I've tried the example from wikipedia: http://en.wikipedia.org/wiki/Longitudinal_redundancy_check
This is the code for lrc (C#):
/// <summary>
/// Longitudinal Redundancy Check (LRC) calculator for a byte array.
/// ex) DATA (hex 6 bytes): 02 30 30 31 23 03
/// LRC (hex 1 byte ): EC
/// </summary>
public static byte calculateLRC(byte[] bytes)
{
byte LRC = 0x00;
for (int i = 0; i < bytes.Length; i++)
{
LRC = (LRC + bytes[i]) & 0xFF;
}
return ((LRC ^ 0xFF) + 1) & 0xFF;
}
It said the result is "EC" but I get "71", what I'm doing wrong?
Thanks.
Here's a cleaned up version that doesn't do all those useless operations (instead of discarding the high bits every time, they're discarded all at once in the end), and it gives the result you observed. This is the version that uses addition, but that has a negation at the end - might as well subtract and skip the negation. That's a valid transformation even in the case of overflow.
public static byte calculateLRC(byte[] bytes)
{
int LRC = 0;
for (int i = 0; i < bytes.Length; i++)
{
LRC -= bytes[i];
}
return (byte)LRC;
}
Here's the alternative LRC (a simple xor of bytes)
public static byte calculateLRC(byte[] bytes)
{
byte LRC = 0;
for (int i = 0; i < bytes.Length; i++)
{
LRC ^= bytes[i];
}
return LRC;
}
And Wikipedia is simply wrong in this case, both in the code (doesn't compile) and in the expected result.
Guess this one looks cooler ;)
public static byte calculateLRC(byte[] bytes)
{
return bytes.Aggregate<byte, byte>(0, (x, y) => (byte) (x^ y));
}
If someone wants to get the LRC char from a string:
public static char CalculateLRC(string toEncode)
{
byte[] bytes = Encoding.ASCII.GetBytes(toEncode);
byte LRC = 0;
for (int i = 0; i < bytes.Length; i++)
{
LRC ^= bytes[i];
}
return Convert.ToChar(LRC);
}
The corrected Wikipedia version is as follows:
private byte calculateLRC(byte[] b)
{
byte lrc = 0x00;
for (int i = 0; i < b.Length; i++)
{
lrc = (byte)((lrc + b[i]) & 0xFF);
}
lrc = (byte)(((lrc ^ 0xff) + 2) & 0xFF);
return lrc;
}
I created this for Arduino to understand the algorithm (of course it's not written in the most efficient way)
String calculateModbusAsciiLRC(String input)
{
//Refer this document http://www.simplymodbus.ca/ASCII.htm
if((input.length()%2)!=0) { return "ERROR COMMAND SHOULD HAVE EVEN NUMBER OF CHARACTERS"; }
// Make sure to omit the semicolon in input string and input String has even number of characters
byte byteArray[input.length()+1];
input.getBytes(byteArray, sizeof(byteArray));
byte LRC = 0;
for (int i = 0; i <sizeof(byteArray)/2; i++)
{
// Gettting the sum of all registers
uint x=0;
if(47<byteArray[i*2] && byteArray[i*2] <58) {x=byteArray[i*2] -48;}
else { x=byteArray[i*2] -55; }
uint y=0;
if(47<byteArray[i*2+1] && byteArray[i*2+1] <58) {y=byteArray[i*2+1] -48;}
else { y=byteArray[i*2+1] -55; }
LRC += x*16 + y;
}
LRC = ~LRC + 1; // Getting twos Complement
String checkSum = String(LRC, HEX);
checkSum.toUpperCase(); // Converting to upper case eg: bc to BC - Optional somedevices are case insensitve
return checkSum;
}
I realize that this question pretty old, but I had trouble figuring out how to do this. It's working now, so I figured I should paste the code. In my case, the checksum needs to return as an ASCII string.
public function getLrc($string)
{
$LRC = 0;
// Get hex checksum.
foreach (str_split($string, 1) as $char) {
$LRC ^= ord($char);
}
$hex = dechex($LRC);
// convert hex to string
$str = '';
for($i=0;$i<strlen($hex);$i+=2) $str .= chr(hexdec(substr($hex,$i,2)));
return $str;
}
I am trying to integrate a Serial-port device into my application, which needs CRC-CCTT validation for the bytes that I send to it.
