AES encryption in NI LabVIEW - c#

How do I implement AES encryption and decryption in LabVIEW and configure the following settings?
Padding = PaddingMode.PKCS7
Mode = CipherMode.CBC
Key Size = 128
Block Size = 128
I have tried few option over here Igor Titov, AES Crypto Toolkit by Alab Technologies
Tried to reach both parties to confirm if those toolkits support above configuration, but they don't respond on phone or email.
Any help is greatly appreciated.
I found this code from Igor Titov
Encrypt:https://github.com/IgorTitov/LabVIEW-Advanced-Encryption-Standard/blob/master/Encrypt%20with%20AES.vi
/**
* Encrypt a text using AES encryption in Counter mode of operation
*
* Unicode multi-byte character safe
*
* #param plaintext Source text to be encrypted
* #param password The password to use to generate a key
* #param nBits Number of bits to be used in the key (128, 192, or 256)
* #returns Encrypted text
*/
public function encrypt(plaintext : String, password : String, nBits : int) : String //Done in LV
{
var blockSize : int = 16; // block size fixed at 16 bytes / 128 bits (Nb=4) for AES
if (!(nBits == BIT_KEY_128 || nBits == BIT_KEY_192 || nBits == BIT_KEY_256))
{
// standard allows 128/192/256 bit keys
throw new Error("Must be a key mode of either 128, 192, 256 bits");
}
plaintext = Utf8.encode(plaintext);
password = Utf8.encode(password);
// use AES itself to encrypt password to get cipher key (using plain password as source for key
// expansion) - gives us well encrypted key
var nBytes : int = nBits / 8; // no bytes in key
var pwBytes : Array = new Array(nBytes);
for (var i : int = 0;i < nBytes;i++)
{
pwBytes[i] = isNaN(password.charCodeAt(i)) ? 0 : password.charCodeAt(i);
}
var key : Array = cipher(pwBytes, keyExpansion(pwBytes)); // gives us 16-byte key
key = key.concat(key.slice(0, nBytes - 16)); // expand key to 16/24/32 bytes long
// initialise counter block (NIST SP800-38A §B.2): millisecond time-stamp for nonce in 1st 8 bytes,
// block counter in 2nd 8 bytes
var counterBlock : Array = new Array(blockSize);
var nonce : int = 123456789;////DEBUG!!!(new Date()).getTime(); // timestamp: milliseconds since 1-Jan-1970
var nonceSec : int = Math.floor(nonce / 1000);
var nonceMs : int = nonce % 1000;
// encode nonce with seconds in 1st 4 bytes, and (repeated) ms part filling 2nd 4 bytes
for (i = 0;i < 4;i++)
{
counterBlock[i] = (nonceSec >>> (i * 8)) & 0xff;
}
for (i = 0;i < 4;i++)
{
counterBlock[i + 4] = nonceMs & 0xff;
}
// and convert it to a string to go on the front of the ciphertext
var ctrTxt : String = '';
for (i = 0;i < 8;i++)
{
ctrTxt += String.fromCharCode(counterBlock[i]);
}
// generate key schedule - an expansion of the key into distinct Key Rounds for each round
var keySchedule : Array = keyExpansion(key);
var blockCount : int = Math.ceil(plaintext.length / blockSize);
var ciphertxt : Array = new Array(blockCount); // ciphertext as array of strings
for (var b : int = 0;b < blockCount;b++)
{
// set counter (block #) in last 8 bytes of counter block (leaving nonce in 1st 8 bytes)
// done in two stages for 32-bit ops: using two words allows us to go past 2^32 blocks (68GB)
for (var c : int = 0;c < 4;c++)
{
counterBlock[15 - c] = (b >>> (c * 8)) & 0xff;
}
for (c = 0;c < 4;c++)
{
counterBlock[15 - c - 4] = (b / 0x100000000 >>> c * 8);
}
var cipherCntr : Array = cipher(counterBlock, keySchedule); // -- encrypt counter block --
// block size is reduced on final block
var blockLength : int = b < blockCount - 1 ? blockSize : (plaintext.length - 1) % blockSize + 1;
var cipherChar : Array = new Array(blockLength);
for (i = 0;i < blockLength;i++)
{
// -- xor plaintext with ciphered counter char-by-char --
cipherChar[i] = cipherCntr[i] ^ plaintext.charCodeAt(b * blockSize + i);
//trace("i=",i,"plaintext.charCodeAt(b * blockSize + i)",plaintext.charCodeAt(b * blockSize + i),"cipherChar[i]=",cipherChar[i]);
cipherChar[i] = String.fromCharCode(cipherChar[i]);
}
ciphertxt[b] = cipherChar.join('');
//trace(ciphertxt);
}
// Array.join is more efficient than repeated string concatenation in IE
var ciphertext : String = ctrTxt + ciphertxt.join('');
//trace("before 64 encode:",ciphertext);
ciphertext = Base64.encode(ciphertext); // encode in base64
//trace("after 64 encode:",ciphertext);
//alert((new Date()) - t);
return ciphertext;
}
Decrypt: https://github.com/IgorTitov/LabVIEW-Advanced-Encryption-Standard/blob/master/Decrypt%20with%20AES.vi
/**
* Decrypt a text encrypted by AES in counter mode of operation
*
* #param ciphertext Source text to be encrypted
* #param password The password to use to generate a key
* #param nBits Number of bits to be used in the key (128, 192, or 256)
* #returns Decrypted text
*/
public function decrypt(ciphertext : String, password : String, nBits : int) : String
{
var blockSize : int = 16; // block size fixed at 16 bytes / 128 bits (Nb=4) for AES
if (!(nBits == BIT_KEY_128 || nBits == BIT_KEY_192 || nBits == BIT_KEY_256)) {
// standard allows 128/192/256 bit keys
throw new Error("Must be a key mode of either 128, 192, 256 bits");
}
ciphertext = Base64.decode(ciphertext.split("\n").join(""));
password = Utf8.encode(password);
//var t = new Date(); // timer
// use AES to encrypt password (mirroring encrypt routine)
