How to use Facemarker in EMGUCV? - c#

I'm trying to follow this OpenCV tutorial but I have not managed to create the FaceInvoke.FaceDetectNative function, I tried to use this function but the application stops working.
static bool MyDetector(IntPtr input, IntPtr output)
{
CascadeClassifier faceDetector = new CascadeClassifier(#"..\..\Resource\EMGUCV\haarcascade_frontalface_default.xml");
Image<Gray, byte> grayImage = (new Image<Bgr, byte>(CvInvoke.cvGetSize(input))).Convert<Gray, byte>();
grayImage._EqualizeHist();
Rectangle[] faces = faceDetector.DetectMultiScale(grayImage, 1.1, 10, Size.Empty);
VectorOfRect rects = new VectorOfRect(faces);
CvInvoke.cvCopy(rects.Ptr, output, IntPtr.Zero);
return true;
}
On the other hand I tried calling the GetFaces method by passing a Mat object = new Mat (); as IOutputArray which also has not worked (Crash error).
FacemarkLBFParams fParams = new FacemarkLBFParams();
fParams.ModelFile = #"..\..\Resource\EMGUCV\facemarkmodel.yaml";
FacemarkLBF facemark = new FacemarkLBF(fParams);
facemark.SetFaceDetector(MyDetector);
VectorOfRect result = new VectorOfRect();
Image<Bgr, Byte> image = new Image<Bgr, byte>(#"C:\Users\matias\Documents\Proyectos\100-20.bmp");
bool success = facemark.GetFaces(image, result);
Rectangle[] faces = result.ToArray();
Thank's

After several hours I have managed to detect the points of a face, for that use the Fit method, which receives the image, the faces (such as VectorOfRect) and a VectorOfVectorOfPointF for the output
public Image<Bgr, Byte> GetFacePoints()
{
CascadeClassifier faceDetector = new CascadeClassifier(#"..\..\Resource\EMGUCV\haarcascade_frontalface_default.xml");
FacemarkLBFParams fParams = new FacemarkLBFParams();
fParams.ModelFile = #"..\..\Resource\EMGUCV\lbfmodel.yaml";
fParams.NLandmarks = 68; // number of landmark points
fParams.InitShapeN = 10; // number of multiplier for make data augmentation
fParams.StagesN = 5; // amount of refinement stages
fParams.TreeN = 6; // number of tree in the model for each landmark point
fParams.TreeDepth = 5; //he depth of decision tree
FacemarkLBF facemark = new FacemarkLBF(fParams);
//facemark.SetFaceDetector(MyDetector);
Image<Bgr, Byte> image = new Image<Bgr, byte>(#"C:\Users\matias\Downloads\personas-buena-vibra-caracteristicas-1200x600.jpg");
Image<Gray, byte> grayImage = image.Convert<Gray, byte>();
grayImage._EqualizeHist();
VectorOfRect faces = new VectorOfRect(faceDetector.DetectMultiScale(grayImage));
VectorOfVectorOfPointF landmarks = new VectorOfVectorOfPointF();
facemark.LoadModel(fParams.ModelFile);
bool success = facemark.Fit(grayImage, faces, landmarks);
if (success)
{
Rectangle[] facesRect = faces.ToArray();
for (int i = 0; i < facesRect.Length; i++)
{
image.Draw(facesRect[i], new Bgr(Color.Blue), 2);
FaceInvoke.DrawFacemarks(image, landmarks[i], new Bgr(Color.Blue).MCvScalar);
}
return image;
}
return null;
}
Now all that remains is to optimize the code and continue with my project

Related

How to avoid rotation of rects, detected by MinAreaRect?

