What is the best way of testing method
public void HandleRequests()
{
var requests = _requestService.GetAll();
foreach(var request in requests)
{
if (request.IsDelete)
{
_dateCheckerService.CheckRequest(request);
_notificationService.Send(request);
_invoiceService.CreateInvoice(request);
}
}
}
What is the best way of testing if block. I guess that it's not good idea to verify that all 3 mthods were called
To test this method (and specifically the if block) assuming you are injecting your dependencies (e.g. _requestService) and that those dependencies are abstractions that can be substituted by mocks then to test this method you need to assert that your various dependency methods received the expected request object e.g. _dateCheckerService.CheckRequest(request).
To accomplish this you can write your own mocks or use a mocking library such as Moq or NSubstitute.
The problem with testing this method is that you will have to do a lot of setup (creating four mocks, building your request collection...) and the end result will end up being very brittle. For example, imagine you decide to refactor and no longer require one of your dependencies, the outcome will be the same but your tests will break because you are testing not only what the method does, but how it is doing it, your test would depend on your implementation.
Unit testing your code is an excellent plan but in this case I would consider whether the complexity and brittleness of the tests you would create is worth the benefit that the unit tests would bring, but only you can answer that.
If you do continue with testing I would recommend having more than one test for the if block, one for each dependency and each test should only have a single assert.
To test the If block;
Create two requests, one that is IsDelete = true, the other that is IsDelete = false. Setup your test such that _requestService.GetAll() will return return both of these requests.
Assert that _dateCheckerService.CheckRequest() is passed the IsDelete request but not the IsDelete = false request.
Repeat step two for _notificationService.Send() and _invoiceService.CreateInvoice();
Every dependency you test should be tested in its own test.
Assuming that you're injecting the services correctly with mocking data, a valid test (in my opinion) is to check the date, notification, and invoice services if they have done their jobs on the delete request.
However, I'd like to point out that the method you're testing is doing 2 things:
Get requests
Process requests
So it's name would be GetAndHandleRequests, which I believe isn't a good thing, you might want to change method signature to take the requests as an argument and handle them.
Related
I am quite new at C# and also rhino mocks. I searched and found similar topics with my question but couldnt find a proper solution.
I am trying to understand if the private method is called or not in my unit test. I am using rhino mock, read many files about it, some of them just say that change the access specifier of the method from private to public, but I can not change the source code. I tried to link source file to my test project but it doesnt change.
public void calculateItems()
{
var result = new Result(fileName, ip, localPath, remotePath);
calculateItems(result, nameOfString);
}
private void calculateItems(Result result, string nameOfString )
As you see from the code above, I have two methods have exactly same name, calculateItems, but public one has no parameter, private one has two parameters. I am trying to understand when I called public one in my unittest, is private method called?
private CalculateClass sut;
private Result result;
[SetUp]
public void Setup()
{
result = MockRepository.GenerateStub<Result>();
sut = new CalculateClass();
}
[TearDown]
public void TearDown()
{
}
[Test]
public void test()
{
sut.Stub(stub => stub.calculateItems(Arg<Result>.Is.Anything, Arg<string>.Is.Anything));
sut.calculateItems();
sut.AssertWasCalled(stub => stub.calculateItems(Arg<Result>.Is.Anything, Arg<string>.Is.Anything));
}
In my unittest, I am taking such an error which says "No overload method for calculateItems take two arguments". Is there a way to test it without any changing in source code?
You're testing the wrong thing. Private methods are private. They are of no concern to consuming code, and unit tests are consuming code like any other.
In your tests you test and validate the outward facing functionality of the component. Its inner implementation details aren't relevant to the tests. All the tests care about is whether the invoked operation produces the expected results.
So the question you must ask yourself is... What are the expected results when invoking this operation?:
calculateItems()
It doesn't return anything, so what does it do? What state does it modify in some way? That is what your test needs to observe, not the implementation details but the observable result. (And if the operation has no observable result, then there's no difference between "passed" or "failed" so there's nothing to test.)