I'm kinda new into managing byte packets, and need help for this.
It uses this formula for making the CRC calculus:
[CRC-CCITT P(X)= X16 + C12 + C8 + 1]
So for example for the packet: 0xFC 0x05 0x11, the CRC is 0x5627.
Then I send this packet to the device: 0xFC 0x05 0x11 0x27 0x56
Also, packet lenghts will vary from 5 to 255 (including CRC checks bytes)
I don't know how to implement this, so any idea/suggestions will be welcome.
Hope I made myself clear,
Thanks in Advance.
EDIT:
here is the specification of what I need to do:
standard crc-ccitt is x16 + x12 + x5 + 1 I wrote the one # http://www.sanity-free.com/133/crc_16_ccitt_in_csharp.html If I have time I'll see if I can't modify it to run with the x16 + x12 + x8 + 1 poly.
EDIT:
here you go:
public class Crc16CcittKermit {
private static ushort[] table = {
0x0000, 0x1189, 0x2312, 0x329B, 0x4624, 0x57AD, 0x6536, 0x74BF,
0x8C48, 0x9DC1, 0xAF5A, 0xBED3, 0xCA6C, 0xDBE5, 0xE97E, 0xF8F7,
0x1081, 0x0108, 0x3393, 0x221A, 0x56A5, 0x472C, 0x75B7, 0x643E,
0x9CC9, 0x8D40, 0xBFDB, 0xAE52, 0xDAED, 0xCB64, 0xF9FF, 0xE876,
0x2102, 0x308B, 0x0210, 0x1399, 0x6726, 0x76AF, 0x4434, 0x55BD,
0xAD4A, 0xBCC3, 0x8E58, 0x9FD1, 0xEB6E, 0xFAE7, 0xC87C, 0xD9F5,
0x3183, 0x200A, 0x1291, 0x0318, 0x77A7, 0x662E, 0x54B5, 0x453C,
0xBDCB, 0xAC42, 0x9ED9, 0x8F50, 0xFBEF, 0xEA66, 0xD8FD, 0xC974,
0x4204, 0x538D, 0x6116, 0x709F, 0x0420, 0x15A9, 0x2732, 0x36BB,
0xCE4C, 0xDFC5, 0xED5E, 0xFCD7, 0x8868, 0x99E1, 0xAB7A, 0xBAF3,
0x5285, 0x430C, 0x7197, 0x601E, 0x14A1, 0x0528, 0x37B3, 0x263A,
0xDECD, 0xCF44, 0xFDDF, 0xEC56, 0x98E9, 0x8960, 0xBBFB, 0xAA72,
0x6306, 0x728F, 0x4014, 0x519D, 0x2522, 0x34AB, 0x0630, 0x17B9,
0xEF4E, 0xFEC7, 0xCC5C, 0xDDD5, 0xA96A, 0xB8E3, 0x8A78, 0x9BF1,
0x7387, 0x620E, 0x5095, 0x411C, 0x35A3, 0x242A, 0x16B1, 0x0738,
0xFFCF, 0xEE46, 0xDCDD, 0xCD54, 0xB9EB, 0xA862, 0x9AF9, 0x8B70,
0x8408, 0x9581, 0xA71A, 0xB693, 0xC22C, 0xD3A5, 0xE13E, 0xF0B7,
0x0840, 0x19C9, 0x2B52, 0x3ADB, 0x4E64, 0x5FED, 0x6D76, 0x7CFF,
0x9489, 0x8500, 0xB79B, 0xA612, 0xD2AD, 0xC324, 0xF1BF, 0xE036,
0x18C1, 0x0948, 0x3BD3, 0x2A5A, 0x5EE5, 0x4F6C, 0x7DF7, 0x6C7E,
0xA50A, 0xB483, 0x8618, 0x9791, 0xE32E, 0xF2A7, 0xC03C, 0xD1B5,
0x2942, 0x38CB, 0x0A50, 0x1BD9, 0x6F66, 0x7EEF, 0x4C74, 0x5DFD,
0xB58B, 0xA402, 0x9699, 0x8710, 0xF3AF, 0xE226, 0xD0BD, 0xC134,
0x39C3, 0x284A, 0x1AD1, 0x0B58, 0x7FE7, 0x6E6E, 0x5CF5, 0x4D7C,
0xC60C, 0xD785, 0xE51E, 0xF497, 0x8028, 0x91A1, 0xA33A, 0xB2B3,
0x4A44, 0x5BCD, 0x6956, 0x78DF, 0x0C60, 0x1DE9, 0x2F72, 0x3EFB,
0xD68D, 0xC704, 0xF59F, 0xE416, 0x90A9, 0x8120, 0xB3BB, 0xA232,
0x5AC5, 0x4B4C, 0x79D7, 0x685E, 0x1CE1, 0x0D68, 0x3FF3, 0x2E7A,
0xE70E, 0xF687, 0xC41C, 0xD595, 0xA12A, 0xB0A3, 0x8238, 0x93B1,
