Avoiding await in foreach loop - c#

I am trying to optimize this code to decrease the time taken to complete the forloop. In this case, CreateNotification() takes a long time and using async await does not improve performance as each asynchronous call is being awaited. I would like to use Task.WhenAll() to optimize the code. How can I do this?
foreach (var notification in notificationsInput.Notifications)
{
try
{
var result = await CreateNotification(notification);
notification.Result = result;
}
catch (Exception exception)
{
notification.Result = null;
}
notifications.Add(notification);
}

You can call Select on the collection whose elements you want to process in parallel, passing an asynchronous delegate to it. This asynchronous delegate would return a Task for each element that's processed, so you could then call Task.WhenAll on all these tasks. The pattern is like so:
var tasks = collection.Select(async (x) => await ProcessAsync(x));
await Task.WhenAll(tasks);
For your example:
var tasks = notificationsInput.Notifications.Select(async (notification) =>
{
try
{
var result = await CreateNotification(notification);
notification.Result = result;
}
catch (Exception exception)
{
notification.Result = null;
}
});
await Task.WhenAll(tasks);
This assumes that CreateNotification is thread-safe.

Update
You will need to install DataFlow to use this solution
https://www.nuget.org/packages/System.Threading.Tasks.Dataflow/
Depending on what CreateNotification is and whether you want to run this in parallel.
You could use a DataFlow ActionBlock, it will give you the best of both worlds if this is IO bound or Mix IO/CPU bound operations and let you run async and in parallel
public static async Task DoWorkLoads(NotificationsInput notificationsInput)
{
var options = new ExecutionDataflowBlockOptions
{
MaxDegreeOfParallelism = 50
};
var block = new ActionBlock<Something>(MyMethodAsync, options);
foreach (var notification in notificationsInput.Notifications)
block.Post(notification);
block.Complete();
await block.Completion;
}
...
public async Task MyMethodAsync(Notification notification)
{
var result = await CreateNotification(notification);
notification.Result = result;
}
Add pepper and salt to taste.

I think this ought to be equivalent to your code:
var notifications = new ConcurrentBag<Notification>();
var tasks = new List<Task>();
foreach (var notification in notificationsInput.Notifications)
{
var task = CreateNotification(notification)
.ContinueWith(t =>
{
if (t.Exception != null)
{
notification.Result = null;
}
else
{
notification.Result = t.Result;
}
notifications.Add(notification);
});
tasks.Add(task);
}
await Task.WhenAll(tasks);
.ContinueWith( will receive the completed/failed task from CreateNotification(, and is itself a task. We add the ContinueWith task to a list and use that in the WhenAll(.
I'm using a ConcurrentBag for notifications so that you can add from multiple threads safely. If you want to turn this into a regular list, you can call var regularListNotifications = notifications.ToList(); (assuming you have a using for LINQ).

Related

How to return the not-cancelled tasks from Task.WhenAll execution

I have a list of tasks that are cancellable; they have their CancellationTokenSource. Their cancellation is independent of others. I want to return all the not-canceled tasks from Task.WhenAll.
var tasks = new List<Task<string>>();
/** some code here **/
var done = await Task.WhenAll(tasks); // This throws an OperationCanceledException,
// when at least one task is cancelled.
There are questions in the StackOverflow "how to cancel a task inside a task," but this question here is not that.
You can retry the rest of the tasks by looping Task.WhenAll
var tasks = new List<Task<string>>();
/** some code here **/
var notCanceled = tasks;
do
{
try
{
await Task.WhenAll(notCanceled);
break;
}
catch (OperationCanceledException)
{
notCanceled = notCanceled.Where(t => !t.IsCanceled).ToArray();
}
} while (notCanceled.Any())
One way to do it is to store the Task.WhenAll task in a Task variable, so that you can add a catch block that handles exclusively the IsCanceled case.
var tasks = new List<Task<string>>();
/** some code here **/
Task whenAll = Task.WhenAll(tasks);
Task<string>[] successfullyCompletedTasks;
try
{
await whenAll;
successfullyCompletedTasks = tasks.ToArray();
}
catch when (whenAll.IsCanceled)
{
successfullyCompletedTasks = tasks.Where(t => !t.IsCanceled).ToArray();
}
// Make sure that our assumptions do not contradict the reality
Debug.Assert(successfullyCompletedTasks.All(t => t.IsCompletedSuccessfully));