We can't see the details of your code, but it's possible that the observable result is coupled to another component entirely. If that's the case then that other component is a dependency for this operation and the goal of the unit test is to mock that dependency so the operation can be tested independently of the dependency. The component may then need to be modified so that a dependency is provided rather than internally controlled. (This is referred to as the Dependency Inversion Principle.)
Also of note...
but I can not change the source code
That's a separate problem entirely. If you truly can't change the source code, then the value of these tests is drastically reduced and possibly eliminated entirely. If a test fails, what can you do about it? Nothing. Because you can't change the code. So what are you testing?
Keep in mind that it's not only possible but unfortunately very common for programmers to write code which can't be meaningfully unit tested. If this code was provided to you by someone else and you are forbidden to change it for some non-technical reason, then it will be the responsibility of that someone else to correct the code. "Correcting" may include "making it possible to meaningfully unit test". (Or, honestly, they should be unit testing it. Not you.)
If your public method calls your private one then the same thing will happen in your tests. Tests are nothing more than code that can be run and debugged and you can try that so see what happens.
Private methods can't be tested directly but they can be tested via their public callers which is what you are doing, so it's all good. Whether it's a good idea to have a setup like this well, that's a different story entirely but I am not going into that now.
Now, let's discuss what you are actually testing.
Unit tests should not have deep knowledge of the code they test. The reason is that you should have inputs and outputs and you shouldn't care what happens in between.
If you refactor the code and eliminate the private method then your test would break, even if your inputs and outputs to your public method remain the same. That's not a good position to be in, this is what we call brittle tests.
So add your functional tests around the public method, verify that you get hat you expect and don't worry whether it calls your private method or not.
When you say you need to know whether your private methods are called, this can have two different interpretations:
You want to ensure that the private method is called within one particular test, making it a success criterion for that very test.
You want to know if the private method is called at all, by any of your test cases. You might be interested in this because you want to be sure if the private method is covered by your test suite, or as you said, just to form an understanding of what is actually going on in your code.
Regarding the second interpretation: If you want to understand what is going on in the code, a good approach is to use a debugger and just step through the code to see what function is called. As I am not a C# expert here, I can not recommend any specific debugging tool, but finding some recommendations about this on the web should not be difficult. This approach would fulfill your requirements not to require changes to the source code
Another possibility, in particular if you are interested in whether your private function is covered by the tests, is to use a test coverage tool for C#. The coverage tool would show you whether or not the private method was called or not. Again, this would not require to make any changes to the source code.
Regarding the first interpretation of your question: If you want to test that some privat function is called as part of your test's success criterion, you preferrably do this with tests that use the public API. Then, in these tests, you should be able to judge if the private function is called because of the effect that the private function has on the test result.
And, in contrast to other opinions, you should test the implementation. The primary goal of unit-testing is to find the bugs in the code. Different implementations have different bugs. This is why people also use coverage tools, to see if they have covered the code of their implementation. And, coverage is not enough, you also need to check boundary cases of expressions etc. Certainly, having maintainable tests and tests that do not break unnecessarily in case of refactorings are good goals (why testing through the public API is typically a good approach - but not always), but they are secondary goals compared to the goal to find all bugs.