var nBytes : int = nBits / 8; // no bytes in key
var pwBytes : Array = new Array(nBytes);
for (var i : int = 0;i < nBytes;i++)
{
pwBytes[i] = isNaN(password.charCodeAt(i)) ? 0 : password.charCodeAt(i);
}
var key : Array = cipher(pwBytes, keyExpansion(pwBytes));
key = key.concat(key.slice(0, nBytes - 16)); // expand key to 16/24/32 bytes long
// recover nonce from 1st 8 bytes of ciphertext
var counterBlock : Array = new Array(8);
var ctrTxt : String = ciphertext.slice(0, 8);
for (i = 0;i < 8;i++)
{
counterBlock[i] = ctrTxt.charCodeAt(i);
}
// generate key schedule
var keySchedule : Array = keyExpansion(key);
// separate ciphertext into blocks (skipping past initial 8 bytes)
var nBlocks : int = Math.ceil((ciphertext.length - 8) / blockSize);
var ct : Array = new Array(nBlocks);
for (b = 0;b < nBlocks;b++)
{
ct[b] = ciphertext.slice(8 + b * blockSize, 8 + b * blockSize + blockSize);
//trace("ct[b]=",ct[b],"blockSize=",blockSize,8 + b * blockSize, 8 + b * blockSize + blockSize);
}
//var temp:String=ct[1];
// for (var i:int=0;i<temp.length;i++)
// {
// trace("ct[1]Byte Array:",temp.charCodeAt(i));
// }
var ciphertextArr : Array = ct; // ciphertext is now array of block-length strings
// plaintext will get generated block-by-block into array of block-length strings
var plaintxt : Array = new Array(ciphertextArr.length);
for (var b : int = 0;b < nBlocks;b++)
{
// set counter (block #) in last 8 bytes of counter block (leaving nonce in 1st 8 bytes)
for (var c : int = 0;c < 4;c++)
{
counterBlock[15 - c] = ((b) >>> c * 8) & 0xff;
}
for (c = 0;c < 4;c++)
{
counterBlock[15 - c - 4] = (((b + 1) / 0x100000000 - 1) >>> c * 8) & 0xff;
}
//trace(counterBlock);
var cipherCntr : Array = cipher(counterBlock, keySchedule); // encrypt counter block
//trace(cipherCntr);
var plaintxtByte : Array = new Array(String(ciphertextArr[b]).length);
for (i = 0;i < String(ciphertextArr[b]).length;i++)
{
// -- xor plaintxt with ciphered counter byte-by-byte --
plaintxtByte[i] = cipherCntr[i] ^ String(ciphertextArr[b]).charCodeAt(i);
//trace("i=",i,"plaintxtByte[i]=",plaintxtByte[i],"cipherCntr[i]=",cipherCntr[i],"String(ciphertextArr[b]).charCodeAt(i)=",String(ciphertextArr[b]).charCodeAt(i));
//trace(plaintxtByte[i]);
plaintxtByte[i] = String.fromCharCode(plaintxtByte[i]);
}
plaintxt[b] = plaintxtByte.join('');
}
// join array of blocks into single plaintext string
var plaintext : String = plaintxt.join('');
plaintext = Utf8.decode(plaintext); // decode from UTF8 back to Unicode multi-byte chars
return plaintext;
}
Not sure what programming language is this. If I can get help in converting this code to C# that will solve my blocker.
Here is the VI snippet.

I did something similar with blowfish but am not familiar with the AES implementation by Alab Tech.
Assuming the Alab Tech library function correctly, just pad your data as necessary before encrypting it.
KCS7 (described in RFC 5652). This pads data to the blocksize with the
number that is equal to the number of added bytes. If the original
data is an integer multiple of N bytes, then an extra block of bytes
with value N is added
That sounds relatively straightforward and a simple block diagram as below shows how it might work:

Related

How to Decrypt a ciphersaber hexadecimal text in pure C#

I am trying to decrypt a ciphersaber encrypted hexadecimal message using an IV mixing round of 20 with the key MyKey.
The messages is:
bad85d9e7f5aff959b6b332b44af2cc554d8a6eb
I am doing this in pure C# and it should return the message: Hola Mundo
using System;
using System.Text;
public class Program
{
public static void Main(string[] args)
{
// Hexadecimal text
string hexText = "bad85d9e7f5aff959b6b332b44af2cc554d8a6eb";
// Convert hexadecimal text to byte array
byte[] encryptedData = new byte[hexText.Length / 2];
for (int i = 0; i < encryptedData.Length; i++)
{
encryptedData[i] = Convert.ToByte(hexText.Substring(i * 2, 2), 16);
}
// IV length
int ivLength = 1;
// Key loop iterations
int keyIterations = 20;
// Encryption key
string encryptionKey = "MyKey";
// Convert encryption key to byte array
byte[] keyData = Encoding.UTF8.GetBytes(encryptionKey);
// Create an array to store the IV
byte[] ivData = new byte[ivLength];
// Copy the first `ivLength` bytes of the encrypted data to the IV array
Array.Copy(encryptedData, 0, ivData, 0, ivLength);
// Create an array to store the encrypted message
byte[] messageData = new byte[encryptedData.Length - ivLength];
// Copy the remaining bytes of the encrypted data to the message data array
Array.Copy(encryptedData, ivLength, messageData, 0, messageData.Length);
// Create an array to store the decrypted message
byte[] decryptedData = new byte[messageData.Length];
// Perform the decryption
for (int i = 0; i < messageData.Length; i++)
{
decryptedData[i] = (byte)(messageData[i] ^ keyData[i % keyData.Length]);
for (int j = 0; j < keyIterations; j++)
{
decryptedData[i] = (byte)(decryptedData[i] ^ ivData[j % ivData.Length]);
}
}
// Convert the decrypted data to a string and print it
string decryptedMessage = Encoding.UTF8.GetString(decryptedData);
Console.WriteLine("Decrypted message: " + decryptedMessage);
}
}
Now when I try it returns: �$�#���Jf=�I���
What mistake am I making in the code or am I implementing it wrong?
