I'm using C# and I have an App A and a DLL B I've created.
I'd like to be able to do the following:
In App A, create my callback method:
public void MyAppMethod(string inComing){
Debug.WriteLine("callback returned: " + inComing);
}
In App A, set the CallBack method in B, like B.SetCallback(MyAppMethod);
In DLL B, use the callback to return a string:
private void SomeMethod(){
//do some stuff
MyAppMethod("hello");
}
How can I set this up?
Using Events:
App A:
public void MyAppMethod(string inComing){
Debug.WriteLine("callback returned: " + inComing);
}
B.MyAppMethod += MyAppMethod;
App B:
public event Action<string> MyAppMethod;
private void SomeMethod(){
//do some stuff
if(MyAppMethod!=null) MyAppMethod("hello");
}
Using delegates:
App A:
public void MyAppMethod(string inComing){
Debug.WriteLine("callback returned: " + inComing);
}
B.MyAppMethod = MyAppMethod;
App B:
public Action<string> MyAppMethod;
private void SomeMethod(){
//do some stuff
if(MyAppMethod!=null) MyAppMethod("hello");
}
These codes will work as are. However, there are many important things you must consider before using this code, which you will find on the web
This is the code I ended up using.
APP A:
public void MyCallBack(string status)
{
// Add callback text to the status window
StatTxt.AppendText(status);
}
// Set the callback method in DLL B
B.HollaBack = MyCallBack;
DLL B:
public delegate void CallBackDelegate(string status);
public CallBackDelegate HollaBack
{
get; set;
}
private void DoCallBack(string inMsg)
{
// Make sure the callback method was set
if (HollaBack != null)
{
// send text to the callback method
HollaBack(inMsg);
}
}
// Invoke the callback anywhere within DLL B
DoCallBack("show this in the status window");
Related
I'm trying to add a "log" message from my class to a ListBox on my form. Within the form I would just be able to use lblog.add("message"), but as I'm trying to clean up my code, what is the best way to pass the "message" to the front end?
I found a suggestion that has the code below, but wondering if there is a simpler way?
Form:
// This is all required so that we can call the function from another class
public void publicLogMessage(string message)
{
if (InvokeRequired)
{
Invoke(new OutputDelegate(logMessage), message);
}
}
public delegate void OutputDelegate(string message);
public void logMessage(string message)
{
lblog.Items.Add(DateTime.Now + " " + message);
}
Class:
//This is required so that we can call the "PublicLogMessage" function on the main form
public frmMain formToOutput;
public speechRecognition(frmMain f)
{
formToOutput = f;
}
Usage:
formToOutput.logMessage
You now have a pretty tight coupling between your algorithm and your ouput method. Your algorithm knows all about your output method (for example that it's a form with a specific signature).
I would suggest decoupling it:
private readonly Action<string> log;
public speechRecognition(Action<string> log)
{
this.log = log;
}
public void DoWork()
{
this.log("work started");
// ...
this.log("work in progress");
// ...
this.log("work ended");
}
This class knows nothing about the logging method. It only knows it gets a string. The class controlling both the output method (form) and algorithm (class above) can then link them together:
var form = new YourFormWithLoggingWindow();
var algorithm = new speechRecognition(form.publicLogMessage);
Now the algorithm will log to the form. You could have called it using
var algorithm = new speechRecognition(Console.WriteLine);
and it would log to the console in a Console Application. The algorithm does not care and does not need your form to compile. It's independent. Your form does not know the algorithm either. It's independent, too.
You could even have unit testing that checks the logging:
var log = new List<string>();
var algorithm = new speechRecognition(log.Add);
algorithm.DoWork();
Assert.AreEqual(log.Count, 3);
Use if/else when using InvokeRequired, I don't think there are other optimizations at the moment.
public void publicLogMessage(string message)
{
if (InvokeRequired)
Invoke(new OutputDelegate(logMessage), message);
else
logMessage(message);
}
public delegate void OutputDelegate(string message);
private void logMessage(string message)
{
lblog.Items.Add(DateTime.Now + " " + message);
}
private void listboxlrm(byte[] text)
{
if (this.listBox2.InvokeRequired)
{
SetTextCallback d = new SetTextCallback(listboxlrm);
this.Invoke(d, new object[] { text });
}
else
{
byte[] convert = new byte[text[4]];
Array.Copy(text, 6, convert, 0, text[4]);
string yourtext = System.Text.Encoding.UTF8.GetString(convert);
this.listBox2.Items.Insert(0, string.Format(yourtext));
}
}
I am using that method.... If you use insert always add the top.
