
{
foreach (var item in enumerable)
{
// Wait for the semaphore
semaphore.Wait();
blockingQueue.Add(item);
}
blockingQueue.CompleteAdding();
});
var taskList = new List<Task<Result_T>>();
Parallel.ForEach(IterateUntilTrue(() => blockingQueue.IsCompleted), new ParallelOptions { MaxDegreeOfParallelism = maxDegreeOfParallelism },
_ =>
{
Enumerable_T item;
if (blockingQueue.TryTake(out item, 100))
{
taskList.Add(
// Run the task
taskToRun(item)
.ContinueWith(tsk =>
{
// For effect
Thread.Sleep(2000);
// Release the semaphore
semaphore.Release();
return tsk.Result;
}
)
);
}
});
// Await all the tasks.
return await Task.WhenAll(taskList);
}
static IEnumerable<bool> IterateUntilTrue(Func<bool> condition)
{
while (!condition()) yield return true;
}
}
The method utilizes BlockingCollection and SemaphoreSlim to make it work. The throttler is run on one thread, and all the async tasks are run on the other thread. To achieve parallelism, I added a maxDegreeOfParallelism parameter that's passed to a Parallel.ForEach loop re-purposed as a while loop.
The old version was:
foreach (var master = ...)
{
var details = ...;
Parallel.ForEach(details, detail => {
// Process each detail record here
}, new ParallelOptions { MaxDegreeOfParallelism = 15 });
// Perform the final batch updates here
}
But, the thread pool gets exhausted fast, and you can't do async/await.
Bonus:
To get around the problem in BlockingCollection where an exception is thrown in Take() when CompleteAdding() is called, I'm using the TryTake overload with a timeout. If I didn't use the timeout in TryTake, it would defeat the purpose of using a BlockingCollection since TryTake won't block. Is there a better way? Ideally, there would be a TakeAsync method.

As suggested, use TPL Dataflow.
A TransformBlock<TInput, TOutput> may be what you're looking for.
You define a MaxDegreeOfParallelism to limit how many strings can be transformed (i.e., how many urls can be downloaded) in parallel. You then post urls to the block, and when you're done you tell the block you're done adding items and you fetch the responses.
var downloader = new TransformBlock<string, HttpResponse>(
url => Download(url),
new ExecutionDataflowBlockOptions { MaxDegreeOfParallelism = 50 }
);
var buffer = new BufferBlock<HttpResponse>();
downloader.LinkTo(buffer);
foreach(var url in urls)
downloader.Post(url);
//or await downloader.SendAsync(url);
downloader.Complete();
await downloader.Completion;
IList<HttpResponse> responses;
if (buffer.TryReceiveAll(out responses))
{
//process responses
}
Note: The TransformBlock buffers both its input and output. Why, then, do we need to link it to a BufferBlock?
Because the TransformBlock won't complete until all items (HttpResponse) have been consumed, and await downloader.Completion would hang. Instead, we let the downloader forward all its output to a dedicated buffer block - then we wait for the downloader to complete, and inspect the buffer block.

Say you have 1000 URLs, and you only want to have 50 requests open at
a time; but as soon as one request completes, you open up a connection
to the next URL in the list. That way, there are always exactly 50
connections open at a time, until the URL list is exhausted.
The following simple solution has surfaced many times here on SO. It doesn't use blocking code and doesn't create threads explicitly, so it scales very well:
const int MAX_DOWNLOADS = 50;
static async Task DownloadAsync(string[] urls)
{
using (var semaphore = new SemaphoreSlim(MAX_DOWNLOADS))
using (var httpClient = new HttpClient())
{
var tasks = urls.Select(async url =>
{
await semaphore.WaitAsync();
try
{
var data = await httpClient.GetStringAsync(url);
Console.WriteLine(data);
}
finally
{
semaphore.Release();
}
});
await Task.WhenAll(tasks);
}
}
The thing is, the processing of the downloaded data should be done on a different pipeline, with a different level of parallelism, especially if it's a CPU-bound processing.
E.g., you'd probably want to have 4 threads concurrently doing the data processing (the number of CPU cores), and up to 50 pending requests for more data (which do not use threads at all). AFAICT, this is not what your code is currently doing.
That's where TPL Dataflow or Rx may come in handy as a preferred solution. Yet it is certainly possible to implement something like this with plain TPL. Note, the only blocking code here is the one doing the actual data processing inside Task.Run:
const int MAX_DOWNLOADS = 50;
const int MAX_PROCESSORS = 4;
// process data
class Processing
{
SemaphoreSlim _semaphore = new SemaphoreSlim(MAX_PROCESSORS);
HashSet<Task> _pending = new HashSet<Task>();
object _lock = new Object();
async Task ProcessAsync(string data)
{
await _semaphore.WaitAsync();
try
{
await Task.Run(() =>
{
// simuate work
Thread.Sleep(1000);
Console.WriteLine(data);
});
}
finally
{
_semaphore.Release();
}
}
public async void QueueItemAsync(string data)
{
var task = ProcessAsync(data);
lock (_lock)
_pending.Add(task);
try
{
await task;
}
catch
{
if (!task.IsCanceled && !task.IsFaulted)
throw; // not the task's exception, rethrow
// don't remove faulted/cancelled tasks from the list
return;
}
// remove successfully completed tasks from the list
lock (_lock)
_pending.Remove(task);
}
public async Task WaitForCompleteAsync()
{
Task[] tasks;
lock (_lock)
tasks = _pending.ToArray();
await Task.WhenAll(tasks);
}
}
// download data
static async Task DownloadAsync(string[] urls)
{
var processing = new Processing();
using (var semaphore = new SemaphoreSlim(MAX_DOWNLOADS))
using (var httpClient = new HttpClient())
{
var tasks = urls.Select(async (url) =>
{
await semaphore.WaitAsync();
try
{
var data = await httpClient.GetStringAsync(url);
// put the result on the processing pipeline
processing.QueueItemAsync(data);
}
finally
{
semaphore.Release();
}
});
await Task.WhenAll(tasks.ToArray());
await processing.WaitForCompleteAsync();
}
}