I am trying to detect text fields on Windows Form but CvInvoke.MinAreaRect(contour) returns rectangle, rotated by -7.29419661 Angle.
My code is
Image<Bgr, Byte> a =
new Image<Bgr, byte>(#"d:/Art/documents/Projects/InputFieldsDetector/Images/Form345_1.PNG");
imageBox1.Image = a;
UMat grayed = new UMat();
CvInvoke.CvtColor(a, grayed, ColorConversion.Bgr2Gray);
imageBox2.Image = grayed;
UMat canny = new UMat();
CvInvoke.Canny(grayed, canny, 50, 200, 3);
imageBox3.Image = canny;
VectorOfVectorOfPoint cnts = new VectorOfVectorOfPoint();
UMat hierarchy = new UMat();
CvInvoke.FindContours(canny, cnts, null, RetrType.Tree, ChainApproxMethod.ChainApproxSimple);
Image<Bgr, Byte> justCountor = a.Clone();
List<string> sizes = new List<string>();
int count = cnts.Size;
for (int i = 0; i < count; i++)
{
VectorOfPoint contour = cnts[i];
var area = CvInvoke.ContourArea(contour);
//if (area > 10000 && area < 15000)
if (area > 200 && area < 300)
{
sizes.Add(area.ToString());
Point[] pts = contour.ToArray();
var forDraw = CvInvoke.MinAreaRect(contour);
// forDraw.Angle = 0;
//forDraw.Center.Y += 10;
justCountor.Draw(forDraw, new Bgr(Color.DarkOrange), 2);
}
}
imageBox4.Image = justCountor;
List<double> result = sizes.Select(x => double.Parse(x)).ToList();
result.Sort();
sizes = result.Select(x => x.ToString()).ToList();
File.WriteAllLines("c:/temp/qqq.txt", sizes);
Original image is:
If I uncomment section
forDraw.Angle = 0;
forDraw.Center.Y += 10;
sizes of detected rects are similar to sizes of fields...
Tell me, please, why returned rects are rotated and how to fix that?
You can see in the Canny output that the algorithm is interpreting the shadows as borders. The easiest way to fix that is prefilter the image with a threshold with a high value near to the white of the box background.
Image<Bgr, Byte> a =
new Image<Bgr, byte>(#"d:/Art/documents/Projects/InputFieldsDetector/Images/Form345_1.PNG");
imageBox1.Image = a;
UMat grayed = new UMat();
CvInvoke.CvtColor(a, grayed, ColorConversion.Bgr2Gray);
imageBox2.Image = grayed;
UMat thresholded = new UMat();
CvInvoke.Threshold(grayed, thresholded, 128, 255, ThresholdType.Binary);
imageBox5.Image = thresholded;
UMat canny = new UMat();
CvInvoke.Canny(thresholded, canny, 50, 200, 3);
imageBox3.Image = canny;
VectorOfVectorOfPoint cnts = new VectorOfVectorOfPoint();
UMat hierarchy = new UMat();
CvInvoke.FindContours(canny, cnts, null, RetrType.Tree, ChainApproxMethod.ChainApproxSimple);
Image<Bgr, Byte> justCountor = a.Clone();
List<string> sizes = new List<string>();
int count = cnts.Size;
for (int i = 0; i < count; i++)
{
VectorOfPoint contour = cnts[i];
var area = CvInvoke.ContourArea(contour);
if (area > 200 && area < 300)
{
sizes.Add(area.ToString());
Point[] pts = contour.ToArray();
var forDraw = CvInvoke.MinAreaRect(contour);
// forDraw.Angle = 0;
//forDraw.Center.Y += 10;
if (forDraw.Angle==0)
justCountor.Draw(forDraw, new Bgr(Color.DarkOrange), 2);
}
}
imageBox4.Image = justCountor;
List<double> result = sizes.Select(x => double.Parse(x)).ToList();
result.Sort();
sizes = result.Select(x => x.ToString()).ToList();
File.WriteAllLines("c:/temp/qqq.txt", sizes);