I'm trying to create a class (in the context of a Windows Application) that can update progress (or send some user message) back to the main form UI via delegates. The problem I have is that the compiler won't allow any of the constructs I attempt because of missing object references. This has been discussed here but no answers had to do with writing to an object on a Form.
in c++ I would do this:
void LogToUI(string s)
{
if(Form1)
Form1->update(s);
}
void TForm1::update(string s)
{
listbox->Items->Add(s);
}
// so that any function, anywhere, can update the listbox (thread safety aside)
in C#:
namespace test
{
public delegate void callback(String msg);
public partial class Form1 : Form
{
public void writeToListbox(String s)
{
listbox.Items.Add(s);
}
public static void writeToConsole(String s)
{
System.Console.WriteLine(s);
}
public void createclass
{
callback ui_update = writeToConsole; // this is ok
callback ui_update = writeToListbox; // not allowed
someclass SC = new someclass(ui_update);
}
}
class someclass
{
callback cb;
void someclass(callback T)
{
this.cb = T;
}
void logthis(string s)
{
cb("it's me!");
}
}
}
I understand the problem with having to assign a static method to the delegate, and the Form1 method is non-static. I would like to use the delegate method because it seems the cleanest; I just can't find a way to write this in such a way as to make it work, short of passing a pointer back to the Form, which seems messy.
I believe I just came across the answer. You have to expose a static reference to a UI object, in this case a ListBox. Then you can assign the callback delegate to a function that makes sure the listbox reference is not null. You just need to make sure you assign the static reference when the form is created:
namespace test
{
public delegate void callback(String msg);
public partial class Form1 : Form
{
public static ListBox callbackListBox; // add this
public void writeToListbox(String s)
{
if(null == callbackListBox)return; // add this check
// also make this threadsafe:
if (callbackListBox.InvokeRequired)
{
callbackListBox.Invoke(new MethodInvoker(() => { writeToListbox(s); }));
}else{
callbackListBox.Items.Add(s);
callbackListBox.TopIndex = callbackListBox.Items.Count - (callbackListBox.Height / callbackListBox.ItemHeight);
}
}
public static void writeToConsole(String s)
{
System.Console.WriteLine(s);
}
public void createclass
{
callback ui_update = writeToListbox; // now OK
someclass SC = new someclass(ui_update);
}
// and add this to the form's constructor:
public Form1()
{
InitializeComponent();
callbackListBox = listbox1;
}
}
class someclass
{
callback cb;
void someclass(callback T)
{
this.cb = T;
}
void logthis(string s)
{
cb("it's me!");
}
}
}
I still have to try this, but at least the compiler is not complaining.
I am working with background workers to update a progress bar in a WPF UI I am working on. This background worker is getting its progress updates from multiple events that I am subscribed to, because the progress bar goes through several loading stages, and the percentages for those come from several places. here is some example/pseudo code explaining what I mean
The DoWork method of my background worker and the methods I am using to currently get some progress updates
// These are working fine
private void BwOnDoWork(object sender, DoWorkEventArgs doWorkEventArgs)
{
orderProcessing.OnOrderProgress += OrderStatus;
orderProcessing.OnStandardOrderProgress += StandardOrderStatus;
orderProcessing.CreateOrders(orders);
}
private void OrderStatus(int currentCount, int totalItems, string Message)
{
if (totalItems > 0)
bw.ReportProgress(Convert.ToInt32(((double)currentCount / (double)totalItems) * 100),
Message);
}
private void StandardOrderStatus(int currentCount, int totalItems, string Message)
{
if (totalItems > 0)
bw.ReportProgress(Convert.ToInt32(((double)currentCount / (double)totalItems) * 100),
Message);
}
Some code from my order processing class
public abstract class OrderProcessing
{
public delegate void OrderProgress(int CurrentItems, int TotalItems, string Message);
public event MasterSalesOrder.StandardOrderProgress OnStandardOrderProgress;
public event OrderProgress OnOrderProgress;
public abstract List<MasterSalesOrder> CreateOrders(List<Order> orders);
}
Some code from the class that holds the override method for CreateOrders()
public abstract class OrderProcessingFile : OrderProcessing
{
public event OrderProgress OnOrderProgress;
public override List<MasterSalesOrder> CreateOrders(List<Order> orders)
{
//Does Some Stuff
foreach(var stuff in stuffs)
{
OnOrderProgress(currentCount, totalCount, "Message");
}
}
}
Since I am clearly not explaining this well, I need to get info from the OrderProcessingFiles OnOrderProgress event via the OrderProcessing class that I create in the DoWork method.I am unsure on how to subscribe to an event when my code never directly instantiates an instance of the OrderProcessingFile class and it is never directly referred to.