I have the following method in my service layer
public ModuleResponse GetModules(ModuleRequest request)
{
var response = new ModuleResponse(request.RequestId);
try
{
response.Modules = Mapper.ToDataTransferObjects(ModuleDao.GetModules());
return response;
}
catch (Exception ex)
{
Log.Error(ex);
response.Acknowledge = AcknowledgeType.Failure;
response.Message = "An error occured.";
return response;
}
}
And I have a unit test written in xUnit like this:
[Fact]
public void GetModulesTest()
{
//Arrange
var mockModuleDao = Mock.Create<IModuleDao>();
var mockLog = Mock.Create<ILog>();
var mockAuditDao = Mock.Create<IAuditDao>();
var moduleList = new List<ModuleItem>
{
new ModuleItem {Id = 100, Category = "User Accounts", Feature = "Users"},
new ModuleItem {Id = 101, Category = "User Accounts", Feature = "Roles Permissions"}
};
mockModuleDao.Arrange(dao => dao.GetModules()).Returns(moduleList);
IUserManagementService userService = new UserManagementService(mockModuleDao, mockLog, mockAuditDao);
var request = new ModuleRequest().Prepare();
//Act
var actualResponse = userService.GetModules(request);
//Assert
Assert.Equal(AcknowledgeType.Success, actualResponse.Acknowledge);
Assert.Equal(2, actualResponse.Modules.Count);
}
Now I have a whole other bunch of retrieval methods in my code similar to the one above.
Are testing such methods redundant? I mean, they are almost a sure pass test, unless I mess up the logic of my Mapping or something.
Also, when testing retrieval methods, what is it that I should be testing for? In my scenario above, I have 2 assert statements, 1 to check if the response is a success, and the 2nd is to check the count of the list.
Is this sufficient? or how can this be further improved to enhance the value of such a unit test?
As always, whether or not a test like that is valuable depends on your motivation for testing.
Is this piece of code mission-critical?
What is the cost if that code fails?
How easily can you address errors, should they occur?
The higher the cost of failure, the more important it is to test a piece of code.
The GetModules method does at least four things:
It returns the modules from the DAO.
It maps the modules from the DAO into the desired return types.
It returns an error message if something goes wrong.
It logs any errors that may occur.
The GetModulesTest tests a single of these four responsibilities, which means that three other tests are still required to fully cover the GetModules method.
Writing small-grained unit tests are valuable, because it enables you do decompose a complex piece of production code into a set of simple, easy-to-understand unit tests. Sometimes, these unit tests become almost inanely simple, to the point where you'll begin to doubt the value of it, but the value isn't in a single unit test - it's in the accumulation of simple tests, which, together, specify how the entire system ought to work.
Now I have a whole other bunch of retrieval methods in my code similar to the one above.
Really? Don't they feel a little... repetitive?
I think Lilshieste made a very appropriate point, that one intrinsic value of unit tests is that they highlight maintainability issues like this. You might say they make code smells more pungent.
Mark Seemann identified four individual responsibilities for this one method you showed us. The Single Responsibility Principle would dictate that you should only have one.
You could conceivably turn this method (and all its kin) into something more like this:
public ModuleResponse GetModules(ModuleRequest request)
{
return _responder.CreateMappedDtoResponse(
request,
ModuleDao.GetModules,
modules => new ModuleResponse {Modules = modules}));
}
Now, at this point, I think you could make a decent argument against unit-testing this method. You'd pretty much be testing the implementation of this method, rather than its behavior. Your unit test would be testing that you call a given method with given arguments, and that's it!
But even if you decided to be a purist and unit test this, there's really only one unit test that you could conceivably write, as opposed to the four that you would have needed to fully cover this method before. Then you write the appropriate unit tests for the CreateMappedDtoResponse methods (and whatever methods it may delegate parts of its work to), and you've got a DRY, well-tested system with a fraction of the number of tests. And if you change a common responsibility like your exception-logging strategy, you can change it in one place, change one unit test, and be done.
So even if your unit tests never catch a bug for you, being a purist helped you to avoid a maintainability issue that would have forced you to write just as much extra code in the first place, and be likely to re-write just as much code later on. Of course, this only happens if you know to listen to your unit tests and change your design accordingly.
Edit:
It seems that by trying to provide some solutions to my own problem I blurred the whole problem. So I'm modifying the question little bit.