Task null using Task.Run and Parallel.For

I have two services that ultimately both update the same object, so we have a test to ensure that the writes to that object complete (Under the hood we have retry policies on each).
9 times out of 10, one or more of the theories will fail, with the task.ShouldNotBeNull(); always being the assertion to fail. What am i getting wrong with the async code in this sample? Why would the task be null?
[Theory]
[InlineData(1)]
[InlineData(5)]
[InlineData(10)]
[InlineData(20)]
public async Task ConcurrencyIssueTest(int iterations)
{
var orderResult = await _driver.PlaceOrder();
var tasksA = new List<Task<ApiResponse<string>>>();
var tasksB = new List<Task<ApiResponse<string>>>();
await Task.Run(() => Parallel.For(1, iterations,
x =>
{
tasksA.Add(_Api.TaskA(orderResult.OrderId));
tasksB.Add(_Api.TaskB(orderResult.OrderId));
}));
//Check all tasks return successful
foreach (var task in tasksA)
{
task.ShouldNotBeNull();
var result = task.GetAwaiter().GetResult();
result.ShouldNotBeNull();
result.StatusCode.ShouldBe(HttpStatusCode.OK);
}
foreach (var task in tasksB)
{
task.ShouldNotBeNull();
var result = task.GetAwaiter().GetResult();
result.ShouldNotBeNull();
result.StatusCode.ShouldBe(HttpStatusCode.OK);
}
}
}
There's no need for Tasks and Parrallel looping here. I'm presuming that your _api calls are IO bound? You want something more like this:
var tasksA = new List<Task<ApiResponse<string>>>();
var tasksB = new List<Task<ApiResponse<string>>>();
//fire off all the async tasks
foreach(var it in iterations){
tasksA.Add(_Api.TaskA(orderResult.OrderId));
tasksB.Add(_Api.TaskB(orderResult.OrderId));
}
//await the results
await Task.WhenAll(tasksA).ConfigureAwait(false);
foreach (var task in tasksA)
{
//no need to get GetAwaiter(), you've awaited above.
task.Result;
}
//to get the most out of the async only await them just before you need them
await Task.WhenAll(tasksB).ConfigureAwait(false);
foreach (var task2 in tasksB)
{
task2.Result;
}
this will fire all your api calls async then block while the results return. You Parallel for and tasks are just using additional thread pool threads to zero benefit.
If _api is CPU bound you could get benefit from Task.Run but I'm guessing these are web api or something. So the Task.Run is doing nothing but using an additional thread.
As others have suggested, remove the Parallel, and await on all tasks to finish before asserting them.
I would also recommend to remove .Result from each task, and await them instead.
public async Task ConcurrencyIssueTest(int iterations)
{
var orderResult = await _driver.PlaceOrder();
var taskA = _Api.TaskA(orderResult.OrderId);
var taskB = _Api.TaskB(orderResult.OrderId);
await Task.WhenAll(taskA, taskB);
var taskAResult = await taskA;
taskAResult.ShouldNotBeNull();
taskAResult.StatusCode.ShouldBe(HttpStatusCode.OK);
var taskBResult = await taskB;
taskBResult.ShouldNotBeNull();
taskBResult.StatusCode.ShouldBe(HttpStatusCode.OK);
}

Waiting for Tasks to finish in a list with ContinueWith

Update
Added the missing code for adding in taskList
I have a list of task, that I await on..
var files = Directory.GetFiles(myFilesDirectory);
var listOfTasks = new List<Tasks>();
files.ToList().ForEach(file => {
var localFile = file // to avoid any closure issue
listOfTasks.Add(ProcessMyFileTask(localFile));
});
await Task.WhenAll(listOfTasks.ToArray());
Console.WriteLine("All done!");
Here's the ProcessMyFileTask
private async Task<List<string>> ProcessMyFileTask(string filePath)
{
using (var streamReader = File.OpenText(filePath))
{
string line;
if ((line = await streamReader.ReadLineAsync()) != null)
{
return DumpHexInLog(line);
}
return null;
}
}
The message shows up when all files are processed. But if I add a continuation task, like this..
var files = Directory.GetFiles(myFilesDirectory);
var listOfTasks = new List<Tasks>();
files.ToList().ForEach(file => {
var localFile = file // to avoid any closure issue
listOfTasks.Add(ProcessMyFileTask(localFile).ContinueWith(list =>
ValidateHexDumpsTask(list.Result, localFile)));
});
await Task.WhenAll(listOfTasks.ToArray());
Console.WriteLine("All done!");
Then what Tasks will be awaited on? I mean would "All Done!" come after all the ProcessMyFileTask is done? Or will it come after all the ValidateHexDumpsTask are done too?
When I tested it, it came after the ValidateHexDumpsTask but I am not sure if that will certainly be always the case, as this might have been because of some threading condition or such.
It will complete only when both the ProcessMyFiles methods and ValidateHexDumps are done.
However, ContinueWith is not recommended. It's a low-level, dangerous API. You should use await instead:
var files = Directory.GetFiles(myFilesDirectory);
var listOfTasks = files.Select(ProcessAndValidateAsync);
await Task.WhenAll(listOfTasks);
Console.WriteLine("All done!");
async Task ProcessAndValidateAsync(string file)
{
var list = await ProcessMyFileTask(localFile);
ValidateHexDumps(list, localFile);
}
WhenAll will be completed when ValidateHexDumps has finished running on each of the items.
ContinueWith returns a Task that represents the completion of the continuation, not the completion of the task that it is a continuation of.