Emgu CV Image sharpening and controur detection

I am working on a project where I need to identify dots from IR lasers on a surface. I use for that a camera with IR filter
Some input images:
There can be several dots, too. So I tried to sharpen this image from webcam and then use FindContours method of Emgu CV.
There is my code:
public static Image<Gray, byte> Sharpen(Image<Gray, byte> image, int w, int h, double sigma1, double sigma2, int k)
{
w = (w % 2 == 0) ? w - 1 : w;
h = (h % 2 == 0) ? h - 1 : h;
//apply gaussian smoothing using w, h and sigma
var gaussianSmooth = image.SmoothGaussian(w, h, sigma1, sigma2);
//obtain the mask by subtracting the gaussian smoothed image from the original one
var mask = image - gaussianSmooth;
//add a weighted value k to the obtained mask
mask *= k;
//sum with the original image
image += mask;
return image;
}
private void ProcessFrame(object sender, EventArgs arg)
{
Mat frame = new Mat();
if (_capture.Retrieve(frame, CameraDevice))
{
Image<Bgr, byte> original = frame.ToImage<Bgr, byte>();
Image<Gray, byte> img = Sharpen(frame.ToImage<Gray, byte>(), 100, 100, 100, 100, 30);
Image<Gray, byte> thresh = new Image<Gray, byte>(img.Size);
CvInvoke.PyrDown(img, thresh);
CvInvoke.PyrUp(thresh, thresh);
Image<Gray, byte> mask = new Image<Gray, byte>(thresh.Size);
Image<Gray, byte> cannyImg = thresh.Canny(10, 50);
VectorOfVectorOfPoint contours = new VectorOfVectorOfPoint();
Mat hierarchy = new Mat();
CvInvoke.FindContours(
cannyImg,
contours,
hierarchy,
RetrType.External,
ChainApproxMethod.ChainApproxSimple
);
Image<Bgr, byte> resultImage = img.Copy().Convert<Bgr, byte>();
int contCount = contours.Size;
for (int i = 0; i < contCount; i++)
{
using (VectorOfPoint contour = contours[i])
{
resultImage.Draw(CvInvoke.BoundingRectangle(contour), new Bgr(255, 0, 0), 5);
}
}
captureBox.Image = original.Bitmap;
cvBox.Image = resultImage.Bitmap;
}
}
Example of result image:
So it almost all the time works as I expect it to, but framerate is very low. I'm getting like 10-15 fps with resolution of 640x480. I need to be able to do the same thing for 1920x1080 with at least 30 fps. It's my first time with OpenCV and Emgu.CV. What can I do to make it perform better?
I solved this just setting the threshold, so that image turns black and white only. By adjusting the threshold I was able to achieve the same results if not better in terms of clarity, but also performance drastically improved since there is not heavy processing going on
Here is a snippet with ARCore library instead on EmguCV
var bitmap = eventArgs.Frame;
var filter = new Grayscale(0.2125, 0.7154, 0.0721);
var grayImage = filter.Apply(bitmap);
var thresholdFilter = new Threshold(CurrentThreshold);
thresholdFilter.ApplyInPlace(grayImage);
var blobCounter = new BlobCounter();
blobCounter.ProcessImage(grayImage);
var rectangles = blobCounter.GetObjectsRectangles();