0x6B46, 0x7ACF, 0x4854, 0x59DD, 0x2D62, 0x3CEB, 0x0E70, 0x1FF9,
0xF78F, 0xE606, 0xD49D, 0xC514, 0xB1AB, 0xA022, 0x92B9, 0x8330,
0x7BC7, 0x6A4E, 0x58D5, 0x495C, 0x3DE3, 0x2C6A, 0x1EF1, 0x0F78
};
public static ushort ComputeChecksum( params byte[] buffer ) {
if ( buffer == null ) throw new ArgumentNullException( );
ushort crc = 0;
for ( int i = 0; i < buffer.Length; ++i ) {
crc = (ushort)( ( crc >> 8 ) ^ table[( crc ^ buffer[i] ) & 0xff] );
}
return crc;
}
public static byte[] ComputeChecksumBytes( params byte[] buffer ) {
return BitConverter.GetBytes( ComputeChecksum( buffer ) );
}
}
sample:
ushort crc = Crc16CcittKermit.ComputeChecksum( 0xFC, 0x05, 0x11 );
byte[] crcBuffer = Crc16CcittKermit.ComputeChecksumBytes( 0xFC, 0x05, 0x11 )
// crc = 0x5627
// crcBuffer = { 0x27, 0x56 }
Have you tried Googling for an example? There are many of them.
Example 1: http://tomkaminski.com/crc32-hashalgorithm-c-net
Example 2: http://www.sanity-free.com/12/crc32_implementation_in_csharp.html
You also have native MD5 support in .Net through System.Security.Cryptography.MD5CryptoServiceProvider.
EDIT:
If you are looking for an 8-bit algorithm: http://www.codeproject.com/KB/cs/csRedundancyChckAlgorithm.aspx
And 16-bit: http://www.sanity-free.com/133/crc_16_ccitt_in_csharp.html
LOL, I've encountered exactly the same STATUS REQUEST sequense, i'm currently developing software to use with CashCode Bill Validator:). Here's the code worked for me, it's CRC16-CCITT with reversed polynomial equals 0x8408 (BDPConstants.Polynomial in the code). That's the code worked for me:
// TableCRC16Size is 256 of course, don't forget to set in somewhere
protected ushort[] TableCRC16 = new ushort[BDPConstants.TableCRC16Size];
protected void InitCRC16Table()
{
for (ushort i = 0; i < BDPConstants.TableCRC16Size; ++i)
{
ushort CRC = 0;
ushort c = i;
for (int j = 0; j < 8; ++j)
{
if (((CRC ^ c) & 0x0001) > 0)
CRC = (ushort)((CRC >> 1) ^ BDPConstants.Polynominal);
else
CRC = (ushort)(CRC >> 1);
c = (ushort)(c >> 1);
}
TableCRC16[i] = CRC;
}
}
protected ushort CalcCRC16(byte[] aData)
{
ushort CRC = 0;
for (int i = 0; i < aData.Length; ++i)
CRC = (ushort)(TableCRC16[(CRC ^ aData[i]) & 0xFF] ^ (CRC >> 8));
return CRC;
}
Initialize the table somewhere (e.g. Form constructor):
InitCRC16Table();
then use it in your code just like that,
You can use List of bytes instead of array, more convinient to pack byte data in the 'packet' for sending
uint CRC = CalcCRC16(byte[] aByte)
// You need to split your CRC in two bytes of course
byte CRCHW = (byte)((CRC) / 256); // that's your 0x56
byte CRCLW = (byte)(CRC); // that's your 0x27
it works and dose not need table:
/// <summary>
/// Gens the CRC16.