Async/Await - Await not holding as expected

When performing a long running operation I noticed that i could kickstart a long running sub-operation right off the start line and do other stuff while it fetches results from caches/databases.
The given operation is:
public async Task<Fichaclis> Finalize()
{
using (TransactionScope transaction = new TransactionScope(TransactionScopeAsyncFlowOption.Enabled))
{
transactionTimer.Start();
var agendasTransitionTask = ExecuteAgendas();
... DO ALOT OF SYNC OPERATIONS ...
await agendasTransitionTask;
transaction.Complete();
}
}
private Task ExecuteAgendas()
{
return ags.GetAgendas().ContinueWith((prev) =>
{
var currentAgendas = prev.Result;
foreach (var item in currentAgendas)
{
... DO QUICK SYNC STUFF...
}
return ags.BulkEditAgenda(currentAgendas);
});
}
GetAgendas is a method used all over with the following signature:
public async Task<List<Agendas>> GetAgendas()
because it's widely used, i believe the problem is not there. As for BulkEditAgenda:
public async Task BulkEditAgenda(IEnumerable<Agendas> agendas)
{
if (agendas == null || agendas.Count() == 0)
{
return;
}
var t1 = AddOrUpdateCache(agendas);
var t2 = Task.Factory.StartNew(() =>
{
try
{
foreach (var item in agendas)
{
EditNoReconnection(item);
}
Save();
}
catch (Exception ex)
{
//log
throw;
}
});
await Task.WhenAll(t1, t2);
}
EditNoReconnect and Save are both sync methods.
private Task AddOrUpdateCache(IEnumerable<Agendas> agendas)
{
var tasks = new List<Task>();
foreach (var item in agendas)
{
tasks.Add(TryGetCache(item)
.ContinueWith((taskResult) =>
{
...DO QUICK SYNC STUFF...
})
);
}
return Task.WhenAll(tasks);
}
TryGetCache is also a widely used method, so I think it's safe... it's signature is private Task<AgendasCacheLookupResult> TryGetCache(
So, resuming the issue at hand: For a small set of items do in the sync session of the Finalize method the command transaction.Complete() is execute before Save() (inside BulkEditAgendas). For a regular or large amount of items, it works as expected.
This means that i'm not chaining the Tasks correctly, or my understanding of how Async/Await + Tasks/ContinueWith works is fundamentally incorrect. Where am I wrong?
The problem is most likely here:
private Task ExecuteAgendas()
{
return ags.GetAgendas().ContinueWith((prev) =>
{
var currentAgendas = prev.Result;
foreach (var item in currentAgendas)
{
... DO QUICK SYNC STUFF...
}
return ags.BulkEditAgenda(currentAgendas);
});
}
First, what you return from this is the continuation task (result of ContinueWith). But body of ContinueWith ends when you do
return ags.BulkEditAgenda(currentAgendas);
So body of continuation ends potentially before BulkEditAgenda task is completed (you don't wait in any way for completion of BulkEditAgenda). So this line
await agendasTransitionTask;
Returns while BulkEditAgenda is still in progress. To clarify even more, note that what is returned from ExecuteAgendas is Task<Task> and result of await agendasTransitionTask is Task which represents your running BulkEditAgenda.
To fix, just use async\await like you do everywhere else:
private async Task ExecuteAgendas() {
var currentAgengas = await ags.GetAgendas();
foreach (var item in currentAgendas) {
// do stuff
}
await ags.BulkEditAgenda(currentAgendas);
}