Find coordinates of barcode in image c#

I have some images which contains 3-4 bar codes. I want to mark all the bar codes irrespective of the position. I'm trying to get all the rectangles in the images using below code, but they return empty or do not mark the bar codes. Am I missing something? Any pointers would be greatly appreciated.
I also tried to follow this tutorial and tried to port it to EmguCV and was not sure what to pass for missing params of certain functions. Commented part are the ones which I'm not sure. Please guide me to correct direction.
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using Emgu.CV;
using Emgu.CV.Structure;
using System.IO;
using static System.Net.Mime.MediaTypeNames;
using Emgu.CV.CvEnum;
using Emgu.CV.Util;
using System.Windows.Forms;
namespace ConsoleApplication4
{
class Program
{
//public static Mat mat = new Mat();
// public static Mat kernel = new Mat();
// private static Image<Bgr, byte> gradX = mat.ToImage<Bgr,byte>();
// private static Image<Bgr, byte> gradY = mat.ToImage<Bgr, byte>();
// private static Image<Bgr, byte> gradient = mat.ToImage<Bgr, byte>();
// private static Image<Bgr, byte> blur = mat.ToImage<Bgr, byte>();
// private static Image<Bgr, byte> thresh = mat.ToImage<Bgr, byte>();
// private static Image<Bgr, byte> closed = mat.ToImage<Bgr, byte>();
static void Main(string[] args)
{
Image<Bgr, byte> gambar = new Image<Bgr, byte>("source.jpg");
Image<Bgr, byte> kotak = detectBarcode(gambar);
kotak.ToBitmap().Save("destination.jpg");
Console.ReadKey();
}
private static Image<Bgr, byte> detectBarcode(Image<Bgr, byte> image)
{
try
{
Image<Gray, byte> imageGrey = image.Convert<Gray, byte>();
//CvInvoke.Sobel(imageGrey, gradX, DepthType.Cv32F, 1, 0, -1);
//CvInvoke.Sobel(imageGrey, gradY, DepthType.Cv32F, 0, 1, -1);
//CvInvoke.Subtract(gradX, gradY, gradient);
//CvInvoke.ConvertScaleAbs(gradient, gradient, 0, 0);
//CvInvoke.Blur(gradient, blur, new System.Drawing.Size(new System.Drawing.Point(9, 9)), new System.Drawing.Point(9, 9));
//CvInvoke.Threshold(blur, thresh, 255, 255, ThresholdType.Binary);
//kernel = CvInvoke.GetStructuringElement(ElementShape.Rectangle, new System.Drawing.Size(new System.Drawing.Point(9, 9)), new System.Drawing.Point(9, 9));
//CvInvoke.MorphologyEx(thresh,closed,MorphOp.Close,kernel,);
//CvInvoke.Erode(closed,closed, new System.Drawing.Point(0, 0),4,BorderType.Default,);
//CvInvoke.Dilate(closed, closed, new System.Drawing.Point(0, 0), 4, BorderType.Default,);
List<RotatedRect> boxList = new List<RotatedRect>();
UMat cannyEdges = new UMat();
double cannyThreshold = 180.0;
double cannyThresholdLinking = 120.0;
CvInvoke.Canny(imageGrey, cannyEdges, cannyThreshold, cannyThresholdLinking);
using (VectorOfVectorOfPoint countours = new VectorOfVectorOfPoint())
{
CvInvoke.FindContours(cannyEdges, countours, null, RetrType.List,
ChainApproxMethod.ChainApproxSimple);
int count = countours.Size;
for (int i = 0; i < count; i++)
{
using (VectorOfPoint kontur = countours[i])
using (VectorOfPoint approxContour = new VectorOfPoint())
{
CvInvoke.ApproxPolyDP(kontur, approxContour, CvInvoke.ArcLength(kontur, true) * 0.05, true);
if (CvInvoke.ContourArea(approxContour, false) > 250) //only consider contours with area greater than 250
{
if (approxContour.Size == 4) //rectangle
{
//determine if allthe angles in the contour are within [80,100] degree
bool isRectangle = true;
System.Drawing.Point[] pts = approxContour.ToArray();
LineSegment2D[] edges = Emgu.CV.PointCollection.PolyLine(pts, true);
for (int j = 0; j < edges.Length; j++)
{
double angle = Math.Abs(
edges[(j + i) % edges.Length].GetExteriorAngleDegree(edges[j]));
if (angle < 80 || angle > 100)
{
isRectangle = false;
break;
}
}
if (isRectangle) boxList.Add(CvInvoke.MinAreaRect(approxContour));
}
}
}
}
}
Image<Bgr, byte> triRectImage = image.Copy();
foreach (RotatedRect box in boxList)
triRectImage.Draw(box, new Bgr(0, 0, 0), 5);
return triRectImage;
}
catch (Exception e) {
Console.WriteLine(e.StackTrace);
return null;
}
}
}
}
I find myself referring you to, for example
public static void Sobel(IInputArray src ,IOutputArray dst,
DepthType ddepth, int xorder, int yorder, int kSize = 3, double scale = 1, double delta = 0, BorderType borderType =
BorderType.Reflect101 )
There follows a detailed list of the parameters and what they mean. If you don't actually understand any of this then I would suggest you need to read the tutorials thoroughly because otherwise you will need an expert in Emgu CV to tell you how to write your program, which isn't exactly the point of this site.
I don't wish to sound unkind but you at least need to have a stab at whatever it is you are trying to do.

EmguCV HaarCascade issue

I have developed a working C# face recognition program using EmguCV.
However, if I load "haarcascade_fullbody.xml" instead of "haarcascade_frontalface_alt_tree.xml" I get the almighty Access Violation.
This is the code;
public Bitmap detection(Bitmap Source)
{
List<Image<Gray, byte>> TrainedImages = this.TrainedImages;
List<String> Names = this.Names;
Image<Bgr, byte> ImageFrame = new Image<Bgr, byte>(Source);
Image<Gray, byte> grayFrame = ImageFrame.Convert<Gray, byte>();
Image<Bgr, byte> overlay = new Image<Bgr, byte>(Source.Width, Source.Height);
Graphics FaceCanvas;
List<String> finimg = new List<String>();
//HaarCascade haar = new HaarCascade("haarcascade_frontalface_alt_tree.xml");
HaarCascade haar = new HaarCascade("haarcascade_fullbody.xml");
var faces = grayFrame.DetectHaarCascade(haar, 1.1, 3, HAAR_DETECTION_TYPE.DO_CANNY_PRUNING, new System.Drawing.Size(25, 25))[0];
foreach (var face in faces)
{
overlay.Draw(face.rect, new Bgr(System.Drawing.Color.Green), 3);
tempbmp = new Bitmap(100, 100);
FaceCanvas = Graphics.FromImage(tempbmp);
FaceCanvas.DrawImage(grayFrame.ToBitmap(), 0, 0, face.rect, GraphicsUnit.Pixel);
detected.Add(tempbmp);
if (doit)
{
saveBitmap(tempbmp, trainpath, trainnamer.Text);
doit = false;
}
if (doit10)
{
for (int k = 1; k <= 10; k++)
saveBitmap(tempbmp, trainpath, trainnamer.Text);
doit10 = false;
}
try
{
MCvTermCriteria termCrit = new MCvTermCriteria(TrainedImages.ToArray().Length, 0.001);//????????????
EigenObjectRecognizer recognizer = new EigenObjectRecognizer(TrainedImages.ToArray(), Names.ToArray(), 2500, ref termCrit);
MCvFont font = new MCvFont(FONT.CV_FONT_HERSHEY_TRIPLEX, 0.5d, 0.5d);
String name = recognizer.Recognize(new Image<Gray, byte>(tempbmp));
if (Names.Contains(name) == false)
name = "Stranger";
else
name = removeformat(name);
overlay.Draw(name, ref font, new System.Drawing.Point(face.rect.Left, face.rect.Top - 5), new Bgr(System.Drawing.Color.Green));
finimg.Add(name);
}
catch (IndexOutOfRangeException)
{
MCvFont font = new MCvFont(FONT.CV_FONT_HERSHEY_TRIPLEX, 0.5d, 0.5d);
ImageFrame.Draw("Stranger", ref font, new System.Drawing.Point(face.rect.Left, face.rect.Top - 5), new Bgr(color));
continue;
}
}
detected.Clear();
Bitmap supra = overlay.ToBitmap();
supra.MakeTransparent(System.Drawing.Color.Black);
return supra;
}
Apparently there is a problem with the xml, as any other haarcascade I try to load loads succesfully. I recommend using the HOGDescriptor instead or "haarcascade_mcs_upperbody.xml" for pedestrian detecting.