I tested the text with the following site to see if it was ok: https://ruletheweb.co.uk/cgi-bin/saber.cgi
CipherSaber uses as IV the first 10 bytes of the encrypted message. The rest is the actual ciphertext. The IV is appended to the key (giving the key setup input), which is used as input to the CipherSaber key setup, see CipherSaber, Technical description, 1st section.
In the posted code, an IV length of 1 is applied instead of 10, which incorrectly determines IV (and thus key setup input) and actual ciphertext. The correct determination of IV and actual ciphertext is:
private static (byte[], byte[]) SeparateIvCiphertext(byte[] ivCiphertext)
{
int ivLen = 10;
byte[] iv = new byte[ivLen];
Buffer.BlockCopy(ivCiphertext, 0, iv, 0, iv.Length);
byte[] ciphertext = new byte[ivCiphertext.Length - iv.Length];
Buffer.BlockCopy(ivCiphertext, iv.Length, ciphertext, 0, ciphertext.Length);
return (iv, ciphertext);
}
and of the key setup input:
private static byte[] GetKeySetupInput(byte[] key, byte[] iv)
{
byte[] keySetupInput = new byte[key.Length + iv.Length];
Buffer.BlockCopy(key, 0, keySetupInput, 0, key.Length);
Buffer.BlockCopy(iv, 0, keySetupInput, key.Length, iv.Length);
return keySetupInput;
}
Furthermore, the decryption itself seems to be implemented incorrectly or at least incompletely. CipherSaber uses RC4 as its encryption/decryption algorithm, which can be divided into a key setup and the actual encryption/decryption:
The referenced website performs decryption using CipherSaber-2. Compared to the original CipherSaber (referred to as CipherSaber-1), a modified key setup is used in which the CipherSaber-1/RC4 key setup is repeated multiple times, 20 times in the case of the posted data.
A description of the CipherSaber-1/RC4 key setup can be found here, Key-scheduling algorithm (KSA), a possible implementation for CipherSaber-2 is:
private static byte[] sBox = new byte[256];
private static void KeySetup(byte[] input, int iterations)
{
for (int i = 0; i < 256; i++)
{
sBox[i] = (byte)i;
}
int j = 0;
for (int cs2loop = 0; cs2loop < iterations; cs2loop++) // CipherSaber-2 modification
{
for (int i = 0; i < 256; i++)
{
j = (j + sBox[i] + input[i % input.Length]) % 256;
Swap(ref sBox[i], ref sBox[j]);
}
}
}
private static void Swap(ref byte val1, ref byte val2)
{
if (val1 == val2) return;
val1 = (byte)(val1 ^ val2);
val2 = (byte)(val2 ^ val1);
val1 = (byte)(val1 ^ val2);
}
The loop marked CipherSaber-2 modification in the code snippet is the modification compared to CipherSaber-1/RC4!
The actual encryption/decryption is described here, Pseudo-random generation algorithm (PRGA), a possible implememtation is:
private static byte[] Process(byte[] input)
{
int i = 0, j = 0;
byte[] result = new byte[input.Length];
for (int k = 0; k < input.Length; k++)
{
i = (i + 1) % 256;
j = (j + sBox[i]) % 256;
Swap(ref sBox[i], ref sBox[j]);
result[k] = (byte)(sBox[(sBox[i] + sBox[j]) % 256] ^ input[k]);
}
return result;
}
Note that this algorithm is used for both encryption and decryption.
With this, the posted encrypted message can be decrypted as follows:
using System;
using System.Text;
...
byte[] key = Encoding.UTF8.GetBytes("MyKey");
byte[] encryptedData = Convert.FromHexString("bad85d9e7f5aff959b6b332b44af2cc554d8a6eb");
(byte[] iv, byte[] ciphertext) = SeparateIvCiphertext(encryptedData);
byte[] keySetupInput = GetKeySetupInput(key, iv);
int iterations = 20;
KeySetup(keySetupInput, iterations);
byte[] plaintext = Process(ciphertext);
Console.WriteLine(Encoding.UTF8.GetString(plaintext)); // Hola Mundo
which gives Hola Mundo as plaintext.