Asynchronous Task.WhenAll with timeout

Is there a way in the new async dotnet 4.5 library to set a timeout on the Task.WhenAll method? I want to fetch several sources, and stop after say 5 seconds, and skip the sources that weren't finished.
You could combine the resulting Task with a Task.Delay() using Task.WhenAny():
await Task.WhenAny(Task.WhenAll(tasks), Task.Delay(timeout));
If you want to harvest completed tasks in case of a timeout:
var completedResults =
tasks
.Where(t => t.Status == TaskStatus.RanToCompletion)
.Select(t => t.Result)
.ToList();
I think a clearer, more robust option that also does exception handling right would be to use Task.WhenAny on each task together with a timeout task, go through all the completed tasks and filter out the timeout ones, and use await Task.WhenAll() instead of Task.Result to gather all the results.
Here's a complete working solution:
static async Task<TResult[]> WhenAll<TResult>(IEnumerable<Task<TResult>> tasks, TimeSpan timeout)
{
var timeoutTask = Task.Delay(timeout).ContinueWith(_ => default(TResult));
var completedTasks =
(await Task.WhenAll(tasks.Select(task => Task.WhenAny(task, timeoutTask)))).
Where(task => task != timeoutTask);
return await Task.WhenAll(completedTasks);
}
Check out the "Early Bailout" and "Task.Delay" sections from Microsoft's Consuming the Task-based Asynchronous Pattern.
Early bailout. An operation represented by t1 can be grouped in a
WhenAny with another task t2, and we can wait on the WhenAny task. t2
could represent a timeout, or cancellation, or some other signal that
will cause the WhenAny task to complete prior to t1 completing.
What you describe seems like a very common demand however I could not find anywhere an example of this. And I searched a lot... I finally created the following:
TimeSpan timeout = TimeSpan.FromSeconds(5.0);
Task<Task>[] tasksOfTasks =
{
Task.WhenAny(SomeTaskAsync("a"), Task.Delay(timeout)),
Task.WhenAny(SomeTaskAsync("b"), Task.Delay(timeout)),
Task.WhenAny(SomeTaskAsync("c"), Task.Delay(timeout))
};
Task[] completedTasks = await Task.WhenAll(tasksOfTasks);
List<MyResult> = completedTasks.OfType<Task<MyResult>>().Select(task => task.Result).ToList();
I assume here a method SomeTaskAsync that returns Task<MyResult>.
From the members of completedTasks, only tasks of type MyResult are our own tasks that managed to beat the clock. Task.Delay returns a different type.
This requires some compromise on typing, but still works beautifully and quite simple.
(The array can of course be built dynamically using a query + ToArray).
Note that this implementation does not require SomeTaskAsync to receive a cancellation token.
In addition to timeout, I also check the cancellation which is useful if you are building a web app.
public static async Task WhenAll(
IEnumerable<Task> tasks,
int millisecondsTimeOut,
CancellationToken cancellationToken)
{
using(Task timeoutTask = Task.Delay(millisecondsTimeOut))
using(Task cancellationMonitorTask = Task.Delay(-1, cancellationToken))
{
Task completedTask = await Task.WhenAny(
Task.WhenAll(tasks),
timeoutTask,
cancellationMonitorTask
);
if (completedTask == timeoutTask)
{
throw new TimeoutException();
}
if (completedTask == cancellationMonitorTask)
{
throw new OperationCanceledException();
}
await completedTask;
}
}
Check out a custom task combinator proposed in http://tutorials.csharp-online.net/Task_Combinators
async static Task<TResult> WithTimeout<TResult>
(this Task<TResult> task, TimeSpan timeout)
{
Task winner = await (Task.WhenAny
(task, Task.Delay (timeout)));
if (winner != task) throw new TimeoutException();
return await task; // Unwrap result/re-throw
}
I have not tried it yet.
void result version of #i3arnon 's answer, along with comments and changing first argument to use extension this.
I've also got a forwarding method specifying timeout as an int using TimeSpan.FromMilliseconds(millisecondsTimeout) to match other Task methods.
public static async Task WhenAll(this IEnumerable<Task> tasks, TimeSpan timeout)
{
// Create a timeout task.
var timeoutTask = Task.Delay(timeout);
// Get the completed tasks made up of...
var completedTasks =
(
// ...all tasks specified
await Task.WhenAll(tasks
// Now finish when its task has finished or the timeout task finishes
.Select(task => Task.WhenAny(task, timeoutTask)))
)
// ...but not the timeout task
