This question already has an answer here:
Async Await Running Synchronously
(1 answer)
Closed 2 years ago.
I do not understand when I read the Microsoft documents about async and await working, as it says
Async methods are intended to be non-blocking operations. An await
expression in an async method doesn’t block the current thread while
the awaited task is running. Instead, the expression signs up the rest
of the method as a continuation and returns control to the caller of
the async method.
so consider my code:
public Form1()
{
InitializeComponent();
AsyncTest();
Test(1);
}
private async void AsyncTest()
{
HttpClient client = new HttpClient();
var ss = TT(2);
var s = await ss;
for (int i = 0; i < 10; i++)
{
//loop
}
}
private async Task<int> TT(int i)
{
while (true)
{
if (i > 1000000000)
break;
i++;
}
return i;
}
}
when ever I call AsyncTest(), it just waits behind TT method as it specified with await key, but what does it mean it return control to the main caller??
it is not been returned to the form1, if TT is an infinite loop it just remains forever.
thanks
It seems to me you are a newbee to async-await. You violate several rules about how to use async-await.
To make a function async do the following:
Declare the function async
Return Task<TResult> instead of TResult; return Task instead of void
ONLY EXCEPTION: event handlers return void instead of Task
there should be one await inside your async function. Your compiler will warn you if you omit this.
Make sure that all async functions that you call are awaited for before you return
Guideline: let async be a suffix to your async functions. This allows you to create a sync and an async function that do the same: void MyTest() and Task MyTestAsync()
Following these rules, you can't call an async function from within a constructor. As you are using Winforms your code could be like this:
public Form1()
{
InitializeComponent();
}
public async void OnButton1_Clicked(object sender, ...)
{ // because this is an event handler the return value is void
// Start the first test and await until ready
await TestAsync();
// Start the second test and await until ready:
int i = await TestAsync(1);
}
If you call an async function you know that somewhere inside this function is an await. If you have meaningful things to do while the inner function is awaiting, do not await yet. Do your useful things after the call and await the returned Task as soon as you need the result:
public async void OnButton2_Clicked(object sender, ...)
{
// Start a test, but don't await yet
var task1 = TestAsync(1);
// if here, function TestAsync is awaiting somewhere
// it is not finished yet, so you can't use the result of it
// But you can do Something else:
DoSomethingElse();
// if here you really need the result of TestAsync, await for it
int i = await task1;
// if here you know that TestAsync is finished, i has the proper return value
}
You don't have to start and await the tasks one by one, you can start several tasks and await for them as soon as you need the results:
public async void OnButton3_Clicked(object sender, ...)
{
// start several tasks. Don't await yet:
var task1 = TestAsync(1);
var task2 = TestAsync(2);
var task3 = TestAsync(3);
DoSomethingElse();
// if here I need the results of all three tasks:
var myTasks = new Task[] {task1, task2, task3};
await Task.WhenAll(myTasks);
}
An article that really helped me understanding async-await is this interview with Eric Lippert, where he compares async-await with a cook making breakfast. If a cook has to wait for the water to boil, he doesn't wait idly, but looks around to see if he can do other things. Search somewhere in the middle for async-await.
Another article that helped me following the guidelines of async-await is Async and Await by the ever so helpful Stephen Cleary
Related
Let's consider the next procedures hierarhy
Main.cs:
// timer callback
{
Plot.UpdateData();
}
Plot.cs:
public async void UpdateData()
{
await CalculateData();
// ...
}
private async Task CalculateData()
{
await Calculations.Calculate();
// UI updating
// ...
}
Calculations.cs:
public static async Task<bool> Calculate()
{
async Task<bool> CalculateLR()
{
var task1 = Calculate1();
var task2 = Calculate2();
await Task.WhenAll(new[] { task1, task2 });
return true;
}
var leftTask = CalculateLR();
var rightTask = CalculateLR();
await Task.WhenAll(new[] { leftTask, rightTask });
await Calculate3();
return true;
}
Here I have some basic calculations (in Calculate1-Calculate3 procedures) of Calculations.cs file and some interaction with UI. The "entry point" Plot.UpdateData is placed in Device.StartTimer( block of the main form.
It works, but I think this structure creates excess threads. So my question is can this hierarhy be optimized without loss of asynchronous advantages?
Or, other words, which procedures should be awaited in case of nested calls. Where is first non-awaited call should lie? Thanks.
First thing to note: async/await is about tasks, not threads. Under certain circumstances, a task can be thread equivalent, and in most cases it is not (the same thread can serve a lot of tasks sequentially conveyor-style, depending on how they're scheduled for continuation and what is awaiting condition, for example).
And I could strongly recommend to address this for further reading as very comprehensive source:
https://blog.stephencleary.com/2013/11/there-is-no-thread.html
https://blog.stephencleary.com/2014/05/a-tour-of-task-part-1-constructors.html
i need to wait for my async void to finish. It has some await Task.Delay functions in it and I need them to finish before it continues. This void doesn't return anything so I don't see a reason to make it async Task<> and I also shuffle an array inside this void and I declare some variables. So how can I do this ? Is async Task<> the only way ? My void is not expecting any parameters/inputs.