Suppose I have this class:
public class ProtocolMessage : IMessage
{
public IHeader GetProtocolHeader(string name)
{
// Do some logic here including returning null
// and throw exception in some cases
return header;
}
public string GetProtocolHeaderValue(string name)
{
IHeader header = GetProtocolHeader(name);
// Do some logic here including returning null
// and throw exception in some cases
return value;
}
}
It is actually not important what's going on in these methods. The important is that I have multiple unit tests to cover GetProtocolHeader method covering all situations (returning correct header, null or exception) and now I'm writing unit tests for GetProtocolHeaderValue.
If GetProtocolHeaderValue would be dependent on external dependency I would be able to mock it and inject it (I'm using Moq + NUnit). Then my unit test would just test expectation that external dependency was called and returned expected value. The external dependency would be tested by its own unit test and I would be done but how to correctly proceed in this example where method is not external dependency?
Clarification of the problem:
I believe my test suite for GetProtocolHeaderValue must test situation where GetProtocolHeader returns header, null or exception. So the main question is: Should I write tests where GetProtocolHeader will be really executed (some tests will be duplicated because they will test same code as tests for GetProtocolHeader itself) or should I use mocking approach described by #adrift and #Eric Nicholson where I will not run real GetProtoclHeader but just configure mock to return header, null or exception when this method is called?
In the call to GetProtocolHeaderValue, do you actually need to know whether or not it called GetProtocolHeader?
Surely it is enough to know that it is getting the correct value from the correct header. How it actually got it is irrelevant to the unit test.
You are testing units of functionality, the unit of functionality of GetProtocolHeaderValue is whether it returns the expected value, given a header name.
It is true that you may wish to guard against inappropriate caching or cross-contamination or fetching the value from a different header, but I don't think that testing that it has called GetProtocolHeader is the best way to do this. You can infer that it somehow fetched the right header from the fact that it returned the expected value for the header.
As long as you craft your tests and test data in such a way as to ensure that duplicate headers don't mask errors, then all should be well.
EDIT for updated question:
If GetProtocolHeader works quickly, reliably and is idempotent, then I still believe that there is no need to mock it. A shortfall in any of those three aspects is (IMO) the principal reason for mocking.
If (as I suspect from the question title), the reason you wish to mock it is that the preamble required to set up an appropriate state to return a real value is too verbose, and you'd rather not repeat it across the two tests, why not do it in the setup phase?
One of the roles performed by good unit tests is documentation.
If someone wishes to know how to use your class, they can examine the tests, and possibly copy and alter the test code to fit their purpose. This becomes difficult if the real idiom of usage has been obscured by the creation and injection of mocks.
Mocks can obscure potential bugs.
Let's say that GetProtocolHeader throws an exception if name is empty. You create a mock accordingly, and ensure that GetProtocolHeaderValue handles that exception appropriately. Later, you decide that GetProtocolHeader should return null for an empty name. If you forget to update your mock, GetProtocolHeaderValue("") will now behave differently in real life vs. the test suite.
Mocking might present an advantage if the mock is less verbose than the setup, but give the above points due consideration first.
Though you give three different GetProtocolHeader responses (header, null or exception) that GetProtocolHeaderValue needs to test, I imagine that the first one is likely to be "a range of headers". (e.g. What does it do with a header that is present, but empty? How does it treat leading and trailing whitespace? What about non-ASCII chars? Numbers?). If the setup for all of these is exceptionally verbose, it might be better to mock.
I often use a partial mock (in Rhino) or the equivalent (like CallsBaseMethod in FakeItEasy) to mock the actual class I'm testing. Then you can make GetProtocolHeader virtual and mock your calls to it. You could argue that it's violating the single responsibility principal, but that's still clearly very cohesive code.
Alternatively you could make a method like
internal static string GetProtocolHeaderValue(string name, IHeader header )
and test that processing independently. The public GetProtocolHeaderValue method wouldn't have any/many tests.