.Where(task => task != timeoutTask);
// And wait for the internal WhenAll to complete.
await Task.WhenAll(completedTasks);
}
Seems like the Task.WaitAll overload with the timeout parameter is all you need - if it returns true, then you know they all completed - otherwise, you can filter on IsCompleted.
if (Task.WaitAll(tasks, myTimeout) == false)
{
tasks = tasks.Where(t => t.IsCompleted);
}
...
I came to the following piece of code that does what I needed:
using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using System.Net.Http;
using System.Json;
using System.Threading;
namespace MyAsync
{
class Program
{
static void Main(string[] args)
{
var cts = new CancellationTokenSource();
Console.WriteLine("Start Main");
List<Task<List<MyObject>>> listoftasks = new List<Task<List<MyObject>>>();
listoftasks.Add(GetGoogle(cts));
listoftasks.Add(GetTwitter(cts));
listoftasks.Add(GetSleep(cts));
listoftasks.Add(GetxSleep(cts));
List<MyObject>[] arrayofanswers = Task.WhenAll(listoftasks).Result;
List<MyObject> answer = new List<MyObject>();
foreach (List<MyObject> answers in arrayofanswers)
{
answer.AddRange(answers);
}
foreach (MyObject o in answer)
{
Console.WriteLine("{0} - {1}", o.name, o.origin);
}
Console.WriteLine("Press <Enter>");
Console.ReadLine();
}
static async Task<List<MyObject>> GetGoogle(CancellationTokenSource cts)
{
try
{
Console.WriteLine("Start GetGoogle");
List<MyObject> l = new List<MyObject>();
var client = new HttpClient();
Task<HttpResponseMessage> awaitable = client.GetAsync("http://ajax.googleapis.com/ajax/services/search/web?v=1.0&q=broersa", cts.Token);
HttpResponseMessage res = await awaitable;
Console.WriteLine("After GetGoogle GetAsync");
dynamic data = JsonValue.Parse(res.Content.ReadAsStringAsync().Result);
Console.WriteLine("After GetGoogle ReadAsStringAsync");
foreach (var r in data.responseData.results)
{
l.Add(new MyObject() { name = r.titleNoFormatting, origin = "google" });
}
return l;
}
catch (TaskCanceledException)
{
return new List<MyObject>();
}
}
static async Task<List<MyObject>> GetTwitter(CancellationTokenSource cts)
{
try
{
Console.WriteLine("Start GetTwitter");
List<MyObject> l = new List<MyObject>();
var client = new HttpClient();
Task<HttpResponseMessage> awaitable = client.GetAsync("http://search.twitter.com/search.json?q=broersa&rpp=5&include_entities=true&result_type=mixed",cts.Token);
HttpResponseMessage res = await awaitable;
Console.WriteLine("After GetTwitter GetAsync");
dynamic data = JsonValue.Parse(res.Content.ReadAsStringAsync().Result);
Console.WriteLine("After GetTwitter ReadAsStringAsync");
foreach (var r in data.results)
{
l.Add(new MyObject() { name = r.text, origin = "twitter" });
}
return l;
}
catch (TaskCanceledException)
{
return new List<MyObject>();
}
}
static async Task<List<MyObject>> GetSleep(CancellationTokenSource cts)
{
try
{
Console.WriteLine("Start GetSleep");
List<MyObject> l = new List<MyObject>();
await Task.Delay(5000,cts.Token);
l.Add(new MyObject() { name = "Slept well", origin = "sleep" });
return l;
}
catch (TaskCanceledException)
{
return new List<MyObject>();
}
}
static async Task<List<MyObject>> GetxSleep(CancellationTokenSource cts)
{
Console.WriteLine("Start GetxSleep");
List<MyObject> l = new List<MyObject>();
await Task.Delay(2000);
cts.Cancel();
l.Add(new MyObject() { name = "Slept short", origin = "xsleep" });
return l;
}
}
}
My explanation is in my blogpost:
http://blog.bekijkhet.com/2012/03/c-async-examples-whenall-whenany.html
In addition to svick's answer, the following works for me when I have to wait for a couple of tasks to complete but have to process something else while I'm waiting:
Task[] TasksToWaitFor = //Your tasks
TimeSpan Timeout = TimeSpan.FromSeconds( 30 );
while( true )
{
await Task.WhenAny( Task.WhenAll( TasksToWaitFor ), Task.Delay( Timeout ) );
if( TasksToWaitFor.All( a => a.IsCompleted ) )
break;
//Do something else here
}
You can use the following code:
var timeoutTime = 10;
var tasksResult = await Task.WhenAll(
listOfTasks.Select(x => Task.WhenAny(
x, Task.Delay(TimeSpan.FromMinutes(timeoutTime)))
)
);
var succeededtasksResponses = tasksResult
.OfType<Task<MyResult>>()
.Select(task => task.Result);
if (succeededtasksResponses.Count() != listOfTasks.Count())
{
// Not all tasks were completed
// Throw error or do whatever you want
}
//You can use the succeededtasksResponses that contains the list of successful responses