AES GCM porting from python to C#

I am trying to port AES GCM implementation in python OpenTLS project, to C# (.Net). Below is the code in OpenTLS code:
#######################
### Galois Counter Mode
#######################
class AES_GCM:
def __init__(self, keys, key_size, hash):
key_size //= 8
hash_size = hash.digest_size
self.client_AES_key = keys[0 : key_size]
self.server_AES_key = keys[key_size : 2*key_size]
self.client_IV = keys[2*key_size : 2*key_size+4]
self.server_IV = keys[2*key_size+4 : 2*key_size+8]
self.H_client = bytes_to_int(AES.new(self.client_AES_key, AES.MODE_ECB).encrypt('\x00'*16))
self.H_server = bytes_to_int(AES.new(self.server_AES_key, AES.MODE_ECB).encrypt('\x00'*16))
def GF_mult(self, x, y):
product = 0
for i in range(127, -1, -1):
product ^= x * ((y >> i) & 1)
x = (x >> 1) ^ ((x & 1) * 0xE1000000000000000000000000000000)
return product
def H_mult(self, H, val):
product = 0
for i in range(16):
product ^= self.GF_mult(H, (val & 0xFF) << (8 * i))
val >>= 8
return product
def GHASH(self, H, A, C):
C_len = len(C)
A_padded = bytes_to_int(A + b'\x00' * (16 - len(A) % 16))
if C_len % 16 != 0:
C += b'\x00' * (16 - C_len % 16)
tag = self.H_mult(H, A_padded)
for i in range(0, len(C) // 16):
tag ^= bytes_to_int(C[i*16:i*16+16])
tag = self.H_mult(H, tag)
tag ^= bytes_to_int(nb_to_n_bytes(8*len(A), 8) + nb_to_n_bytes(8*C_len, 8))
tag = self.H_mult(H, tag)
return tag
def decrypt(self, ciphertext, seq_num, content_type, debug=False):
iv = self.server_IV + ciphertext[0:8]
counter = Counter.new(nbits=32, prefix=iv, initial_value=2, allow_wraparound=False)
cipher = AES.new(self.server_AES_key, AES.MODE_CTR, counter=counter)
plaintext = cipher.decrypt(ciphertext[8:-16])
# Computing the tag is actually pretty time consuming
if debug:
auth_data = nb_to_n_bytes(seq_num, 8) + nb_to_n_bytes(content_type, 1) + TLS_VERSION + nb_to_n_bytes(len(ciphertext)-8-16, 2)
auth_tag = self.GHASH(self.H_server, auth_data, ciphertext[8:-16])
auth_tag ^= bytes_to_int(AES.new(self.server_AES_key, AES.MODE_ECB).encrypt(iv + '\x00'*3 + '\x01'))
auth_tag = nb_to_bytes(auth_tag)
print('Auth tag (from server): ' + bytes_to_hex(ciphertext[-16:]))
print('Auth tag (from client): ' + bytes_to_hex(auth_tag))
return plaintext
def encrypt(self, plaintext, seq_num, content_type):
iv = self.client_IV + os.urandom(8)
# Encrypts the plaintext
plaintext_size = len(plaintext)
counter = Counter.new(nbits=32, prefix=iv, initial_value=2, allow_wraparound=False)
cipher = AES.new(self.client_AES_key, AES.MODE_CTR, counter=counter)
ciphertext = cipher.encrypt(plaintext)
# Compute the Authentication Tag
auth_data = nb_to_n_bytes(seq_num, 8) + nb_to_n_bytes(content_type, 1) + TLS_VERSION + nb_to_n_bytes(plaintext_size, 2)
auth_tag = self.GHASH(self.H_client, auth_data, ciphertext)
auth_tag ^= bytes_to_int(AES.new(self.client_AES_key, AES.MODE_ECB).encrypt(iv + b'\x00'*3 + b'\x01'))
auth_tag = nb_to_bytes(auth_tag)
# print('Auth key: ' + bytes_to_hex(nb_to_bytes(self.H)))
# print('IV: ' + bytes_to_hex(iv))
# print('Key: ' + bytes_to_hex(self.client_AES_key))
# print('Plaintext: ' + bytes_to_hex(plaintext))
# print('Ciphertext: ' + bytes_to_hex(ciphertext))
# print('Auth tag: ' + bytes_to_hex(auth_tag))
return iv[4:] + ciphertext + auth_tag
An attempt to translate this to C# code is below (sorry for the amateurish code, I am a newbie):
EDIT:
Created an array which got values from GetBytes, and printed the result:
byte[] incr = BitConverter.GetBytes((int) 2);
cf.printBuf(incr, (String) "Array:");
return;
Noticed that the result was "02 00 00 00". Hence I guess my machine is little endian
Made some changes to the code as rodrigogq mentioned. Below is the latest code. It is still not working:
Verified that GHASH, GF_mult and H_mult are giving same results. Below is the verification code:
Python:
key = "\xab\xcd\xab\xcd"
key = key * 10
h = "\x00\x00"
a = AES_GCM(key, 128, h)
H = 200
A = "\x02" * 95
C = "\x02" * 95
D = a.GHASH(H, A, C)
print(D)
C#:
BigInteger H = new BigInteger(200);
byte[] A = new byte[95];
byte[] C = new byte[95];
for (int i = 0; i < 95; i ++)
{
A[i] = 2;
C[i] = 2;
}
BigInteger a = e.GHASH(H, A, C);
Console.WriteLine(a);
Results:
For both: 129209628709014910494696220101529767594
EDIT: Now the outputs are agreeing between Python and C#. So essentially the porting is done :) However, these outputs still don't agree with Wireshark. Hence, the handshake is still failing. May be something wrong with the procedure or the contents. Below is the working code
EDIT: Finally managed to get the code working. Below is the code that resulted in a successful handshake
Working Code:
/*
* Receiving seqNum as UInt64 and content_type as byte
*
*/
public byte[] AES_Encrypt_GCM(byte[] client_write_key, byte[] client_write_iv, byte[] plaintext, UInt64 seqNum, byte content_type)
{
int plaintext_size = plaintext.Length;
List<byte> temp = new List<byte>();
byte[] init_bytes = new byte[16];
Array.Clear(init_bytes, 0, 16);
byte[] encrypted = AES_Encrypt_ECB(init_bytes, client_write_key, 128);
Array.Reverse(encrypted);
BigInteger H_client = new BigInteger(encrypted);
if (H_client < 0)
{
temp.Clear();
temp.TrimExcess();
temp.AddRange(H_client.ToByteArray());
temp.Add(0);
H_client = new BigInteger(temp.ToArray());
}
Random rnd = new Random();
byte[] random = new byte[8];
rnd.NextBytes(random);
/*
* incr is little endian, but it needs to be in big endian format
*
*/
byte[] incr = BitConverter.GetBytes((int) 2);
Array.Reverse(incr);
/*
* Counter = First 4 bytes of IV + 8 Random bytes + 4 bytes of sequential value (starting at 2)
*
*/
temp.Clear();
temp.TrimExcess();
temp.AddRange(client_write_iv);
temp.AddRange(random);
byte[] iv = temp.ToArray();