Edit: In this particular case, I'd also consider adding GetValue() as an extension method to IHeader. That would be very easy to read, and you could still do the null checking.
I'm probably missing something, but given the code listed it seems to me that you don't need to worry about whether its called or not.
Two possibilities exist:
That the GetProtocolHeader() method needs to be public in which case you write the set of tests that tell you whether it works as expected or not.
That its an implementation detail and doesn't need to be public except in so far as you want to be able to test it directly but in that case all you really care about is the set of tests that tell you whether GetProtocolHeaderValue() works as required.
In either case you are testing the exposed functionality and at the end of the day that's all that matters. If it were a dependency then yes you might be worrying about whether it was called but if its not the surely its an implemenation detail and not relevant?
With Moq, you can use CallBase to do the equivalent of a partial mock in Rhino Mocks.
In your example, change GetProtocolHeader to virtual, then create a mock of ProtocolMessage, setting CallBase = true. You can then setup the GetProtocolHeader method as you wish, and have your base class functionality of GetProtocolHeaderValue called.
See the Customizing Mock Behavior section of the moq quickstart for more details.
Why not simply change GetProtocolHeaderValue(string name) so that it calls 2 methods, the second one accepting a IHeader? That way, you can test all the // do some logic part in a separate test, via the RetrieveHeaderValue method, without having to worry about Mocks. Something like:
public string GetProtocolHeaderValue(string name)
{
IHeader header = GetProtocolHeader(name);
return RetrieveHeaderValue(IHeader header);
}
now you can test both parts of GetProtocolHeaderValue fairly easily. Now you still have the same problem testing that method, but the amount of logic in it has been reduced to a minimum.
Following the same line of thinking, these methods could be extracted in a IHeaderParser interface, and the GetProtocol methods would take in a IHeaderParser, which would be trivial to test/mock.
public string GetProtocolHeaderValue(string name, IHeaderParser parser)
{
IHeader header = parser.GetProtocolHeader(name);
return parser.HeaderValue(IHeader header);
}
Try the simplest thing that might work.
If the real GetProtocolHeader() implementation is quick and easy to control (e.g. to simulate header, null and exception cases), just use it.
If not (i.e. either the real implementation is time-consuming or you can easily simulate the 3 cases), then look at redesigning such that the constraints are eased.
I refrain from using Mocks unless absolutely required (e.g. file/network/external dependency), but as you may know this is just a personal choice not a rule. Ensure that the choice is worth the extra cognitive overhead (drop in readability) of the test.
It's all a matter of oppinion, pure tdd-ists will say no mocks, mockers will mock it all.
In my honest oppinion there is something wrong with the code you wrote, the GetProtocolHeader seems important enough not to be discarded as an implementation detail, as you defined it public.
The problem here lies within the second method GetProtocolHeaderValue that does not have the possibility to use an existing instance of IHeader
I would suggest a GetValue(string name) on IHeader interface
I have been used to following code pattern while writing my test
public void TestMethod_Condition_Output()
{
//Arrange----------------
Mock<x> temp = new Mock<x>();
temp.setup.......
//Act--------------------
classinstance.TestMethod()
//Assert------------------
temp.VerifyAll();
Assert.AreNotEqual(.....)
}
I have been used to do the VerifyAll() before performing Assertions. But lately on some online examples, I have seen people doing Assertion first and then VerifyAll, if any. I do feel that my way is the correct way unless I am missing something.
Could you please alert me if I am missing anything.
In my opinion, the verify should come after the asserts. I want the asserts close to the invocation of the method under test as they are documenting what the method does. The verifications of the mock invocations are detailing how the class uses it's dependencies. This is less important to tie directly to the method itself.
In a sense the mocking of the dependencies becomes a wrapper around the actual test itself. This makes the test more understandable (to me, anyway, YMMV). My tests then follow this pattern:
Arrange
Mock
Set up expectations for dependencies
Set up expected results
Create class under test
Act
Invoke method under test
Assert
Assert actual results match expected results
Verify that expectations were met
I don't know that I would be pedantic about it, but this is the order that makes the most sense to me.