As requested, here's the code I ended up going with.
The work is set up in a master-detail configuration, and each master is processed as a batch. Each unit of work is queued up in this fashion:
var success = true;
// Start processing all the master records.
Master master;
while (null != (master = await StoredProcedures.ClaimRecordsAsync(...)))
{
await masterBuffer.SendAsync(master);
}
// Finished sending master records
masterBuffer.Complete();
// Now, wait for all the batches to complete.
await batchAction.Completion;
return success;
Masters are buffered one at a time to save work for other outside processes. The details for each master are dispatched for work via the masterTransform TransformManyBlock. A BatchedJoinBlock is also created to collect the details in one batch.
The actual work is done in the detailTransform TransformBlock, asynchronously, 150 at a time. BoundedCapacity is set to 300 to ensure that too many Masters don't get buffered at the beginning of the chain, while also leaving room for enough detail records to be queued to allow 150 records to be processed at one time. The block outputs an object to its targets, because it's filtered across the links depending on whether it's a Detail or Exception.
The batchAction ActionBlock collects the output from all the batches, and performs bulk database updates, error logging, etc. for each batch.
There will be several BatchedJoinBlocks, one for each master. Since each ISourceBlock is output sequentially and each batch only accepts the number of detail records associated with one master, the batches will be processed in order. Each block only outputs one group, and is unlinked on completion. Only the last batch block propagates its completion to the final ActionBlock.
The dataflow network:
// The dataflow network
BufferBlock<Master> masterBuffer = null;
TransformManyBlock<Master, Detail> masterTransform = null;
TransformBlock<Detail, object> detailTransform = null;
ActionBlock<Tuple<IList<object>, IList<object>>> batchAction = null;
// Buffer master records to enable efficient throttling.
masterBuffer = new BufferBlock<Master>(new DataflowBlockOptions { BoundedCapacity = 1 });
// Sequentially transform master records into a stream of detail records.
masterTransform = new TransformManyBlock<Master, Detail>(async masterRecord =>
{
var records = await StoredProcedures.GetObjectsAsync(masterRecord);
// Filter the master records based on some criteria here
var filteredRecords = records;
// Only propagate completion to the last batch
var propagateCompletion = masterBuffer.Completion.IsCompleted && masterTransform.InputCount == 0;
// Create a batch join block to encapsulate the results of the master record.
var batchjoinblock = new BatchedJoinBlock<object, object>(records.Count(), new GroupingDataflowBlockOptions { MaxNumberOfGroups = 1 });
// Add the batch block to the detail transform pipeline's link queue, and link the batch block to the the batch action block.
var detailLink1 = detailTransform.LinkTo(batchjoinblock.Target1, detailResult => detailResult is Detail);
var detailLink2 = detailTransform.LinkTo(batchjoinblock.Target2, detailResult => detailResult is Exception);
var batchLink = batchjoinblock.LinkTo(batchAction, new DataflowLinkOptions { PropagateCompletion = propagateCompletion });
// Unlink batchjoinblock upon completion.
// (the returned task does not need to be awaited, despite the warning.)
batchjoinblock.Completion.ContinueWith(task =>
{
detailLink1.Dispose();
detailLink2.Dispose();
batchLink.Dispose();
});
return filteredRecords;
}, new ExecutionDataflowBlockOptions { BoundedCapacity = 1 });
// Process each detail record asynchronously, 150 at a time.
detailTransform = new TransformBlock<Detail, object>(async detail => {
try
{
// Perform the action for each detail here asynchronously
await DoSomethingAsync();
return detail;
}
catch (Exception e)
{
success = false;
return e;
}
}, new ExecutionDataflowBlockOptions { MaxDegreeOfParallelism = 150, BoundedCapacity = 300 });
// Perform the proper action for each batch
batchAction = new ActionBlock<Tuple<IList<object>, IList<object>>>(async batch =>
{
var details = batch.Item1.Cast<Detail>();
var errors = batch.Item2.Cast<Exception>();
// Do something with the batch here
}, new ExecutionDataflowBlockOptions { MaxDegreeOfParallelism = 4 });
masterBuffer.LinkTo(masterTransform, new DataflowLinkOptions { PropagateCompletion = true });
masterTransform.LinkTo(detailTransform, new DataflowLinkOptions { PropagateCompletion = true });

Related

Backpressure via BufferBlock not working. (C# TPL Dataflow)

Typical situation: Fast producer, slow consumer, need to slow producer down.
Sample code that doesn't work as I expected (explained below):
// I assumed this block will behave like BlockingCollection, but it doesn't
var bb = new BufferBlock<int>(new DataflowBlockOptions {
BoundedCapacity = 3, // looks like this does nothing
});
// fast producer
int dataSource = -1;
var producer = Task.Run(() => {
while (dataSource < 10) {
var message = ++dataSource;
bb.Post(message);
Console.WriteLine($"Posted: {message}");
}
Console.WriteLine("Calling .Complete() on buffer block");
bb.Complete();
});
// slow consumer
var ab = new ActionBlock<int>(i => {
Thread.Sleep(500);
Console.WriteLine($"Received: {i}");
}, new ExecutionDataflowBlockOptions {
MaxDegreeOfParallelism = 2,
});
bb.LinkTo(ab);
ab.Completion.Wait();
How I thought this code would work, but it doesn't:
BufferBlock bb is the blocking queue with capacity of 3. Once capacity reached, producer should not be able to .Post() to it, until there's a vacant slot.
Doesn't work like that. bb seems to happily accept any number of messages.
producer is a task that quickly Posts messages. Once all messages have been posted, the call to bb.Complete() should propagate through the pipeline and signal shutdown once all messages have been processed. Hence waiting ab.Completion.Wait(); at the end.
Doesn't work either. As soon as .Complete() is called, action block ab won't receive any more messages.
Can be done with a BlockingCollection, which I thought in TPL Dataflow (TDF) world BufferBlock was the equivalent of. I guess I'm misunderstanding how backpressure is supposed to work in TPL Dataflow.
So where's the catch? How to run this pipeline, not allowing more than 3 messages in the buffer bb, and wait for its completion?
PS: I found this gist (https://gist.github.com/mnadel/df2ec09fe7eae9ba8938) where it's suggested to maintain a semaphore to block writing to BufferBlock. I thought this was "built-in".
Update after accepting an answer:
Updates after accepting the answer:
If you're looking at this question, you need to remember that ActionBlock also has its own input buffer.
That's for one. Then you also need to realize, that because all blocks have their own input buffers you don't need the BufferBlock for what you might think its name implied. A BufferBlock is more like a utility block for more complex architectures or like a balance loading block. But it's not a backpressure buffer.
Completion propagation needs to be dfined at link level explicitly.
When calling .LinkTo() need to explicitly pass new DataflowLinkOptions {PropagateCompletion = true} as the 2nd argument.
To introduce back pressure you need use SendAsync when you send items into the block. This allows your producer to wait for the block to be ready for the item. Something like this is what you're looking for:
class Program
{
static async Task Main()
{
var options = new ExecutionDataflowBlockOptions()
{
BoundedCapacity = 3
};
var block = new ActionBlock<int>(async i =>
{
await Task.Delay(100);
Console.WriteLine(i);
}, options);
//Producer
foreach (var i in Enumerable.Range(0, 10))
{
await block.SendAsync(i);
}
block.Complete();
await block.Completion;
}
}
If you change this to use Post and print the result of the Post you'll see that many items fail to be passed to the block:
class Program
{
static async Task Main()
{
var options = new ExecutionDataflowBlockOptions()
{
BoundedCapacity = 1
};
var block = new ActionBlock<int>(async i =>
{
await Task.Delay(1000);
Console.WriteLine(i);
}, options);
//Producer
foreach (var i in Enumerable.Range(0, 10))
{
var result = block.Post(i);
Console.WriteLine(result);
}
block.Complete();
await block.Completion;
}
}
Output:
True
False
False
False
False
False
False
False
False
False
0
With the guidance from JSteward's answer, I came up with the following code.
It produces (reads etc.) new items concurrently with processing said items, maintaining a read-ahead buffer.
The completion signal is sent to the head of the chain when the "producer" has no more items.
The program also awaits the completion of the whole chain before terminating.
static async Task Main() {
string Time() => $"{DateTime.Now:hh:mm:ss.fff}";
// the buffer is added to the chain just for demonstration purposes
// the chain would work fine using just the built-in input buffer
// of the `action` block.
var buffer = new BufferBlock<int>(new DataflowBlockOptions {BoundedCapacity = 3});
var action = new ActionBlock<int>(async i =>
{
Console.WriteLine($"[{Time()}]: Processing: {i}");
await Task.Delay(500);
}, new ExecutionDataflowBlockOptions {MaxDegreeOfParallelism = 2, BoundedCapacity = 2});
// it's necessary to set `PropagateCompletion` property
buffer.LinkTo(action, new DataflowLinkOptions {PropagateCompletion = true});
//Producer
foreach (var i in Enumerable.Range(0, 10))
{
Console.WriteLine($"[{Time()}]: Ready to send: {i}");
await buffer.SendAsync(i);
Console.WriteLine($"[{Time()}]: Sent: {i}");
}
// we call `.Complete()` on the head of the chain and it's propagated forward
buffer.Complete();
await action.Completion;
}