temp.AddRange(incr);
byte[] counter = temp.ToArray();
AES_CTR aesctr = new AES_CTR(counter);
ICryptoTransform ctrenc = aesctr.CreateEncryptor(client_write_key, null);
byte[] ctext = ctrenc.TransformFinalBlock(plaintext, 0, plaintext_size);
byte[] seq_num = BitConverter.GetBytes(seqNum);
/*
* Using UInt16 instead of short
*
*/
byte[] tls_version = BitConverter.GetBytes((UInt16) 771);
Console.WriteLine("Plain Text size = {0}", plaintext_size);
byte[] plaintext_size_array = BitConverter.GetBytes((UInt16) plaintext_size);
/*
* Size was returned as 10 00 instead of 00 10
*
*/
Array.Reverse(plaintext_size_array);
temp.Clear();
temp.TrimExcess();
temp.AddRange(seq_num);
temp.Add(content_type);
temp.AddRange(tls_version);
temp.AddRange(plaintext_size_array);
byte[] auth_data = temp.ToArray();
BigInteger auth_tag = GHASH(H_client, auth_data, ctext);
Console.WriteLine("H = {0}", H_client);
this.printBuf(plaintext, "plaintext = ");
this.printBuf(auth_data, "A = ");
this.printBuf(ctext, "C = ");
this.printBuf(client_write_key, "client_AES_key = ");
this.printBuf(iv.ToArray(), "iv = ");
Console.WriteLine("Auth Tag just after GHASH: {0}", auth_tag);
AesCryptoServiceProvider aes2 = new AesCryptoServiceProvider();
aes2.Key = client_write_key;
aes2.Mode = CipherMode.ECB;
aes2.Padding = PaddingMode.None;
aes2.KeySize = 128;
ICryptoTransform transform1 = aes2.CreateEncryptor();
byte[] cval = {0, 0, 0, 1};
temp.Clear();
temp.TrimExcess();
temp.AddRange(iv);
temp.AddRange(cval);
byte[] encrypted1 = AES_Encrypt_ECB(temp.ToArray(), client_write_key, 128);
Array.Reverse(encrypted1);
BigInteger nenc = new BigInteger(encrypted1);
if (nenc < 0)
{
temp.Clear();
temp.TrimExcess();
temp.AddRange(nenc.ToByteArray());
temp.Add(0);
nenc = new BigInteger(temp.ToArray());
}
this.printBuf(nenc.ToByteArray(), "NENC = ");
Console.WriteLine("NENC: {0}", nenc);
auth_tag ^= nenc;
byte[] auth_tag_array = auth_tag.ToByteArray();
Array.Reverse(auth_tag_array);
this.printBuf(auth_tag_array, "Final Auth Tag Byte Array: ");
Console.WriteLine("Final Auth Tag: {0}", auth_tag);
this.printBuf(random, "Random sent = ");
temp.Clear();
temp.TrimExcess();
temp.AddRange(random);
temp.AddRange(ctext);
temp.AddRange(auth_tag_array);
return temp.ToArray();
}
public void printBuf(byte[] data, String heading)
{
int numBytes = 0;
Console.Write(heading + "\"");
if (data == null)
{
return;
}
foreach (byte element in data)
{
Console.Write("\\x{0}", element.ToString("X2"));
numBytes = numBytes + 1;
if (numBytes == 32)
{
Console.Write("\r\n");
numBytes = 0;
}
}
Console.Write("\"\r\n");
}
public BigInteger GF_mult(BigInteger x, BigInteger y)
{
BigInteger product = new BigInteger(0);
BigInteger e10 = BigInteger.Parse("00E1000000000000000000000000000000", NumberStyles.AllowHexSpecifier);
/*
* Below operation y >> i fails if i is UInt32, so leaving it as int
*
*/
int i = 127;
while (i != -1)
{
product = product ^ (x * ((y >> i) & 1));
x = (x >> 1) ^ ((x & 1) * e10);
i = i - 1;
}
return product;
}
public BigInteger H_mult(BigInteger H, BigInteger val)
{
BigInteger product = new BigInteger(0);
int i = 0;
/*
* Below operation (val & 0xFF) << (8 * i) fails if i is UInt32, so leaving it as int
*
*/
while (i < 16)
{
product = product ^ GF_mult(H, (val & 0xFF) << (8 * i));
val = val >> 8;
i = i + 1;
}
return product;
}
public BigInteger GHASH(BigInteger H, byte[] A, byte[] C)
{
int C_len = C.Length;
List <byte> temp = new List<byte>();
int plen = 16 - (A.Length % 16);
byte[] zeroes = new byte[plen];
Array.Clear(zeroes, 0, zeroes.Length);
temp.AddRange(A);
temp.AddRange(zeroes);
temp.Reverse();
BigInteger A_padded = new BigInteger(temp.ToArray());
temp.Clear();
temp.TrimExcess();
byte[] C1;
if ((C_len % 16) != 0)
{
plen = 16 - (C_len % 16);
byte[] zeroes1 = new byte[plen];
Array.Clear(zeroes, 0, zeroes.Length);
temp.AddRange(C);
temp.AddRange(zeroes1);
C1 = temp.ToArray();
}
else
{
C1 = new byte[C.Length];
Array.Copy(C, 0, C1, 0, C.Length);
}
temp.Clear();
temp.TrimExcess();
BigInteger tag = new BigInteger();
tag = H_mult(H, A_padded);
this.printBuf(H.ToByteArray(), "H Byte Array:");
for (int i = 0; i < (int) (C1.Length / 16); i ++)
{
byte[] toTake;
if (i == 0)
{
toTake = C1.Take(16).ToArray();
}
else
{
toTake = C1.Skip(i * 16).Take(16).ToArray();
}
Array.Reverse(toTake);
BigInteger tempNum = new BigInteger(toTake);
tag ^= tempNum;
tag = H_mult(H, tag);
}
byte[] A_arr = BitConverter.GetBytes((long) (8 * A.Length));
/*
* Want length to be "00 00 00 00 00 00 00 xy" format
*
*/
Array.Reverse(A_arr);
byte[] C_arr = BitConverter.GetBytes((long) (8 * C_len));
/*
* Want length to be "00 00 00 00 00 00 00 xy" format
*
*/
Array.Reverse(C_arr);
temp.AddRange(A_arr);
temp.AddRange(C_arr);
temp.Reverse();
BigInteger array_int = new BigInteger(temp.ToArray());
tag = tag ^ array_int;
tag = H_mult(H, tag);
return tag;
}
Using SSL decryption in wireshark (using private key), I found that:
The nonce calculated by the C# code is same as that in wireshark (fixed part is client_write_IV and variable part is 8 bytes random)
The value of AAD (auth_data above) (client_write_key, seqNum + ctype + tls_version + plaintext_size) is matching with wireshark value
Cipher text (ctext above) (the C in GHASH(H, A, C)), is also matching the wireshark calculated value
However, the auth_tag calculation (GHASH(H_client, auth_data, ctext)) is failing. It would be great if someone could guide me as to what could be wrong in GHASH function. I just did a basic comparison of results of GF_mult function in python and C#, but the results are not matching too
This is not a final solution, but just an advice. I have seen you are using a lot the function BitConverter.GetBytes, int instead of Int32 or Int16.