In a AAA style testing I do not use VerifyAll but rather than verify methods were called explicitly as part of the unit of test. Within the Arrange area I only setup methods that need to return a value.
using Rhino as an example...
//Arrange
mockedInterface.Stub(x => x.SomeMethod1()).Returns(2);
...
//Assert
mockedInterface.AssertWasCalled(x => x.SomeMethod1());
mockedInterface.AssertWasCalled(x => x.SomeMethod2());
Assert.AreEqual(...); // stanmdard NUnit asserttions
I do not need to setup the expected call to SomeMethod2() if it does not return anything.
With Loose mocks there is no real need to call VerifyAll as calls to other methods would not fail the test (unless a return is needed then it is required in the Arrange section).
The amount of assertions should be kept to a minimum (create more tests if it gets too large) and the order of them should not really matter either.
What is the best way to unit test a method that doesn't return anything? Specifically in c#.
What I am really trying to test is a method that takes a log file and parses it for specific strings. The strings are then inserted into a database. Nothing that hasn't been done before but being VERY new to TDD I am wondering if it is possible to test this or is it something that doesn't really get tested.
If a method doesn't return anything, it's either one of the following
imperative - You're either asking the object to do something to itself.. e.g change state (without expecting any confirmation.. its assumed that it will be done)
informational - just notifying someone that something happened (without expecting action or response) respectively.
Imperative methods - you can verify if the task was actually performed. Verify if state change actually took place. e.g.
void DeductFromBalance( dAmount )
can be tested by verifying if the balance post this message is indeed less than the initial value by dAmount
Informational methods - are rare as a member of the public interface of the object... hence not normally unit-tested. However if you must, You can verify if the handling to be done on a notification takes place. e.g.
void OnAccountDebit( dAmount ) // emails account holder with info
can be tested by verifying if the email is being sent
Post more details about your actual method and people will be able to answer better.
Update: Your method is doing 2 things. I'd actually split it into two methods that can now be independently tested.
string[] ExamineLogFileForX( string sFileName );
void InsertStringsIntoDatabase( string[] );
String[] can be easily verified by providing the first method with a dummy file and expected strings. The second one is slightly tricky.. you can either use a Mock (google or search stackoverflow on mocking frameworks) to mimic the DB or hit the actual DB and verify if the strings were inserted in the right location. Check this thread for some good books... I'd recomment Pragmatic Unit Testing if you're in a crunch.
In the code it would be used like
InsertStringsIntoDatabase( ExamineLogFileForX( "c:\OMG.log" ) );
Test its side-effects. This includes:
Does it throw any exceptions? (If it should, check that it does. If it shouldn't, try some corner cases which might if you're not careful - null arguments being the most obvious thing.)
Does it play nicely with its parameters? (If they're mutable, does it mutate them when it shouldn't and vice versa?)
Does it have the right effect on the state of the object/type you're calling it on?
Of course, there's a limit to how much you can test. You generally can't test with every possible input, for example. Test pragmatically - enough to give you confidence that your code is designed appropriately and implemented correctly, and enough to act as supplemental documentation for what a caller might expect.
As always: test what the method is supposed to do!
Should it change global state (uuh, code smell!) somewhere?
Should it call into an interface?
Should it throw an exception when called with the wrong parameters?
Should it throw no exception when called with the right parameters?
Should it ...?
Try this:
[TestMethod]
public void TestSomething()
{
try
{
YourMethodCall();
Assert.IsTrue(true);
}
catch {
Assert.IsTrue(false);
}
}
Void return types / Subroutines are old news. I haven't made a Void return type (Unless I was being extremely lazy) in like 8 years (From the time of this answer, so just a bit before this question was asked).