I have tried looking for answers but as my title will show I am having a hard time even wording this in a way to get useful results, and I am genuinely stuck on this one. Let me know if more detail is needed, I tried to strip down my code to only the relevant parts but I feel like I'm explaining this strangely.
I would recommend that you create a thread safe singleton progress manager. Then have each of the background workers contact it with updates. The progress manager will use a DispatcherTimer (which runs on the GUI thread) to update the GUI appropriately.
Raw example:
public static class StatusReportManager
{
// Standard singleton code to create the manager and access it.
// Start/create the dispatch time as well.
private static DispatcherTimer Timer { get; set; }
private static object _syncObject = new object();
public static void ReportStatus(...)
{
lock (_syncObject)
{
// Process any states and set instance properties for reading
// by the timer operation.
}
}
private void ShowStatus() // Used by the dispatch timer
{
lock (_syncObject)
{
// Do any updates to the GUI in here from current state.
}
}
}
I have realized what it is I was really trying to do and have thus found an answer. Using the method found in this MSDN article I have implemented the follow code:
This is my UI
private void BwOnDoWork(object sender, DoWorkEventArgs doWorkEventArgs)
{
orderProcessing.OnOrderProgress += OrderStatus;
orderProcessing.CreateOrders(FanGlobal.BrandItems, FanGlobal.BrandItemMasterCustomers);
}
private void OrderStatus(object obj, OrderProcessing.OrderProgressEventArgs e)
{
if (e.totalCount > 0)
bw.ReportProgress(Convert.ToInt32(((double)e.currentCount / (double)e.totalCount) * 100),e.message);
}
This in my OrderProcessing class
public event EventHandler<OrderProgressEventArgs> OnOrderProgress;
public class OrderProgressEventArgs : EventArgs
{
public int currentCount;
public int totalCount;
public string message;
public OrderProgressEventArgs(int c, int t, string m)
{
currentCount = c;
totalCount = t;
message = m;
}
}
protected virtual void OnOrderProgressChanged(OrderProgressEventArgs e)
{
EventHandler<OrderProgressEventArgs> handler = OnOrderProgress;
if (handler != null)
{
handler(this, e);
}
}
public abstract List<MasterSalesOrder> CreateOrders(List<BrandItem> BrandItems = null, List<BrandItemMasterCustomer> BrandItemMasterCustomers = null);
and then I can use it in my child class OrderProcessingFile like so
public override List<MasterSalesOrder> CreateOrders(List<BrandItem> BrandItems = null, List<BrandItemMasterCustomer> BrandItemMasterCustomers = null)
{
//Do some Stuff
OnOrderProgressChanged(new OrderProgressEventArgs(count, totalItems, "Extracting"));
}
and everything is working like a charm. Sorry for the utterly confusing question and the apparent huge gap of knowledge I have/had, but hopefully this will help someone else in the future.
I want to send an alert message to any subscribers when a trap occurred.
The code I created works fine using a delegate method myDelegate del.
My questions are:
I want to know whether it's better to use EventHandler instead of a delegate?
I'm not sure what the differences are between a delegate and an EventHandler in my case.
notify(trapinfo t), that's what I've done here to get trap information. But it seems not to be a good idea. I read some online tutorial lesson introducing passing delegate object; I'm wondering if it's appropriate in my case? And how should I do it? Any suggestions?
Thanks a lot :)
My code:
public class trapinfo
{
public string info;
public string ip;
public string cause;
}
public class trap
{
public delegate void myDelegate(trapinfo t);
public myDelegate del;
trapinfo info = new trapinfo();
public void run()
{
//While(true)
// If a trap occurred, notify the subscriber
for (; ; )
{
Thread.Sleep(500);
foreach (myDelegate d in del.GetInvocationList())
{
info.cause = "Shut Down";
info.ip = "192.168.0.1";
info.info = "Test";
d.Invoke(info);
}
}
}
}
public class machine
{
private int _occuredtime=0;
public trapinfo info = new trapinfo();
public void notify(trapinfo t)
{
++_occuredtime;
info.cause = t.cause;
info.info = t.info;
info.ip = t.ip;
getInfo();
}
public void subscribe(trap t)
{
t.del += new trap.myDelegate(notify);
}
public void getInfo()
{
Console.WriteLine("<Alert>: cauese/{0}, info/ {1}, ip/{2}, time/{3}",
info.cause, info.info, info.ip,_occuredtime);
}
}
class Program
{
static void Main(string[] args)
{
trap t = new trap();
machine machineA = new machine();
machineA.subscribe(t);
t.run();
}
}
Update 2013-08-12
How about the observer/observable design pattern, that looks great in my case (EventHandler).