/// CRC-1021 = X(16)+x(12)+x(5)+1
/// </summary>
/// <param name="c">The c.</param>
/// <param name="nByte">The n byte.</param>
/// <returns>System.Byte[][].</returns>
public ushort GenCrc16(byte[] c, int nByte)
{
ushort Polynominal = 0x1021;
ushort InitValue = 0x0;
ushort i, j, index = 0;
ushort CRC = InitValue;
ushort Remainder, tmp, short_c;
for (i = 0; i < nByte; i++)
{
short_c = (ushort)(0x00ff & (ushort) c[index]);
tmp = (ushort)((CRC >> 8) ^ short_c);
Remainder = (ushort)(tmp << 8);
for (j = 0; j < 8; j++)
{
if ((Remainder & 0x8000) != 0)
{
Remainder = (ushort)((Remainder << 1) ^ Polynominal);
}
else
{
Remainder = (ushort)(Remainder << 1);
}
}
CRC = (ushort)((CRC << 8) ^ Remainder);
index++;
}
return CRC;
}
You are actually using CRC-XMODEM LSB-reverse (with 0x8408 coefficient). C# code for this calculus is:
public void crc_bytes(int[] int_input)
{
int_array = int_input;
int int_crc = 0x0; // or 0xFFFF;
int int_lsb;
for (int int_i = 0; int_i < int_array.Length; int_i++)
{
int_crc = int_crc ^ int_array[int_i];
for (int int_j = 0; int_j < 8; int_j ++ )
{
int_lsb = int_crc & 0x0001; // Mask of LSB
int_crc = int_crc >> 1;
int_crc = int_crc & 0x7FFF;
if (int_lsb == 1)
int_crc = int_crc ^ 0x8408;
}
}
int_crc_byte_a = int_crc & 0x00FF;
int_crc_byte_b = (int_crc >> 8) & 0x00FF;
}
Read more (or download project):
http://www.cirvirlab.com/index.php/c-sharp-code-examples/141-c-sharp-crc-computation.html
I have two byte arrays with the same length. I need to perform XOR operation between each byte and after this calculate sum of bits.
For example:
11110000^01010101 = 10100101 -> so 1+1+1+1 = 4
I need do the same operation for each element in byte array.
Use a lookup table. There are only 256 possible values after XORing, so it's not exactly going to take a long time. Unlike izb's solution though, I wouldn't suggest manually putting all the values in though - compute the lookup table once at startup using one of the looping answers.
For example:
public static class ByteArrayHelpers
{
private static readonly int[] LookupTable =
Enumerable.Range(0, 256).Select(CountBits).ToArray();
private static int CountBits(int value)
{
int count = 0;
for (int i=0; i < 8; i++)
{
count += (value >> i) & 1;
}
return count;
}
public static int CountBitsAfterXor(byte[] array)
{
int xor = 0;
foreach (byte b in array)
{
xor ^= b;
}
return LookupTable[xor];
}
}
(You could make it an extension method if you really wanted...)