Finding contour points in emgucv

I am working with emguCV for finding contours essential points then saving this point in a file and user redraw this shape in future. so, my goal is this image:
example
my solution is this:
1. import image to picturebox
2. edge detection with canny algorithm
3. finding contours and save points
I found a lot of points with below codes but i can't drawing first shape with this point!
using Emgu.CV;
using Emgu.Util;
private void button1_Click(object sender, EventArgs e)
{
Bitmap bmp = new Bitmap(pictureBox1.Image);
Image<Bgr, Byte> img = new Image<Bgr, byte>(bmp);
Image<Gray, Byte> gray = img.Convert<Gray, Byte>().PyrDown().PyrUp();
Gray cannyThreshold = new Gray(80);
Gray cannyThresholdLinking = new Gray(120);
Gray circleAccumulatorThreshold = new Gray(120);
Image<Gray, Byte> cannyEdges = gray.Canny(cannyThreshold, cannyThresholdLinking).Not();
Bitmap color;
Bitmap bgray;
IdentifyContours(cannyEdges.Bitmap, 50, true, out bgray, out color);
pictureBox1.Image = color;
}
public void IdentifyContours(Bitmap colorImage, int thresholdValue, bool invert, out Bitmap processedGray, out Bitmap processedColor)
{
Image<Gray, byte> grayImage = new Image<Gray, byte>(colorImage);
Image<Bgr, byte> color = new Image<Bgr, byte>(colorImage);
grayImage = grayImage.ThresholdBinary(new Gray(thresholdValue), new Gray(255));
if (invert)
{
grayImage._Not();
}
using (MemStorage storage = new MemStorage())
{
for (Contour<Point> contours = grayImage.FindContours(Emgu.CV.CvEnum.CHAIN_APPROX_METHOD.CV_CHAIN_APPROX_SIMPLE, Emgu.CV.CvEnum.RETR_TYPE.CV_RETR_LIST, storage); contours != null; contours = contours.HNext)
{
Contour<Point> currentContour = contours.ApproxPoly(contours.Perimeter * 0.015, storage);
if (currentContour.BoundingRectangle.Width > 20)
{
CvInvoke.cvDrawContours(color, contours, new MCvScalar(255), new MCvScalar(255), -1, 1, Emgu.CV.CvEnum.LINE_TYPE.EIGHT_CONNECTED, new Point(0, 0));
color.Draw(currentContour.BoundingRectangle, new Bgr(0, 255, 0), 1);
}
Point[] pts = currentContour.ToArray();
foreach (Point p in pts)
{
//add points to listbox
listBox1.Items.Add(p);
}
}
}
processedColor = color.ToBitmap();
processedGray = grayImage.ToBitmap();
}
In your code you have added contour approximation operation
Contour<Point> currentContour = contours.ApproxPoly(contours.Perimeter * 0.015, storage);
This contour approximation will approximate your Contour to a nearest polygon & so your actual points got shifted. If you want to reproduce the same image you need not to do any approximation.
Refer this thread.

Categories