Multiple Async Calls with Pause Between Calls

I have an IEnumerable<Task>, where each Task will call the same endpoint. However, the endpoint can only handle so many calls per second. How can I put, say, a half second delay between each call?
I have tried adding Task.Delay(), but of course awaiting them simply means that the app waits a half second before sending all the calls at once.
Here is a code snippet:
var resultTasks = orders
.Select(async task =>
{
var result = new VendorTaskResult();
try
{
result.Response = await result.CallVendorAsync();
}
catch(Exception ex)
{
result.Exception = ex;
}
return result;
} );
var results = Task.WhenAll(resultTasks);
I feel like I should do something like
Task.WhenAll(resultTasks.EmitOverTime(500));
... but how exactly do I do that?
What you describe in your question is in other words rate limiting. You'd like to apply rate limiting policy to your client, because the API you use enforces such a policy on the server to protect itself from abuse.
While you could implement rate limiting yourself, I'd recommend you to go with some well established solution. Rate Limiter from Davis Desmaisons was the one that I picked at random and I instantly liked it. It had solid documentation, superior coverage and was easy to use. It is also available as NuGet package.
Check out the simple snippet below that demonstrates running semi-overlapping tasks in sequence while defering the task start by half a second after the immediately preceding task started. Each task lasts at least 750 ms.
using ComposableAsync;
using RateLimiter;
using System;
using System.Threading.Tasks;
namespace RateLimiterTest
{
class Program
{
static void Main(string[] args)
{
Log("Starting tasks ...");
var constraint = TimeLimiter.GetFromMaxCountByInterval(1, TimeSpan.FromSeconds(0.5));
var tasks = new[]
{
DoWorkAsync("Task1", constraint),
DoWorkAsync("Task2", constraint),
DoWorkAsync("Task3", constraint),
DoWorkAsync("Task4", constraint)
};
Task.WaitAll(tasks);
Log("All tasks finished.");
Console.ReadLine();
}
static void Log(string message)
{
Console.WriteLine(DateTime.Now.ToString("HH:mm:ss.fff ") + message);
}
static async Task DoWorkAsync(string name, IDispatcher constraint)
{
await constraint;
Log(name + " started");
await Task.Delay(750);
Log(name + " finished");
}
}
}
Sample output:
10:03:27.121 Starting tasks ...
10:03:27.154 Task1 started
10:03:27.658 Task2 started
10:03:27.911 Task1 finished
10:03:28.160 Task3 started
10:03:28.410 Task2 finished
10:03:28.680 Task4 started
10:03:28.913 Task3 finished
10:03:29.443 Task4 finished
10:03:29.443 All tasks finished.
If you change the constraint to allow maximum two tasks per second (var constraint = TimeLimiter.GetFromMaxCountByInterval(2, TimeSpan.FromSeconds(1));), which is not the same as one per half a second, then the output could be like:
10:06:03.237 Starting tasks ...
10:06:03.264 Task1 started
10:06:03.268 Task2 started
10:06:04.026 Task2 finished
10:06:04.031 Task1 finished
10:06:04.275 Task3 started
10:06:04.276 Task4 started
10:06:05.032 Task4 finished
10:06:05.032 Task3 finished
10:06:05.033 All tasks finished.
Note that the current version of Rate Limiter targets .NETFramework 4.7.2+ or .NETStandard 2.0+.
This is just a thought, but another approach could be to create a queue and add another thread that runs polling the queue for calls that need to go out to your endpoint.
Have you considered just turning that into a foreach-loop with a Task.Delay call? You seem to want to explicitly call them sequentially, it won't hurt if that is obvious from your code.
var results = new List<YourResultType>;
foreach(var order in orders){
var result = new VendorTaskResult();
try
{
result.Response = await result.CallVendorAsync();
results.Add(result.Response);
}
catch(Exception ex)
{
result.Exception = ex;
}
}
Instead of selecting from orders you could loop over them, and inside the loop put the result into a list and then call Task.WhenAll.
Would look something like:
var resultTasks = new List<VendorTaskResult>(orders.Count);
orders.ToList().ForEach( item => {
var result = new VendorTaskResult();
try
{
result.Response = await result.CallVendorAsync();
}
catch(Exception ex)
{
result.Exception = ex;
}
resultTasks.Add(result);
Thread.Sleep(x);
});
var results = Task.WhenAll(resultTasks);
If you want to control the number of requests executed simultaneously, you have to use a semaphore.
I have something very similar, and it works fine with me. Please note that I call ToArray() after the Linq query finishes, that triggers the tasks:
using (HttpClient client = new HttpClient()) {
IEnumerable<Task<string>> _downloads = _group
.Select(job => {
await Task.Delay(300);
return client.GetStringAsync(<url with variable job>);
});
Task<string>[] _downloadTasks = _downloads.ToArray();
_pages = await Task.WhenAll(_downloadTasks);
}
Now please note that this will create n nunmber of tasks, all in parallel, and the Task.Delay literally does nothing. If you want to call the pages synchronously (as it sounds by putting a delay between the calls), then this code may be better:
using (HttpClient client = new HttpClient()) {
foreach (string job in _group) {
await Task.Delay(300);
_pages.Add(await client.GetStringAsync(<url with variable job>));
}
}
The download of the pages is still asynchronous (while downloading other tasks are done), but each call to download the page is synchronous, ensuring that you can wait for one to finish in order to call the next one.
The code can be easily changed to call the pages asynchronously in chunks, like every 10 pages, wait 300ms, like in this sample:
IEnumerable<string[]> toParse = myData
.Select((v, i) => new { v.code, group = i / 20 })
.GroupBy(x => x.group)
.Select(g => g.Select(x => x.code).ToArray());
using (HttpClient client = new HttpClient()) {
foreach (string[] _group in toParse) {
string[] _pages = null;
IEnumerable<Task<string>> _downloads = _group
.Select(job => {
return client.GetStringAsync(<url with job>);
});
Task<string>[] _downloadTasks = _downloads.ToArray();
_pages = await Task.WhenAll(_downloadTasks);
await Task.Delay(5000);
}
}
All this does is group your pages in chunks of 20, iterate through the chunks, download all pages of the chunk asynchronously, wait 5 seconds, move on to the next chunk.
I hope that is what you were waiting for :)
The proposed method EmitOverTime is doable, but only by blocking the current thread:
public static IEnumerable<Task<TResult>> EmitOverTime<TResult>(
this IEnumerable<Task<TResult>> tasks, int delay)
{
foreach (var item in tasks)
{
Thread.Sleep(delay); // Delay by blocking
yield return item;
}
}
Usage:
var results = await Task.WhenAll(resultTasks.EmitOverTime(500));
Probably better is to create a variant of Task.WhenAll that accepts a delay argument, and delays asyncronously:
public static async Task<TResult[]> WhenAllWithDelay<TResult>(
IEnumerable<Task<TResult>> tasks, int delay)
{
var tasksList = new List<Task<TResult>>();
foreach (var task in tasks)
{
await Task.Delay(delay).ConfigureAwait(false);
tasksList.Add(task);
}
return await Task.WhenAll(tasksList).ConfigureAwait(false);
}
Usage:
var results = await WhenAllWithDelay(resultTasks, 500);
This design implies that the enumerable of tasks should be enumerated only once. It is easy to forget this during development, and start enumerating it again, spawning a new set of tasks. For this reason I propose to make it an OnlyOnce enumerable, as it is shown in this question.
Update: I should mention why the above methods work, and under what premise. The premise is that the supplied IEnumerable<Task<TResult>> is deferred, in other words non-materialized. At the method's start there are no tasks created yet. The tasks are created one after the other during the enumeration of the enumerable, and the trick is that the enumeration is slow and controlled. The delay inside the loop ensures that the tasks are not created all at once. They are created hot (in other words already started), so at the time the last task has been created some of the first tasks may have already been completed. The materialized list of half-running/half-completed tasks is then passed to Task.WhenAll, that waits for all to complete asynchronously.