The remarks from the official documentation says:
The order of bytes in the array returned by the GetBytes method
depends on whether the computer architecture is little-endian or
big-endian.
As for when you are using the BigInteger structure, it seems to be expecting always the little-endian order:
value
Type: System.Byte[]
An array of byte values in little-endian order.
Prefer using the Int32 and Int16 and pay attention to the order of the bytes before using it on these calculations.
Use log4net to log all the operations. Would be nice to put the same logs in the python program so that you could compare then at once, and check exactly where the calculations change.
Hope this give some tips on where to start.

SHA256 giving 44 length output instead 64 length

I am using the following code to perform SHA256.
public static string GenerateSaltedHash(string plainTextString, string saltString)
{
byte[] salt = Encoding.UTF8.GetBytes(saltString);
byte[] plainText = Encoding.UTF8.GetBytes(plainTextString);
HashAlgorithm algorithm = new SHA256Managed();
byte[] plainTextWithSaltBytes =
new byte[plainText.Length + salt.Length];
for (int i = 0; i < plainText.Length; i++)
{
plainTextWithSaltBytes[i] = plainText[i];
}
for (int i = 0; i < salt.Length; i++)
{
plainTextWithSaltBytes[plainText.Length + i] = salt[i];
}
byte[] bytes = algorithm.ComputeHash(plainTextWithSaltBytes);
return Convert.ToBase64String(algorithm.ComputeHash(plainTextWithSaltBytes));
}
As I am using SHA256, I expect the length of the result to be 64. But I am getting 44.
What is the issue? Will the shorter length output impact security?
Base-64 is 6 bits per character (2^6 = 64).
256 bits / 6 bits per char = 42.6666 char
And that has obviously ended up as 44 due to padding (you will see one or 2 = on the end of the output).
You must be expecting base-16 (AKA hexadecimal) which is 4 bits per character (2^4 = 16).
256 bits / 4 bits per char = 64 char
For hex use this:
return BitConverter.ToString(bytes).Replace("-", string.Empty);

Fixed length Hash

I'm trying to generate a fixed length hash using the code below.
public int GetStableHash(string s)
{
string strKey = "myHashingKey";
UnicodeEncoding UE = new UnicodeEncoding();
byte[] key = UE.GetBytes(strKey);
byte[] contentBuffer = UE.GetBytes(s);
// Initialize the keyed hash object.
HMACSHA256 myhmacsha256 = new HMACSHA256(key);
byte[] hashValue = myhmacsha256.ComputeHash(contentBuffer);
return BitConverter.ToInt32(hashValue,0);
}
It gives me output like this.
-1635597425
I need a positive number fixed length (8 digits). Can someone plz tell me how to do that.
Thanks in advance.
You're trying to get a 8-digit number from a hash function output which can have up to
lg(2^256) ~ 78
decimal digits.
You should either consider changing hash function or substitute up to 26 bits (2^26 = 67108864, 2^27 = 134217728 - 9 digits already) rounded down to 3 bytes (24 bits) from output and get Int32 from those 3 bytes.
public int GetStableHash(string s)
{
...
byte[] hashValue = myhmacsha256.ComputeHash(contentBuffer);
byte[] hashPart = new byte[3];
hashValue.CopyTo(hashPart, 29); // 32-3
return System.BitConverter.ToInt32(hashPart, 0);
}
unchecked
{
int num = BitConverter.ToInt32(hashValue,0);
if (num < 0)
{
num = -num;
}
num %= 100000000;
}
I'm using the unchecked because otherwise -int.MinValue would break (but note that normally programs are compiled with the unchecked "flag" "on")
The code means:
unchecked
don't do overflow controls
if (num < 0)
{
num = -num;
}
make the number positive if negative
num %= 100000000;
take the remainder (that has 0-8 digits)
much shorter:
return unchecked((int)((uint)BitConverter.ToInt32(hashValue,0) % 100000000));

How to convert a byte array (MD5 hash) into a string (36 chars)?

I've got a byte array that was created using a hash function. I would like to convert this array into a string. So far so good, it will give me hexadecimal string.