Return Task (not Task<T>) instead of void. Note, the non-generic form of Task does not need to wrap a value. It's just for signalling completion or errors, not results. In the case of async methods, this is equivalent to a synchronous void return type. It means you can wait for your method to complete.
Every async function should return Task instead of void and Task<TResult> instead of TResult. The only exception of this is the event handler.
So if your async function isn't an event handler it should return Task. Once this is done you can await for it...
... ehm, provided that your function is also declared async and returns Task or Task<TResult>, which makes that your clients all must be async.
If you have a sync function and want to call an async function use the following:
var myTask = Task.Run( () => SomeAsyncFunction(...));
// while my task is running you can do other things
// after a while you need the result:
Task.Wait();
// only if SomeAsyncFunction returns Task<TResult>:
TResult result = Task.Result();
Be aware though that this will halt your function until the task is finished. So when possible consider making your function also async. The code would be like:
public async void Button1_Clicked(object Sender, ...)
{
var task = MySlowMultiplier(3, 4);
// while task running you can do other things
// the UI remains responsive
// after a while:
int result = await task;
ProcessResult(result);
}
private async Task<int> MySlowMultiplier(int x, int y)
{
// I'm really slow:
await Task.Delay(TimeSpan.FromSeconds(5));
return x * y;
}
You can use this code.
var result = Task.Run(async() => { return await METHODNAMEHERE(); }).Result;
I'm running a test that should be calling a method multiple times without waiting for its result. Here's my code:
private async Task HandleJob(string params) {
// do stuff that takes a minute
Thread.Sleep(10000);
return;
}
[TestMethod]
public async Task StartTest() {
HandleJob("one");
HandleJob("two");
}
When I set a break at HandleJob("two"), it only gets hit after one has been completed. How do I make them run asynchronously, so no waiting is done?
You haven't used await in the method at all. This means that the method will execute the lines synchronously. To actually yield back to the caller and let the remaining code run asynchronously, you need to use await, which will continue the method as a continuation on the targeted Task (as well as unboxing any exceptions and return values)
There are a couple of helper methods in Task to assist with this - my favorite is Task.Yield(), which will immediately return, thus an await Task.Yield() will spit out into a new thread and return all at once.
[TestMethod]
public async Task StartTest() {
await Task.Yield(); // await yields control, and Yield will ensure the rest of the method starts immediately
HandleJob("one");
HandleJob("two");
}
If you want the individual subtasks to execute all at once, conglomerate them using Task.WhenAll and Task.Run
[TestMethod]
public async Task StartTest() {
await Task.WhenAll(
Task.Run(() => HandleJob("one")),
Task.Run(() => HandleJob("two")));
}
Your asynchronous method HandleJob is not really async as Thread.Sleep blocks the current thread. Try using await Task.Delay instead. Note that params is a keyword and your original code won't compile. I've changed it to parameters.
private async Task HandleJob(string parameters) {
// do stuff that takes a minute
await Task.Delay(10000);
return;
}
In your start method you can return a single Task that gets completed when both methods are finished using Task.WhenAll as pointed out in one of the other answers. If you return the result rather than await it, then the caller of StartTest can determine whether he waits for the Task to complete or if he ignores it and it becomes a fire and forget situation. Because you are not using await StartTest will not need to be marked as async anymore.
[TestMethod]
public Task StartTest() {
return Task.WhenAll(HandleJob("one"), HandleJob("two"));
}
you need to await both the tasks:
private void HandleJob( params string[] value )
{
return;
}
[TestMethod]
public async Task StartTest()
{
var task1 = Task.Run( () => HandleJob( "one" ) );
var task2 = Task.Run( () => HandleJob( "two" ) );
await Task.WhenAll( task1 , task2 );
}
Lets say I have this code:
public async void Init(){
init1();
init2();
init3();
}
First question is are they running asynchronously or not? The methods themselves are public void not async.
Second question is how do I make sure they're running async and to know when they're finished? Like this..
public async void Init(){
init1();
init2();
init3();
await ... all finished
}
Third, when I call Init() elsewhere, can it not be wrapped by an async method? Like this code below, or does it have to be async?
public async void Init(){
init1();
init2();
init3();
}
public void doIt(){
Init();
}
I have an async intro that should help.
First question is are they running asynchronously or not?
No, and you didn't really need to ask this on Stack Overflow because the compiler itself will give you a warning that explicitly states your method will run synchronously.
Second question is how do I make sure they're running async and to know when they're finished?
First, your methods need to be properly asynchronous:
async Task init1Async();
async Task init2Async();
async Task init3Async();
Then you can make the caller invoke them concurrently and then asynchronously wait for them all to complete:
async Task InitAsync() {
var task1 = init1Async();
var task2 = init2Async();
var task3 = init3Async();
await Task.WhenAll(task1, task2, task3);
}
Third, when I call Init() elsewhere, can it not be wrapped by an async method?
Once your InitAsync method is properly defined as returning a Task, it can be naturally consumed using await:
async Task doItAsync() {
await InitAsync();
}
Note that this does require the caller to be async.