Parallel execution of tasks in groups

I am describing my problem in a simple example and then describing a more close problem.
Imagine We Have n items [i1,i2,i3,i4,...,in] in the box1 and we have a box2 that can handle m items to do them (m is usually much less than n) . The time required for each item is different. I want to always have doing m job items until all items are proceeded.
A much more close problem is that for example you have a list1 of n strings (URL addresses) of files and we want to have a system to have m files downloading concurrently (for example via httpclient.getAsync() method). Whenever downloading of one of m items finishes, another remaining item from list1 must be substituted as soon as possible and this must be countinued until all of List1 items proceeded.
(number of n and m are specified by users input at runtime)
How this can be done?
Here is a generic method you can use.
when you call this TIn will be string (URL addresses) and the asyncProcessor will be your async method that takes the URL address as input and returns a Task.
The SlimSemaphore used by this method is going to allow only n number of concurrent async I/O requests in real time, as soon as one completes the other request will execute. Something like a sliding window pattern.
public static Task ForEachAsync<TIn>(
IEnumerable<TIn> inputEnumerable,
Func<TIn, Task> asyncProcessor,
int? maxDegreeOfParallelism = null)
{
int maxAsyncThreadCount = maxDegreeOfParallelism ?? DefaultMaxDegreeOfParallelism;
SemaphoreSlim throttler = new SemaphoreSlim(maxAsyncThreadCount, maxAsyncThreadCount);
IEnumerable<Task> tasks = inputEnumerable.Select(async input =>
{
await throttler.WaitAsync().ConfigureAwait(false);
try
{
await asyncProcessor(input).ConfigureAwait(false);
}
finally
{
throttler.Release();
}
});
return Task.WhenAll(tasks);
}
You should look in to TPL Dataflow, add the System.Threading.Tasks.Dataflow NuGet package to your project then what you want is as simple as
private static HttpClient _client = new HttpClient();
public async Task<List<MyClass>> ProcessDownloads(IEnumerable<string> uris,
int concurrentDownloads)
{
var result = new List<MyClass>();
var downloadData = new TransformBlock<string, string>(async uri =>
{
return await _client.GetStringAsync(uri); //GetStringAsync is a thread safe method.
}, new ExecutionDataflowBlockOptions{MaxDegreeOfParallelism = concurrentDownloads});
var processData = new TransformBlock<string, MyClass>(
json => JsonConvert.DeserializeObject<MyClass>(json),
new ExecutionDataflowBlockOptions {MaxDegreeOfParallelism = DataflowBlockOptions.Unbounded});
var collectData = new ActionBlock<MyClass>(
data => result.Add(data)); //When you don't specifiy options dataflow processes items one at a time.
//Set up the chain of blocks, have it call `.Complete()` on the next block when the current block finishes processing it's last item.
downloadData.LinkTo(processData, new DataflowLinkOptions {PropagateCompletion = true});
processData.LinkTo(collectData, new DataflowLinkOptions {PropagateCompletion = true});
//Load the data in to the first transform block to start off the process.
foreach (var uri in uris)
{
await downloadData.SendAsync(uri).ConfigureAwait(false);
}
downloadData.Complete(); //Signal you are done adding data.
//Wait for the last object to be added to the list.
await collectData.Completion.ConfigureAwait(false);
return result;
}
In the above code only concurrentDownloads number of HttpClients will be active at any given time, unlimited threads will be processing the received strings and turning them in to objects, and a single thread will be taking those objects and adding them to a list.
UPDATE: here is a simplified example that only does what you asked for in the question
private static HttpClient _client = new HttpClient();
public void ProcessDownloads(IEnumerable<string> uris, int concurrentDownloads)
{
var downloadData = new ActionBlock<string>(async uri =>
{
var response = await _client.GetAsync(uri); //GetAsync is a thread safe method.
//do something with response here.
}, new ExecutionDataflowBlockOptions{MaxDegreeOfParallelism = concurrentDownloads});
foreach (var uri in uris)
{
downloadData.Post(uri);
}
downloadData.Complete();
downloadData.Completion.Wait();
}
A simple solution for throttling is a SemaphoreSlim.
EDIT
After a slight alteration the code now creates the tasks when they are needed
var client = new HttpClient();
SemaphoreSlim semaphore = new SemaphoreSlim(m, m); //set the max here
var tasks = new List<Task>();
foreach(var url in urls)
{
// moving the wait here throttles the foreach loop
await semaphore.WaitAsync();
tasks.Add(((Func<Task>)(async () =>
{
//await semaphore.WaitAsync();
var response = await client.GetAsync(url); // possibly ConfigureAwait(false) here
// do something with response
semaphore.Release();
}))());
}
await Task.WhenAll(tasks);
This is another way to do it
var client = new HttpClient();
var tasks = new HashSet<Task>();
foreach(var url in urls)
{
if(tasks.Count == m)
{
tasks.Remove(await Task.WhenAny(tasks));
}
tasks.Add(((Func<Task>)(async () =>
{
var response = await client.GetAsync(url); // possibly ConfigureAwait(false) here
// do something with response
}))());
}
await Task.WhenAll(tasks);
Process items in parallel, limiting the number of simultaneous jobs:
string[] strings = GetStrings(); // Items to process.
const int m = 2; // Max simultaneous jobs.
Parallel.ForEach(strings, new ParallelOptions {MaxDegreeOfParallelism = m}, s =>
{
DoWork(s);
});