In my case, a machine subscribes to a trap messenger. (Add a machine to an invocation list)
Once a trap occurred, I send a message to all machines which are subscribed. (Call HandleEvent to handle it)
Advantages:
don't care about GetInvocationList() anymore, just use (+=) and (-=) to decide whom to send the trap.
It's easier to understand the logic of my program.
I know there are several ways to do it, but I wish I could analyze its pros and cons.
And thanks for your comments and suggestions, that would be very helpful!
I read the MSDN EventArgs article which Matthew Watson suggested.
Here's my Event Version:
public class TrapInfoEventArgs : EventArgs
{
public int info { get; set; }
public string ip { get; set; }
public string cause { get; set; }
}
public class trap
{
public event EventHandler<TrapInfoEventArgs> TrapOccurred;
protected virtual void OnTrapOccurred(TrapInfoEventArgs e)
{
EventHandler<TrapInfoEventArgs> handler = TrapOccurred;
if (handler != null)
{
handler(this, e);
}
}
public void run()
{
//While(true)
// If a trap occurred, notify the subscriber
for (; ; )
{
Thread.Sleep(500);
TrapInfoEventArgs args = new TrapInfoEventArgs();
args.cause = "Shut Down";
OnTrapOccurred(args);
}
}
}
public class machine
{
public void c_TrapOccurred(object sender, TrapInfoEventArgs e)
{
Console.WriteLine("<Alert>: cauese/{0}, info/ {1}, ip/{2}, time/{3}",
e.cause, e.info, e.ip, DateTime.Now.ToString());
}
}
class Program
{
static void Main(string[] args)
{
trap t = new trap();
machine machineA = new machine();
t.TrapOccurred += machineA.c_TrapOccurred; //notify machine A
t.run();
}
}
The difference between event and delegate is that:
event declaration adds a layer of protection on the delegate instance.
This protection prevents clients of the delegate from resetting the
delegate and its invocation list, and only allows adding or removing
targets from the invocation list
See What are the differences between delegates and events?
2) As I see it, your subscriber should not change delegates freely. One subscriber can assign = to it instead of adding +=. This will assign a new delegate, therefore, the previous delegate with its invocation list will be lost and previous subscribers will not be called anymore. So you should use Event for sure. Or you can change your code to make your delegate private and write additional functions for manipulating it to define your own event behavior.
//preventing direct assignment
private myDelegate del ;
public void AddCallback(myDelegate m){
del += m;
}
public void RemoveCallback(myDelegate m){
del -= m;
}
//or
public static trap operator +(trap x,myDelegate m){
x.AddCallback(m);
return x;
}
public static trap operator -(trap x, myDelegate m)
{
x.RemoveCallback(m);
return x;
}
//usage
//t.AddCallback(new trap.myDelegate(notify));
t+=new trap.myDelegate(notify);
It is much better to use an event for your example.
An event is understood by the Visual Studio Form and WPF designers, so you can use the IDE to subscribe to events.
When raising events, there is no need for you to write your own foreach handling to iterate through them.
events are the way that most programmers will expect this functionality to be accessed.
If you use a delegate, the consuming code can mess around with it in ways that you will want to prevent (such as resetting its invocation list). events do not allow that to happen.
As for your second question: Using an event you would create a class derived from EventArgs to hold the data, and pass that to the event when you raise it. The consumer will then have access to it.
See here for details: http://msdn.microsoft.com/en-us/library/system.eventargs.aspx
Reading event description and examples of msdn I can see a discrepancy in the way events are subscribed to. Sometimes event handlers are passed "as is" and other times they are passed by instantiating a delegate using the handler method e.g.
...
class Subscriber
{
private string id;
public Subscriber(string ID, Publisher pub)
{
id = ID;
// Subscribe to the event using C# 2.0 syntax
pub.RaiseCustomEvent += HandleCustomEvent;
}
// Define what actions to take when the event is raised.
void HandleCustomEvent(object sender, CustomEventArgs e)
{
Console.WriteLine(id + " received this message: {0}", e.Message);
}
}
vs
public delegate void EventHandler1(int i);
...
public class TestClass
{
public static void Delegate1Method(int i)
{
System.Console.WriteLine(i);
}
public static void Delegate2Method(string s)
{
System.Console.WriteLine(s);
}
static void Main()
{
PropertyEventsSample p = new PropertyEventsSample();
p.Event1 += new EventHandler1(TestClass.Delegate1Method);
p.RaiseEvent1(2);
...
}
}
Can someone please provide clarity on this?
Thanks.
Your first code sample is syntactic sugar for the second one.
This syntax (omitting the constructor) was introduced by C# 2.