Now I would like to use something different than hexadecimal characters, I would like to encode the byte array with these 36 characters: [a-z][0-9].
How would I go about?
Edit: the reason I would to do this, is because I would like to have a smaller string, than a hexadecimal string.
I adapted my arbitrary-length base conversion function from this answer to C#:
static string BaseConvert(string number, int fromBase, int toBase)
{
var digits = "0123456789abcdefghijklmnopqrstuvwxyz";
var length = number.Length;
var result = string.Empty;
var nibbles = number.Select(c => digits.IndexOf(c)).ToList();
int newlen;
do {
var value = 0;
newlen = 0;
for (var i = 0; i < length; ++i) {
value = value * fromBase + nibbles[i];
if (value >= toBase) {
if (newlen == nibbles.Count) {
nibbles.Add(0);
}
nibbles[newlen++] = value / toBase;
value %= toBase;
}
else if (newlen > 0) {
if (newlen == nibbles.Count) {
nibbles.Add(0);
}
nibbles[newlen++] = 0;
}
}
length = newlen;
result = digits[value] + result; //
}
while (newlen != 0);
return result;
}
As it's coming from PHP it might not be too idiomatic C#, there are also no parameter validity checks. However, you can feed it a hex-encoded string and it will work just fine with
var result = BaseConvert(hexEncoded, 16, 36);
It's not exactly what you asked for, but encoding the byte[] into hex is trivial.
See it in action.
Earlier tonight I came across a codereview question revolving around the same algorithm being discussed here. See: https://codereview.stackexchange.com/questions/14084/base-36-encoding-of-a-byte-array/
I provided a improved implementation of one of its earlier answers (both use BigInteger). See: https://codereview.stackexchange.com/a/20014/20654. The solution takes a byte[] and returns a Base36 string. Both the original and mine include simple benchmark information.
For completeness, the following is the method to decode a byte[] from an string. I'll include the encode function from the link above as well. See the text after this code block for some simple benchmark info for decoding.
const int kByteBitCount= 8; // number of bits in a byte
// constants that we use in FromBase36String and ToBase36String
const string kBase36Digits= "0123456789abcdefghijklmnopqrstuvwxyz";
static readonly double kBase36CharsLengthDivisor= Math.Log(kBase36Digits.Length, 2);
static readonly BigInteger kBigInt36= new BigInteger(36);
// assumes the input 'chars' is in big-endian ordering, MSB->LSB
static byte[] FromBase36String(string chars)
{
var bi= new BigInteger();
for (int x= 0; x < chars.Length; x++)
{
int i= kBase36Digits.IndexOf(chars[x]);
if (i < 0) return null; // invalid character
bi *= kBigInt36;
bi += i;
}
return bi.ToByteArray();
}
// characters returned are in big-endian ordering, MSB->LSB
static string ToBase36String(byte[] bytes)
{
// Estimate the result's length so we don't waste time realloc'ing
int result_length= (int)
Math.Ceiling(bytes.Length * kByteBitCount / kBase36CharsLengthDivisor);
// We use a List so we don't have to CopyTo a StringBuilder's characters
// to a char[], only to then Array.Reverse it later
var result= new System.Collections.Generic.List<char>(result_length);
var dividend= new BigInteger(bytes);
// IsZero's computation is less complex than evaluating "dividend > 0"
// which invokes BigInteger.CompareTo(BigInteger)
while (!dividend.IsZero)
{
BigInteger remainder;
dividend= BigInteger.DivRem(dividend, kBigInt36, out remainder);
int digit_index= Math.Abs((int)remainder);
result.Add(kBase36Digits[digit_index]);
}
// orientate the characters in big-endian ordering
result.Reverse();
// ToArray will also trim the excess chars used in length prediction
return new string(result.ToArray());
}
"A test 1234. Made slightly larger!" encodes to Base64 as "165kkoorqxin775ct82ist5ysteekll7kaqlcnnu6mfe7ag7e63b5"
To decode that Base36 string 1,000,000 times takes 12.6558909 seconds on my machine (I used the same build and machine conditions as provided in my answer on codereview)
You mentioned that you were dealing with a byte[] for the MD5 hash, rather than a hexadecimal string representation of it, so I think this solution provide the least overhead for you.
If you want a shorter string and can accept [a-zA-Z0-9] and + and / then look at Convert.ToBase64String
Using BigInteger (needs the System.Numerics reference)
Using BigInteger (needs the System.Numerics reference)
const string chars = "0123456789abcdefghijklmnopqrstuvwxyz";
// The result is padded with chars[0] to make the string length
// (int)Math.Ceiling(bytes.Length * 8 / Math.Log(chars.Length, 2))
// (so that for any value [0...0]-[255...255] of bytes the resulting
// string will have same length)
public static string ToBaseN(byte[] bytes, string chars, bool littleEndian = true, int len = -1)
{
if (bytes.Length == 0 || len == 0)
{
return String.Empty;
}
// BigInteger saves in the last byte the sign. > 7F negative,
// <= 7F positive.
// If we have a "negative" number, we will prepend a 0 byte.
byte[] bytes2;
if (littleEndian)
{
if (bytes[bytes.Length - 1] <= 0x7F)
{
bytes2 = bytes;
}
else
{
// Note that Array.Resize doesn't modify the original array,
// but creates a copy and sets the passed reference to the
// new array
bytes2 = bytes;
Array.Resize(ref bytes2, bytes.Length + 1);
}
}
else
{
bytes2 = new byte[bytes[0] > 0x7F ? bytes.Length + 1 : bytes.Length];
// We copy and reverse the array
for (int i = bytes.Length - 1, j = 0; i >= 0; i--, j++)
{
bytes2[j] = bytes[i];
}
}
BigInteger bi = new BigInteger(bytes2);
// A little optimization. We will do many divisions based on
// chars.Length .