How it works:
You need to put in the timeoutTime variable the limit of time for all tasks to be completed. So basically all tasks will wait in maximum the time that you set in timeoutTime. When all the tasks return the result, the timeout will not occur and the tasksResult will be set.
After that we are only getting the completed tasks. The tasks that were not completed will have no results.
I tried to improve on the excellent i3arnon's solution, in order to fix some minor issues, but I ended up with a completely different implementation. The two issues that I tried to solve are:
In case more than one of the tasks fail, propagate the errors of all failed tasks, and not just the error of the first failed task in the list.
Prevent memory leaks in case all tasks complete much faster than the timeout.
Leaking an active Task.Delay might result in a non-negligible amount of leaked memory, in case the WhenAll is called in a loop, and the timeout is large.
On top of that I added a cancellationToken argument, XML documentation that explains what this method is doing, and argument validation. Here it is:
/// <summary>
/// Returns a task that will complete when all of the tasks have completed,
/// or when the timeout has elapsed, or when the token is canceled, whatever
/// comes first. In case the tasks complete first, the task contains the
/// results/exceptions of all the tasks. In case the timeout elapsed first,
/// the task contains the results/exceptions of the completed tasks only.
/// In case the token is canceled first, the task is canceled. To determine
/// whether a timeout has occured, compare the number of the results with
/// the number of the tasks.
/// </summary>
public static Task<TResult[]> WhenAll<TResult>(
Task<TResult>[] tasks,
TimeSpan timeout, CancellationToken cancellationToken = default)
{
if (tasks == null) throw new ArgumentNullException(nameof(tasks));
tasks = tasks.ToArray(); // Defensive copy
if (tasks.Any(t => t == null)) throw new ArgumentException(
$"The {nameof(tasks)} argument included a null value.", nameof(tasks));
if (timeout < TimeSpan.Zero && timeout != Timeout.InfiniteTimeSpan)
throw new ArgumentOutOfRangeException(nameof(timeout));
if (cancellationToken.IsCancellationRequested)
return Task.FromCanceled<TResult[]>(cancellationToken);
var cts = CancellationTokenSource.CreateLinkedTokenSource(cancellationToken);
cts.CancelAfter(timeout);
var continuationOptions = TaskContinuationOptions.DenyChildAttach |
TaskContinuationOptions.ExecuteSynchronously;
var continuations = tasks.Select(task => task.ContinueWith(_ => { },
cts.Token, continuationOptions, TaskScheduler.Default));
return Task.WhenAll(continuations).ContinueWith(allContinuations =>
{
cts.Dispose();
if (allContinuations.IsCompletedSuccessfully)
return Task.WhenAll(tasks); // No timeout or cancellation occurred
Debug.Assert(allContinuations.IsCanceled);
if (cancellationToken.IsCancellationRequested)
return Task.FromCanceled<TResult[]>(cancellationToken);
// Now we know that timeout has occurred
return Task.WhenAll(tasks.Where(task => task.IsCompleted));
}, default, continuationOptions, TaskScheduler.Default).Unwrap();
}
This WhenAll implementation elides async and await, which is not advisable in general. In this case it is necessary, in order to propagate all the errors in a not nested AggregateException. The intention is to simulate the behavior of the built-in Task.WhenAll method as accurately as possible.
Usage example:
string[] results;
Task<string[]> whenAllTask = WhenAll(tasks, TimeSpan.FromSeconds(15));
try
{
results = await whenAllTask;
}
catch when (whenAllTask.IsFaulted) // It might also be canceled
{
// Log all errors
foreach (var innerEx in whenAllTask.Exception.InnerExceptions)
{
_logger.LogError(innerEx, innerEx.Message);
}
throw; // Propagate the error of the first failed task
}
if (results.Length < tasks.Length) throw new TimeoutException();
return results;
Note: the above API has a design flaw. In case at least one of the tasks has failed or has been canceled, there is no way to determine whether a timeout has occurred. The Exception.InnerExceptions property of the task returned by the WhenAll may contain the exceptions of all tasks, or part of the tasks, and there is no way to say which is which. Unfortunately I can't think of a solution to this problem.

Categories