How to limit the Maximum number of parallel tasks in c#

I have a collection of 1000 input message to process. I'm looping the input collection and starting the new task for each message to get processed.
//Assume this messages collection contains 1000 items
var messages = new List<string>();
foreach (var msg in messages)
{
Task.Factory.StartNew(() =>
{
Process(msg);
});
}
Can we guess how many maximum messages simultaneously get processed at the time (assuming normal Quad core processor), or can we limit the maximum number of messages to be processed at the time?
How to ensure this message get processed in the same sequence/order of the Collection?
You could use Parallel.Foreach and rely on MaxDegreeOfParallelism instead.
Parallel.ForEach(messages, new ParallelOptions {MaxDegreeOfParallelism = 10},
msg =>
{
// logic
Process(msg);
});
SemaphoreSlim is a very good solution in this case and I higly recommend OP to try this, but #Manoj's answer has flaw as mentioned in comments.semaphore should be waited before spawning the task like this.
Updated Answer: As #Vasyl pointed out Semaphore may be disposed before completion of tasks and will raise exception when Release() method is called so before exiting the using block must wait for the completion of all created Tasks.
int maxConcurrency=10;
var messages = new List<string>();
using(SemaphoreSlim concurrencySemaphore = new SemaphoreSlim(maxConcurrency))
{
List<Task> tasks = new List<Task>();
foreach(var msg in messages)
{
concurrencySemaphore.Wait();
var t = Task.Factory.StartNew(() =>
{
try
{
Process(msg);
}
finally
{
concurrencySemaphore.Release();
}
});
tasks.Add(t);
}
Task.WaitAll(tasks.ToArray());
}
Answer to Comments
for those who want to see how semaphore can be disposed without Task.WaitAll
Run below code in console app and this exception will be raised.
System.ObjectDisposedException: 'The semaphore has been disposed.'
static void Main(string[] args)
{
int maxConcurrency = 5;
List<string> messages = Enumerable.Range(1, 15).Select(e => e.ToString()).ToList();
using (SemaphoreSlim concurrencySemaphore = new SemaphoreSlim(maxConcurrency))
{
List<Task> tasks = new List<Task>();
foreach (var msg in messages)
{
concurrencySemaphore.Wait();
var t = Task.Factory.StartNew(() =>
{
try
{
Process(msg);
}
finally
{
concurrencySemaphore.Release();
}
});
tasks.Add(t);
}
// Task.WaitAll(tasks.ToArray());
}
Console.WriteLine("Exited using block");
Console.ReadKey();
}
private static void Process(string msg)
{
Thread.Sleep(2000);
Console.WriteLine(msg);
}
I think it would be better to use Parallel LINQ
Parallel.ForEach(messages ,
new ParallelOptions{MaxDegreeOfParallelism = 4},
x => Process(x);
);
where x is the MaxDegreeOfParallelism
With .NET 5.0 and Core 3.0 channels were introduced.
The main benefit of this producer/consumer concurrency pattern is that you can also limit the input data processing to reduce resource impact.
This is especially helpful when processing millions of data records.
Instead of reading the whole dataset at once into memory, you can now consecutively query only chunks of the data and wait for the workers to process it before querying more.
Code sample with a queue capacity of 50 messages and 5 consumer threads:
/// <exception cref="System.AggregateException">Thrown on Consumer Task exceptions.</exception>
public static async Task ProcessMessages(List<string> messages)
{
const int producerCapacity = 10, consumerTaskLimit = 3;
var channel = Channel.CreateBounded<string>(producerCapacity);
_ = Task.Run(async () =>
{
foreach (var msg in messages)
{
await channel.Writer.WriteAsync(msg);
// blocking when channel is full
// waiting for the consumer tasks to pop messages from the queue
}
channel.Writer.Complete();
// signaling the end of queue so that
// WaitToReadAsync will return false to stop the consumer tasks
});
var tokenSource = new CancellationTokenSource();
CancellationToken ct = tokenSource.Token;
var consumerTasks = Enumerable
.Range(1, consumerTaskLimit)
.Select(_ => Task.Run(async () =>
{
try
{
while (await channel.Reader.WaitToReadAsync(ct))
{
ct.ThrowIfCancellationRequested();
while (channel.Reader.TryRead(out var message))
{
await Task.Delay(500);
Console.WriteLine(message);
}
}
}
catch (OperationCanceledException) { }
catch
{
tokenSource.Cancel();
throw;
}
}))
.ToArray();
Task waitForConsumers = Task.WhenAll(consumerTasks);
try { await waitForConsumers; }
catch
{
foreach (var e in waitForConsumers.Exception.Flatten().InnerExceptions)
Console.WriteLine(e.ToString());
throw waitForConsumers.Exception.Flatten();
}
}
As pointed out by Theodor Zoulias:
On multiple consumer exceptions, the remaining tasks will continue to run and have to take the load of the killed tasks. To avoid this, I implemented a CancellationToken to stop all the remaining tasks and handle the exceptions combined in the AggregateException of waitForConsumers.Exception.
Side note:
The Task Parallel Library (TPL) might be good at automatically limiting the tasks based on your local resources. But when you are processing data remotely via RPC, it's necessary to manually limit your RPC calls to avoid filling the network/processing stack!
If your Process method is async you can't use Task.Factory.StartNew as it doesn't play well with an async delegate. Also there are some other nuances when using it (see this for example).
The proper way to do it in this case is to use Task.Run. Here's #ClearLogic answer modified for an async Process method.
static void Main(string[] args)
{
int maxConcurrency = 5;
List<string> messages = Enumerable.Range(1, 15).Select(e => e.ToString()).ToList();
using (SemaphoreSlim concurrencySemaphore = new SemaphoreSlim(maxConcurrency))
{
List<Task> tasks = new List<Task>();
foreach (var msg in messages)
{
concurrencySemaphore.Wait();
var t = Task.Run(async () =>
{
try
{
await Process(msg);
}
finally
{
concurrencySemaphore.Release();
}
});
tasks.Add(t);
}
Task.WaitAll(tasks.ToArray());
}
Console.WriteLine("Exited using block");
Console.ReadKey();
}
private static async Task Process(string msg)
{
await Task.Delay(2000);
Console.WriteLine(msg);
}
You can create your own TaskScheduler and override QueueTask there.