Instead of a method like:
public void SendEmailToCustomer()
Make a method that follows Microsoft's int.TryParse() paradigm:
public bool TrySendEmailToCustomer()
Maybe there isn't any information your method needs to return for usage in the long-run, but returning the state of the method after it performs its job is a huge use to the caller.
Also, bool isn't the only state type. There are a number of times when a previously-made Subroutine could actually return three or more different states (Good, Normal, Bad, etc). In those cases, you'd just use
public StateEnum TrySendEmailToCustomer()
However, while the Try-Paradigm somewhat answers this question on how to test a void return, there are other considerations too. For example, during/after a "TDD" cycle, you would be "Refactoring" and notice you are doing two things with your method... thus breaking the "Single Responsibility Principle." So that should be taken care of first. Second, you might have idenetified a dependency... you're touching "Persistent" Data.
If you are doing the data access stuff in the method-in-question, you need to refactor into an n-tier'd or n-layer'd architecture. But we can assume that when you say "The strings are then inserted into a database", you actually mean you're calling a business logic layer or something. Ya, we'll assume that.
When your object is instantiated, you now understand that your object has dependencies. This is when you need to decide if you are going to do Dependency Injection on the Object, or on the Method. That means your Constructor or the method-in-question needs a new Parameter:
public <Constructor/MethodName> (IBusinessDataEtc otherLayerOrTierObject, string[] stuffToInsert)
Now that you can accept an interface of your business/data tier object, you can mock it out during Unit Tests and have no dependencies or fear of "Accidental" integration testing.
So in your live code, you pass in a REAL IBusinessDataEtc object. But in your Unit Testing, you pass in a MOCK IBusinessDataEtc object. In that Mock, you can include Non-Interface Properties like int XMethodWasCalledCount or something whose state(s) are updated when the interface methods are called.
So your Unit Test will go through your Method(s)-In-Question, perform whatever logic they have, and call one or two, or a selected set of methods in your IBusinessDataEtc object. When you do your Assertions at the end of your Unit Test you have a couple of things to test now.
The State of the "Subroutine" which is now a Try-Paradigm method.
The State of your Mock IBusinessDataEtc object.
For more information on Dependency Injection ideas on the Construction-level... as they pertain to Unit Testing... look into Builder design patterns. It adds one more interface and class for each current interface/class you have, but they are very tiny and provide HUGE functionality increases for better Unit-Testing.
You can even try it this way:
[TestMethod]
public void ReadFiles()
{
try
{
Read();
return; // indicates success
}
catch (Exception ex)
{
Assert.Fail(ex.Message);
}
}
it will have some effect on an object.... query for the result of the effect. If it has no visible effect its not worth unit testing!
Presumably the method does something, and doesn't simply return?
Assuming this is the case, then:
If it modifies the state of it's owner object, then you should test that the state changed correctly.
If it takes in some object as a parameter and modifies that object, then your should test the object is correctly modified.
If it throws exceptions is certain cases, test that those exceptions are correctly thrown.
If its behaviour varies based on the state of its own object, or some other object, preset the state and test the method has the correct Ithrough one of the three test methods above).
If youy let us know what the method does, I could be more specific.
Use Rhino Mocks to set what calls, actions and exceptions might be expected. Assuming you can mock or stub out parts of your method. Hard to know without knowing some specifics here about the method, or even context.
Depends on what it's doing. If it has parameters, pass in mocks that you could ask later on if they have been called with the right set of parameters.
What ever instance you are using to call the void method , You can just use ,Verfiy
For Example:
In My case its _Log is the instance and LogMessage is the method to be tested:
try
{
this._log.Verify(x => x.LogMessage(Logger.WillisLogLevel.Info, Logger.WillisLogger.Usage, "Created the Student with name as"), "Failure");
}
Catch
{
Assert.IsFalse(ex is Moq.MockException);
}
Is the Verify throws an exception due to failure of the method the test would Fail ?