Also recommended reading: my Best Practices for Asynchronous Code MSDN article, particularly the sections on "avoid async void" and "async all the way".
Also One Thing you can do await on each on the methods to get the required result of each methods.
var task1 = await init1Async();
var task2 = await init2Async();
var task3 = await init3Async();
i go through a msdn sample code where a function is called when button is clicked and when routine is called then Await keyword is used and function has async keyword used.
private async void StartButton_Click(object sender, RoutedEventArgs e)
{
int contentLength = await AccessTheWebAsync();
resultsTextBox.Text +=
String.Format("\r\nLength of the downloaded string: {0}.\r\n", contentLength);
}
async Task<int> AccessTheWebAsync()
{
HttpClient client = new HttpClient();
Task<string> getStringTask = client.GetStringAsync("http://msdn.microsoft.com");
DoIndependentWork();
string urlContents = await getStringTask;
return urlContents.Length;
}
void DoIndependentWork()
{
resultsTextBox.Text += "Working . . . . . . .\r\n";
}
When AccessTheWebAsync is called then await keyword is used, what does it mean?
When this function AccessTheWebAsync() will be executing then DoIndependentWork() function is called and i guess here control will be waiting until this function DoIndependentWork() is finished. Am I right?
again there is another statement called
string urlContents = await getStringTask;
why they use here await. if we do not use await here then what would happen?
Please guide me to understand the code that how it is working.
I have an intro blog post here, and the MSDN docs are also extremely good.
You can think of await as "pausing" the method (without blocking the thread) until the awaitable operation completes. When this happens, it returns a task that is not completed to the calling method, so it also has the option to await.
Here's a brief description about async/await methods.
Async Methods:
Caller is not necessarily blocked for the full execution of async
method
Possible return types
void: “fire-and-forget”
Task: allows to await termination of async method
Task<T>: allows to await termination and get result of type T
No ref or out parameter for async methods
Must again contain an await => Otherwise compile warning
await for Tasks
Await termination of a TPL task
Return result of task (if task with
result type)
Must only occur in async methods => Otherwise compile error
An async method is partly synchronous and partly asynchronous
Caller synchronously executes the method until a blocking await
Thereafter, the method rest is asynchronously executed
async & await Mechanism
Efficient
public async Task<int> GetSiteLengthAsync(string url)
{
HttpClient client = new HttpClient(); <= Sync
Task<string> download1 = client.GetStringAsync(url); <= Sync
string site1 = await download1; <= Async (Another thread)
return site1.Length; <= Async (Another thread)
}
Not sure if that simplier for you to understand that in the following way, but this is how it helped myself:
As you can see, the AccessTheWebAsync returns Task<int> but not just int.
If you would have called it without "await", you would just get the Task<int> object as its result. And could do anything further you want (manually) with that task: for instance, to wait until it finishes theTask.Wait(); and obtain the result of int in theTask.Result.
But await does all that instead of you and returns just int: Task<int> => int.
This is it.
from MSDN:
the await operator is applied to a task in an asynchronous method to suspend the execution of the method until the awaited task completes. The task represents ongoing work.await does not block the thread on which it is executing. Instead, it causes the compiler to sign up the rest of the async method as a continuation on the awaited task. Control then returns to the caller of the async method. When the task completes, it invokes its continuation, and execution of the async method resumes where it left off.
So when the compiler encounter
int contentLength = await AccessTheWebAsync();
it waits till the AccessTheWebAsync() task is complted
please take a look at this example C# Async,Await
All await does is blocks the thread until the result of an async operation returns.
Edit: sorry when I said block I should have said suspend, since blocking would prevent execution from continuing!
Edit2: As Alex pointed out - I should have probably said "execution is suspended" rather than the thread. Basically "Stuff happens until await returns but the point is it appears you are writing and executing synchronous code"
Since async operations have the potential to be take a while (e.g. web service calls), they tend to use callbacks to return a result.
If you have to handle callbacks in your code it can get a little messy, especially when waiting on multiple async tasks that are dependant on each other. Async/await and Task simplify the code so that you can write async code literally in the order you would read it.
e.g. example standard async code with callbacks:
public int CallSomeServiceAndReturnItsValue()
{
int result = 0;
WebService.SomeAsyncServiceCall((svcResult) => { result = svcResult.Value; });
return result;
}
and if you have multiple calls that need to be chained:
public int CallSomeServiceAndReturnItsValue()
{
int result = 0;
WebService.GetSomeIdentifier((svcResult) =>
{
var identifier = svcResult.Value;
WebService.GetResult(identifier, (anotherResult) =>
{
result = anotherResult.Value;
}
}
);
return result;
}
As you can see, it starts getting messy, the code doesn't really read in an order that feels natural. The alternative is to use callback methods instead of anonymous methods but still, the callback methods are far away from the code that called them and things can feel disjointed
The other alternative is of course async/await which is much clearer
public int CallSomeServiceAndReturnItsValue()
{
int identifier = await WebService.GetSomeIdentifier();
return await WebService.GetResult(identifier);
}