protected virtual void QueueTask(Task task)
Then you can do anything you like.
One example here:
Limited concurrency level task scheduler (with task priority) handling wrapped tasks
You can simply set the max concurrency degree like this way:
int maxConcurrency=10;
var messages = new List<1000>();
using(SemaphoreSlim concurrencySemaphore = new SemaphoreSlim(maxConcurrency))
{
foreach(var msg in messages)
{
Task.Factory.StartNew(() =>
{
concurrencySemaphore.Wait();
try
{
Process(msg);
}
finally
{
concurrencySemaphore.Release();
}
});
}
}
If you need in-order queuing (processing might finish in any order), there is no need for a semaphore. Old fashioned if statements work fine:
const int maxConcurrency = 5;
List<Task> tasks = new List<Task>();
foreach (var arg in args)
{
var t = Task.Run(() => { Process(arg); } );
tasks.Add(t);
if(tasks.Count >= maxConcurrency)
Task.WaitAny(tasks.ToArray());
}
Task.WaitAll(tasks.ToArray());
I ran into a similar problem where I wanted to produce 5000 results while calling apis, etc. So, I ran some speed tests.
Parallel.ForEach(products.Select(x => x.KeyValue).Distinct().Take(100), id =>
{
new ParallelOptions { MaxDegreeOfParallelism = 100 };
GetProductMetaData(productsMetaData, client, id).GetAwaiter().GetResult();
});
produced 100 results in 30 seconds.
Parallel.ForEach(products.Select(x => x.KeyValue).Distinct().Take(100), id =>
{
new ParallelOptions { MaxDegreeOfParallelism = 100 };
GetProductMetaData(productsMetaData, client, id);
});
Moving the GetAwaiter().GetResult() to the individual async api calls inside GetProductMetaData resulted in 14.09 seconds to produce 100 results.
foreach (var id in ids.Take(100))
{
GetProductMetaData(productsMetaData, client, id);
}
Complete non-async programming with the GetAwaiter().GetResult() in api calls resulted in 13.417 seconds.
var tasks = new List<Task>();
while (y < ids.Count())
{
foreach (var id in ids.Skip(y).Take(100))
{
tasks.Add(GetProductMetaData(productsMetaData, client, id));
}
y += 100;
Task.WhenAll(tasks).GetAwaiter().GetResult();
Console.WriteLine($"Finished {y}, {sw.Elapsed}");
}
Forming a task list and working through 100 at a time resulted in a speed of 7.36 seconds.
using (SemaphoreSlim cons = new SemaphoreSlim(10))
{
var tasks = new List<Task>();
foreach (var id in ids.Take(100))
{
cons.Wait();
var t = Task.Factory.StartNew(() =>
{
try
{
GetProductMetaData(productsMetaData, client, id);
}
finally
{
cons.Release();
}
});
tasks.Add(t);
}
Task.WaitAll(tasks.ToArray());
}
Using SemaphoreSlim resulted in 13.369 seconds, but also took a moment to boot to start using it.
var throttler = new SemaphoreSlim(initialCount: take);
foreach (var id in ids)
{
throttler.WaitAsync().GetAwaiter().GetResult();
tasks.Add(Task.Run(async () =>
{
try
{
skip += 1;
await GetProductMetaData(productsMetaData, client, id);
if (skip % 100 == 0)
{
Console.WriteLine($"started {skip}/{count}, {sw.Elapsed}");
}
}
finally
{
throttler.Release();
}
}));
}
Using Semaphore Slim with a throttler for my async task took 6.12 seconds.
The answer for me in this specific project was use a throttler with Semaphore Slim. Although the while foreach tasklist did sometimes beat the throttler, 4/6 times the throttler won for 1000 records.
I realize I'm not using the OPs code, but I think this is important and adds to this discussion because how is sometimes not the only question that should be asked, and the answer is sometimes "It depends on what you are trying to do."
Now to answer the specific questions:
How to limit the maximum number of parallel tasks in c#: I showed how to limit the number of tasks that are completed at a time.
Can we guess how many maximum messages simultaneously get processed at the time (assuming normal Quad core processor), or can we limit the maximum number of messages to be processed at the time? I cannot guess how many will be processed at a time unless I set an upper limit but I can set an upper limit. Obviously different computers function at different speeds due to CPU, RAM etc. and how many threads and cores the program itself has access to as well as other programs running in tandem on the same computer.
How to ensure this message get processed in the same sequence/order of the Collection? If you want to process everything in a specific order, it is synchronous programming. The point of being able to run things asynchronously is ensuring that they can do everything without an order. As you can see from my code, the time difference is minimal in 100 records unless you use async code. In the event that you need an order to what you are doing, use asynchronous programming up until that point, then await and do things synchronously from there. For example, task1a.start, task2a.start, then later task1a.await, task2a.await... then later task1b.start task1b.await and task2b.start task 2b.await.
public static void RunTasks(List<NamedTask> importTaskList)
{
List<NamedTask> runningTasks = new List<NamedTask>();
try
{
foreach (NamedTask currentTask in importTaskList)
{
currentTask.Start();
runningTasks.Add(currentTask);
if (runningTasks.Where(x => x.Status == TaskStatus.Running).Count() >= MaxCountImportThread)
{
Task.WaitAny(runningTasks.ToArray());
}
}
Task.WaitAll(runningTasks.ToArray());
}
catch (Exception ex)
{
Log.Fatal("ERROR!", ex);
}
}
you can use the BlockingCollection, If the consume collection limit has reached, the produce will stop producing until a consume process will finish. I find this pattern more easy to understand and implement than the SemaphoreSlim.
int TasksLimit = 10;
BlockingCollection<Task> tasks = new BlockingCollection<Task>(new ConcurrentBag<Task>(), TasksLimit);
void ProduceAndConsume()
{
var producer = Task.Factory.StartNew(RunProducer);
var consumer = Task.Factory.StartNew(RunConsumer);
try
{
Task.WaitAll(new[] { producer, consumer });
}
catch (AggregateException ae) { }
}
void RunConsumer()
{
foreach (var task in tasks.GetConsumingEnumerable())
{
task.Start();
}
}
void RunProducer()
{
for (int i = 0; i < 1000; i++)
{
tasks.Add(new Task(() => Thread.Sleep(1000), TaskCreationOptions.AttachedToParent));
}
}
Note that the RunProducer and RunConsumer has spawn two independent tasks.