Note the use of byte[] in the CountBitsAfterXor method - you could make it an IEnumerable<byte> for more generality, but iterating over an array (which is known to be an array at compile-time) will be faster. Probably only microscopically faster, but hey, you asked for the fastest way :)
I would almost certainly actually express it as
public static int CountBitsAfterXor(IEnumerable<byte> data)
in real life, but see which works better for you.
Also note the type of the xor variable as an int. In fact, there's no XOR operator defined for byte values, and if you made xor a byte it would still compile due to the nature of compound assignment operators, but it would be performing a cast on each iteration - at least in the IL. It's quite possible that the JIT would take care of this, but there's no need to even ask it to :)
Fastest way would probably be a 256-element lookup table...
int[] lut
{
/*0x00*/ 0,
/*0x01*/ 1,
/*0x02*/ 1,
/*0x03*/ 2
...
/*0xFE*/ 7,
/*0xFF*/ 8
}
e.g.
11110000^01010101 = 10100101 -> lut[165] == 4
This is more commonly referred to as bit counting. There are literally dozens of different algorithms for doing this. Here is one site which lists a few of the more well known methods. There are even CPU specific instructions for doing this.
Theorectically, Microsoft could add a BitArray.CountSetBits function that gets JITed with the best algorithm for that CPU architecture. I, for one, would welcome such an addition.
As I understood it you want to sum the bits of each XOR between the left and right bytes.
for (int b = 0; b < left.Length; b++) {
int num = left[b] ^ right[b];
int sum = 0;
for (int i = 0; i < 8; i++) {
sum += (num >> i) & 1;
}
// do something with sum maybe?
}
I'm not sure if you mean sum the bytes or the bits.
To sum the bits within a byte, this should work:
int nSum = 0;
for (int i=0; i<=7; i++)
{
nSum += (byte_val>>i) & 1;
}
You would then need the xoring, and array looping around this, of course.
The following should do
int BitXorAndSum(byte[] left, byte[] right) {
int sum = 0;
for ( var i = 0; i < left.Length; i++) {
sum += SumBits((byte)(left[i] ^ right[i]));
}
return sum;
}
int SumBits(byte b) {
var sum = 0;
for (var i = 0; i < 8; i++) {
sum += (0x1) & (b >> i);
}
return sum;
}
It can be rewritten as ulong and use unsafe pointer, but byte is easier to understand:
static int BitCount(byte num)
{
// 0x5 = 0101 (bit) 0x55 = 01010101
// 0x3 = 0011 (bit) 0x33 = 00110011
// 0xF = 1111 (bit) 0x0F = 00001111
uint count = num;
count = ((count >> 1) & 0x55) + (count & 0x55);
count = ((count >> 2) & 0x33) + (count & 0x33);
count = ((count >> 4) & 0xF0) + (count & 0x0F);
return (int)count;
}
A general function to count bits could look like:
int Count1(byte[] a)
{
int count = 0;
for (int i = 0; i < a.Length; i++)
{
byte b = a[i];
while (b != 0)
{
count++;
b = (byte)((int)b & (int)(b - 1));
}
}
return count;
}
The less 1-bits, the faster this works. It simply loops over each byte, and toggles the lowest 1 bit of that byte until the byte becomes 0. The castings are necessary so that the compiler stops complaining about the type widening and narrowing.
Your problem could then be solved by using this:
int Count1Xor(byte[] a1, byte[] a2)
{
int count = 0;
for (int i = 0; i < Math.Min(a1.Length, a2.Length); i++)
{
byte b = (byte)((int)a1[i] ^ (int)a2[i]);
while (b != 0)
{
count++;
b = (byte)((int)b & (int)(b - 1));
}
}
return count;
}
A lookup table should be the fastest, but if you want to do it without a lookup table, this will work for bytes in just 10 operations.
public static int BitCount(byte value) {
int v = value - ((value >> 1) & 0x55);
v = (v & 0x33) + ((v >> 2) & 0x33);
return ((v + (v >> 4) & 0x0F));
}
This is a byte version of the general bit counting function described at Sean Eron Anderson's bit fiddling site.