BigInteger length = chars.Length;
// We pre-calc the length of the string. We know the bits of
// "information" of a byte are 8. Using Log2 we calc the bits of
// information of our new base.
if (len == -1)
{
len = (int)Math.Ceiling(bytes.Length * 8 / Math.Log(chars.Length, 2));
}
// We will build our string on a char[]
var chs = new char[len];
int chsIndex = 0;
while (bi > 0)
{
BigInteger remainder;
bi = BigInteger.DivRem(bi, length, out remainder);
chs[littleEndian ? chsIndex : len - chsIndex - 1] = chars[(int)remainder];
chsIndex++;
if (chsIndex < 0)
{
if (bi > 0)
{
throw new OverflowException();
}
}
}
// We append the zeros that we skipped at the beginning
if (littleEndian)
{
while (chsIndex < len)
{
chs[chsIndex] = chars[0];
chsIndex++;
}
}
else
{
while (chsIndex < len)
{
chs[len - chsIndex - 1] = chars[0];
chsIndex++;
}
}
return new string(chs);
}
public static byte[] FromBaseN(string str, string chars, bool littleEndian = true, int len = -1)
{
if (str.Length == 0 || len == 0)
{
return new byte[0];
}
// This should be the maximum length of the byte[] array. It's
// the opposite of the one used in ToBaseN.
// Note that it can be passed as a parameter
if (len == -1)
{
len = (int)Math.Ceiling(str.Length * Math.Log(chars.Length, 2) / 8);
}
BigInteger bi = BigInteger.Zero;
BigInteger length2 = chars.Length;
BigInteger mult = BigInteger.One;
for (int j = 0; j < str.Length; j++)
{
int ix = chars.IndexOf(littleEndian ? str[j] : str[str.Length - j - 1]);
// We didn't find the character
if (ix == -1)
{
throw new ArgumentOutOfRangeException();
}
bi += ix * mult;
mult *= length2;
}
var bytes = bi.ToByteArray();
int len2 = bytes.Length;
// BigInteger adds a 0 byte for positive numbers that have the
// last byte > 0x7F
if (len2 >= 2 && bytes[len2 - 1] == 0)
{
len2--;
}
int len3 = Math.Min(len, len2);
byte[] bytes2;
if (littleEndian)
{
if (len == bytes.Length)
{
bytes2 = bytes;
}
else
{
bytes2 = new byte[len];
Array.Copy(bytes, bytes2, len3);
}
}
else
{
bytes2 = new byte[len];
for (int i = 0; i < len3; i++)
{
bytes2[len - i - 1] = bytes[i];
}
}
for (int i = len3; i < len2; i++)
{
if (bytes[i] != 0)
{
throw new OverflowException();
}
}
return bytes2;
}
Be aware that they are REALLY slow! REALLY REALLY slow! (2 minutes for 100k). To speed them up you would probably need to rewrite the division/mod operation so that they work directly on a buffer, instead of each time recreating the scratch pads as it's done by BigInteger. And it would still be SLOW. The problem is that the time needed to encode the first byte is O(n) where n is the length of the byte array (this because all the array needs to be divided by 36). Unless you want to work with blocks of 5 bytes and lose some bits. Each symbol of Base36 carries around 5.169925001 bits. So 8 of these symbols would carry 41.35940001 bits. Very near 40 bytes.
Note that these methods can work both in little-endian mode and in big-endian mode. The endianness of the input and of the output is the same. Both methods accept a len parameter. You can use it to trim excess 0 (zeroes). Note that if you try to make an output too much small to contain the input, an OverflowException will be thrown.
System.Text.Encoding enc = System.Text.Encoding.ASCII;
string myString = enc.GetString(myByteArray);
You can play with what encoding you need:
System.Text.ASCIIEncoding,
System.Text.UnicodeEncoding,
System.Text.UTF7Encoding,
System.Text.UTF8Encoding
To match the requrements [a-z][0-9] you can use it:
Byte[] bytes = new Byte[] { 200, 180, 34 };
string result = String.Join("a", bytes.Select(x => x.ToString()).ToArray());
You will have string representation of bytes with char separator. To convert back you will need to split, and convert the string[] to byte[] using the same approach with .Select().
Usually a power of 2 is used - that way one character maps to a fixed number of bits. An alphabet of 32 bits for instance would map to 5 bits. The only challenge in that case is how to deserialize variable-length strings.
For 36 bits you could treat the data as a large number, and then:
divide by 36
add the remainder as character to your result
repeat until the division results in 0
Easier said than done perhaps.
you can use modulu.
this example encode your byte array to string of [0-9][a-z].
change it if you want.
public string byteToString(byte[] byteArr)
{
int i;
char[] charArr = new char[byteArr.Length];
for (i = 0; i < byteArr.Length; i++)
{
int byt = byteArr[i] % 36; // 36=num of availible charachters
if (byt < 10)
{
charArr[i] = (char)(byt + 48); //if % result is a digit
}
else
{
charArr[i] = (char)(byt + 87); //if % result is a letter
}
}
return new String(charArr);
}
If you don't want to lose data for de-encoding you can use this example:
public string byteToString(byte[] byteArr)
{
int i;
char[] charArr = new char[byteArr.Length*2];
for (i = 0; i < byteArr.Length; i++)
{
charArr[2 * i] = (char)((int)byteArr[i] / 36+48);
int byt = byteArr[i] % 36; // 36=num of availible charachters
if (byt < 10)
{
charArr[2*i+1] = (char)(byt + 48); //if % result is a digit
}
else
{
charArr[2*i+1] = (char)(byt + 87); //if % result is a letter
}
}
return new String(charArr);
}
and now you have a string double-lengthed when odd char is the multiply of 36 and even char is the residu. for example: 200=36*5+20 => "5k".

Categories