Throttling asynchronous tasks

I would like to run a bunch of async tasks, with a limit on how many tasks may be pending completion at any given time.
Say you have 1000 URLs, and you only want to have 50 requests open at a time; but as soon as one request completes, you open up a connection to the next URL in the list. That way, there are always exactly 50 connections open at a time, until the URL list is exhausted.
I also want to utilize a given number of threads if possible.
I came up with an extension method, ThrottleTasksAsync that does what I want. Is there a simpler solution already out there? I would assume that this is a common scenario.
Usage:
class Program
{
static void Main(string[] args)
{
Enumerable.Range(1, 10).ThrottleTasksAsync(5, 2, async i => { Console.WriteLine(i); return i; }).Wait();
Console.WriteLine("Press a key to exit...");
Console.ReadKey(true);
}
}
Here is the code:
static class IEnumerableExtensions
{
public static async Task<Result_T[]> ThrottleTasksAsync<Enumerable_T, Result_T>(this IEnumerable<Enumerable_T> enumerable, int maxConcurrentTasks, int maxDegreeOfParallelism, Func<Enumerable_T, Task<Result_T>> taskToRun)
{
var blockingQueue = new BlockingCollection<Enumerable_T>(new ConcurrentBag<Enumerable_T>());
var semaphore = new SemaphoreSlim(maxConcurrentTasks);
// Run the throttler on a separate thread.
var t = Task.Run(() =>
{
foreach (var item in enumerable)
{
// Wait for the semaphore
semaphore.Wait();
blockingQueue.Add(item);
}
blockingQueue.CompleteAdding();
});
var taskList = new List<Task<Result_T>>();
Parallel.ForEach(IterateUntilTrue(() => blockingQueue.IsCompleted), new ParallelOptions { MaxDegreeOfParallelism = maxDegreeOfParallelism },
_ =>
{
Enumerable_T item;
if (blockingQueue.TryTake(out item, 100))
{
taskList.Add(
// Run the task
taskToRun(item)
.ContinueWith(tsk =>
{
// For effect
Thread.Sleep(2000);
// Release the semaphore
semaphore.Release();
return tsk.Result;
}
)
);
}
});
// Await all the tasks.
return await Task.WhenAll(taskList);
}
static IEnumerable<bool> IterateUntilTrue(Func<bool> condition)
{
while (!condition()) yield return true;
}
}
The method utilizes BlockingCollection and SemaphoreSlim to make it work. The throttler is run on one thread, and all the async tasks are run on the other thread. To achieve parallelism, I added a maxDegreeOfParallelism parameter that's passed to a Parallel.ForEach loop re-purposed as a while loop.
The old version was:
foreach (var master = ...)
{
var details = ...;
Parallel.ForEach(details, detail => {
// Process each detail record here
}, new ParallelOptions { MaxDegreeOfParallelism = 15 });
// Perform the final batch updates here
}
But, the thread pool gets exhausted fast, and you can't do async/await.
Bonus:
To get around the problem in BlockingCollection where an exception is thrown in Take() when CompleteAdding() is called, I'm using the TryTake overload with a timeout. If I didn't use the timeout in TryTake, it would defeat the purpose of using a BlockingCollection since TryTake won't block. Is there a better way? Ideally, there would be a TakeAsync method.
As suggested, use TPL Dataflow.
A TransformBlock<TInput, TOutput> may be what you're looking for.
You define a MaxDegreeOfParallelism to limit how many strings can be transformed (i.e., how many urls can be downloaded) in parallel. You then post urls to the block, and when you're done you tell the block you're done adding items and you fetch the responses.
var downloader = new TransformBlock<string, HttpResponse>(
url => Download(url),
new ExecutionDataflowBlockOptions { MaxDegreeOfParallelism = 50 }
);
var buffer = new BufferBlock<HttpResponse>();
downloader.LinkTo(buffer);
foreach(var url in urls)
downloader.Post(url);
//or await downloader.SendAsync(url);
downloader.Complete();
await downloader.Completion;
IList<HttpResponse> responses;
if (buffer.TryReceiveAll(out responses))
{
//process responses
}
Note: The TransformBlock buffers both its input and output. Why, then, do we need to link it to a BufferBlock?
Because the TransformBlock won't complete until all items (HttpResponse) have been consumed, and await downloader.Completion would hang. Instead, we let the downloader forward all its output to a dedicated buffer block - then we wait for the downloader to complete, and inspect the buffer block.
Say you have 1000 URLs, and you only want to have 50 requests open at
a time; but as soon as one request completes, you open up a connection
to the next URL in the list. That way, there are always exactly 50
connections open at a time, until the URL list is exhausted.
The following simple solution has surfaced many times here on SO. It doesn't use blocking code and doesn't create threads explicitly, so it scales very well:
const int MAX_DOWNLOADS = 50;
static async Task DownloadAsync(string[] urls)
{
using (var semaphore = new SemaphoreSlim(MAX_DOWNLOADS))
using (var httpClient = new HttpClient())
{
var tasks = urls.Select(async url =>
{
await semaphore.WaitAsync();
try
{
var data = await httpClient.GetStringAsync(url);
Console.WriteLine(data);
}
finally
{
semaphore.Release();
}
});
await Task.WhenAll(tasks);
}
}
The thing is, the processing of the downloaded data should be done on a different pipeline, with a different level of parallelism, especially if it's a CPU-bound processing.
E.g., you'd probably want to have 4 threads concurrently doing the data processing (the number of CPU cores), and up to 50 pending requests for more data (which do not use threads at all). AFAICT, this is not what your code is currently doing.
That's where TPL Dataflow or Rx may come in handy as a preferred solution. Yet it is certainly possible to implement something like this with plain TPL. Note, the only blocking code here is the one doing the actual data processing inside Task.Run:
const int MAX_DOWNLOADS = 50;
const int MAX_PROCESSORS = 4;
// process data
class Processing
{
SemaphoreSlim _semaphore = new SemaphoreSlim(MAX_PROCESSORS);
HashSet<Task> _pending = new HashSet<Task>();
object _lock = new Object();
async Task ProcessAsync(string data)
{
await _semaphore.WaitAsync();
try
{
await Task.Run(() =>
{
// simuate work
Thread.Sleep(1000);
Console.WriteLine(data);
});
}
finally
{
_semaphore.Release();
}
}
public async void QueueItemAsync(string data)
{
var task = ProcessAsync(data);
lock (_lock)
_pending.Add(task);
try
{
await task;
}
catch
{
if (!task.IsCanceled && !task.IsFaulted)
throw; // not the task's exception, rethrow
// don't remove faulted/cancelled tasks from the list
return;
}
// remove successfully completed tasks from the list
lock (_lock)
_pending.Remove(task);
}
public async Task WaitForCompleteAsync()
{
Task[] tasks;
lock (_lock)
tasks = _pending.ToArray();
await Task.WhenAll(tasks);
}
}
// download data
static async Task DownloadAsync(string[] urls)
{
var processing = new Processing();
using (var semaphore = new SemaphoreSlim(MAX_DOWNLOADS))
using (var httpClient = new HttpClient())
{
var tasks = urls.Select(async (url) =>
{
await semaphore.WaitAsync();
try
{
var data = await httpClient.GetStringAsync(url);
// put the result on the processing pipeline
processing.QueueItemAsync(data);
}
finally
{
semaphore.Release();
}
});
await Task.WhenAll(tasks.ToArray());
await processing.WaitForCompleteAsync();
}
}
As requested, here's the code I ended up going with.
The work is set up in a master-detail configuration, and each master is processed as a batch. Each unit of work is queued up in this fashion:
var success = true;
// Start processing all the master records.
Master master;
while (null != (master = await StoredProcedures.ClaimRecordsAsync(...)))
{
await masterBuffer.SendAsync(master);
}
// Finished sending master records
masterBuffer.Complete();
// Now, wait for all the batches to complete.
await batchAction.Completion;
return success;
Masters are buffered one at a time to save work for other outside processes. The details for each master are dispatched for work via the masterTransform TransformManyBlock. A BatchedJoinBlock is also created to collect the details in one batch.
The actual work is done in the detailTransform TransformBlock, asynchronously, 150 at a time. BoundedCapacity is set to 300 to ensure that too many Masters don't get buffered at the beginning of the chain, while also leaving room for enough detail records to be queued to allow 150 records to be processed at one time. The block outputs an object to its targets, because it's filtered across the links depending on whether it's a Detail or Exception.
The batchAction ActionBlock collects the output from all the batches, and performs bulk database updates, error logging, etc. for each batch.
There will be several BatchedJoinBlocks, one for each master. Since each ISourceBlock is output sequentially and each batch only accepts the number of detail records associated with one master, the batches will be processed in order. Each block only outputs one group, and is unlinked on completion. Only the last batch block propagates its completion to the final ActionBlock.
The dataflow network:
// The dataflow network
BufferBlock<Master> masterBuffer = null;
TransformManyBlock<Master, Detail> masterTransform = null;
TransformBlock<Detail, object> detailTransform = null;
ActionBlock<Tuple<IList<object>, IList<object>>> batchAction = null;
// Buffer master records to enable efficient throttling.
masterBuffer = new BufferBlock<Master>(new DataflowBlockOptions { BoundedCapacity = 1 });
// Sequentially transform master records into a stream of detail records.
masterTransform = new TransformManyBlock<Master, Detail>(async masterRecord =>
{
var records = await StoredProcedures.GetObjectsAsync(masterRecord);
// Filter the master records based on some criteria here
var filteredRecords = records;
// Only propagate completion to the last batch
var propagateCompletion = masterBuffer.Completion.IsCompleted && masterTransform.InputCount == 0;
// Create a batch join block to encapsulate the results of the master record.
var batchjoinblock = new BatchedJoinBlock<object, object>(records.Count(), new GroupingDataflowBlockOptions { MaxNumberOfGroups = 1 });
// Add the batch block to the detail transform pipeline's link queue, and link the batch block to the the batch action block.
var detailLink1 = detailTransform.LinkTo(batchjoinblock.Target1, detailResult => detailResult is Detail);
var detailLink2 = detailTransform.LinkTo(batchjoinblock.Target2, detailResult => detailResult is Exception);
var batchLink = batchjoinblock.LinkTo(batchAction, new DataflowLinkOptions { PropagateCompletion = propagateCompletion });
// Unlink batchjoinblock upon completion.
// (the returned task does not need to be awaited, despite the warning.)
batchjoinblock.Completion.ContinueWith(task =>
{
detailLink1.Dispose();
detailLink2.Dispose();
batchLink.Dispose();
});
return filteredRecords;
}, new ExecutionDataflowBlockOptions { BoundedCapacity = 1 });
// Process each detail record asynchronously, 150 at a time.
detailTransform = new TransformBlock<Detail, object>(async detail => {
try
{
// Perform the action for each detail here asynchronously
await DoSomethingAsync();
return detail;
}
catch (Exception e)
{
success = false;
return e;
}
}, new ExecutionDataflowBlockOptions { MaxDegreeOfParallelism = 150, BoundedCapacity = 300 });
// Perform the proper action for each batch
batchAction = new ActionBlock<Tuple<IList<object>, IList<object>>>(async batch =>
{
var details = batch.Item1.Cast<Detail>();
var errors = batch.Item2.Cast<Exception>();
// Do something with the batch here
}, new ExecutionDataflowBlockOptions { MaxDegreeOfParallelism = 4 });
masterBuffer.LinkTo(masterTransform, new DataflowLinkOptions { PropagateCompletion = true });
masterTransform.LinkTo(detailTransform, new DataflowLinkOptions { PropagateCompletion = true });

Categories