Datatype of Methods - c#

Question
How does a delegate store a reference to a function? The source code appears to refer to it as an Object, and the manner in which it invokes the method seems redacted from the source code. Can anyone explain how C# is handling this?
Original Post
It seems I'm constantly fighting the abstractions C# imposes on its programmers. One that's been irking me is the obfuscation of Functions/Methods. As I understand it, all methods are in fact anonymous methods assigned to properties of a class. This is the reason why no function is prefixed by a datatype. For example...
void foo() { ... }
... would be written in Javascript as...
Function foo = function():void { ... };
In my experience, Anonymous functions are typically bad form, but here it's replete throughout the language standard. Because you cannot define a function with its datatype (and apparently the implication/handling is assumed by the compiler), how does one store a reference to a method if the type is never declared?
I'm trying very hard to avoid Delegates and its variants (Action & Func), both because...
it is another abstraction from what's actually happening
the unnecessary overhead required to instantiate these classes (which in turn carry their own pointers to the methods being called).
Looking at the source code for the Delegate.cs, it appears to refer to the reference of a function as simply Object (see lines 23-25).
If these really are objects, how are we calling them? According to the delegate.cs trail, it dead-ends on the following path:
Delegate.cs:DynamicInvoke() > DynamicInvokeImpl() > methodinfo.cs:UnsafeInvoke() > UnsafeInvokeInternal() > RuntimeMethodHandle.InvokeMethod() > runtimehandles.cs:InvokeMethod()
internal extern static object InvokeMethod(object target, object[] arguments, Signature sig, bool constructor);
This really doesn't explain how its invoked if indeed the method is an object. It feels as though this is not code at all, and the actual code called has been redacted from source repository.
Your help is appreciated.
Response to Previous Comments
#Amy: I gave an example immediately after that statement to explain what I meant. If a function were prefixed by a datatype, you could write a true anonymous function, and store it as a property to an Object such as:
private Dictionary<string, Function> ops = new Dictionary<string, Function> {
{"foo", int (int a, int b) { return a + b } }
};
As it stands, C# doesn't allow you to write true anonymous functions, and walls that functionality off behind Delegates and Lambda expressions.
#500 Internal server error: I already explained what I was trying to do. I even bolded it. You assume there's any ulterior motive here; I'm simply trying to understand how C# stores a reference to a method. I even provided links to the source code so that others could read the code for themselves and help answer the question.
#Dialecticus: Obviously if I already found the typical answer on Google, the only other place to find the answer I'm looking for would be here. I realize this is outside the knowledge of most C# developers, and that's why I've provided the source code links. You don't have to reply if you don't know the answer.

While I'm not fully understanding your insights about "true anonymous functions", "not prefixed by a data type" etc, I can explain you how applications written in C# call methods.
First of all, there is no such a thing "function" in C#. Each and every executable entity in C# is in fact a method, that means, it belongs to a class. Even if you define lambdas or anonymous functions like this:
collection.Where(item => item > 0);
the C# compiler creates a compiler-generated class behind the scenes and puts the lambda body return item > 0 into a compiler-generated method.
So assuming you have this code:
class Example
{
public static void StaticMethod() { }
public void InstanceMethod() { }
public Action Property { get; } = () => { };
}
static class Program
{
static void Main()
{
Example.StaticMethod();
var ex = new Example();
ex.InstanceMethod();
ex.Property();
}
}
The C# compiler will create an IL code out of that. The IL code is not executable right away, it needs to be run in a virtual machine.
The IL code will contain a class Example with two methods (actually, four - a default constructor and the property getter method will be automatically generated) and a compiler-generated class containing a method whose body is the body of the lambda expression.
The IL code of Main will look like this (simplified):
call void Example::StaticMethod()
newobj instance void Example::.ctor()
callvirt instance void Example::InstanceMethod()
callvirt instance class [mscorlib]System.Action Example::get_Prop()
callvirt instance void [mscorlib]System.Action::Invoke()
Notice those call and callvirt instructions: these are method calls.
To actually execute the called methods, their IL code needs to be compiled into machine code (CPU instructions). This occurs in the virtual machine called .NET Runtime. There are several of them like .NET Framework, .NET Core, Mono etc.
A .NET Runtime contains a JIT (just-in-time) compiler. It converts the IL code to the actually executable code during the execution of your program.
When the .NET Runtime first encounters the IL code "call method StaticMethod from class Example", it first looks in the internal cache of already compiled methods. When there are no matches (which means this is the first call of that method), the Runtime asks the JIT compiler to create such a compiled-and-ready-to-run method using the IL code. The IL code is converted into a sequence of CPU operations and stored in the process' memory. A pointer to that compiled code is stored in the cache for future reuse.
This all will happen behind the call or callvirt IL instructions (again, simplified).
Once this happened, the Runtime is ready to execute the method. The CPU gets the compiled code's first operation address as the next operation to execute and goes on until the code returns. Then, the Runtime takes over again and proceeds with next IL instructions.
The DynamicInvoke method of the delegates does the same thing: it instructs the Runtime to call a method (after some additional arguments checks etc). The "dead end" you mention RuntimeMethodHandle.InvokeMethod is an intrinsic call to the Runtime directly. The parameters of this method are:
object target - the object on which the delegate invokes the instance method (this parameter).
object[] arguments - the arguments to pass to the method.
Signature sig - the actual method to call, Signature is an internal class that provides the connection between the managed IL code and native executable code.
bool constructor - true if this is a constructor call.
So in summary, methods are not represented as objects in C# (while you of course can have a delegate instance that is an object, but it doesn't represent the executable method, it rather provides an invokable reference to it).
Methods are called by the Runtime, the JIT compiler makes the methods executable.
You cannot define a global "function" outside of classes in C#. You could get a direct native pointer to the compiled (jitted) method code and probably even call it manually by directly manipulating own process' memory. But why?

You clearly misunderstand main differences between script languages, C/C++ and C#.
I guess the main difficulty is that there is no such thing as a function in C#. At all.
C#7 introduced the new feature "a local function", but that is not what a function in JS is.
All pieces of code are methods.
That name is intentionally different from function or a procedure to emphasize the fact that all executable code in C# belongs to a class.
Anonymous methods and lambdas are just a syntax sugar.
A compiler will generate a real method in the same (or a nested) class, where the method with anonymous method declaration belongs to.
This simple article explains it. You can take the examples, compile them and check the generated IL code yourself.
So all the methods (anonymous or not) do belong to a class. It's impossible to answer your updated question, besides saying It does not store a reference to a function, as there is no such thing in C#.
How does one store a reference to a method?
Depending on what you mean by reference, it can be either
An instance of MethodInfo class, used to reference reflection information for a method,
RuntimeMethodHandle (obtainable via RuntimeMethodInfo.MethodHandle) stores a real memory pointer to a JITed method code
A delegate, that is very different from just a memory pointer, but logically could be used to "pass a method reference to another method" .
I believe you are looking for the MethodInfo option, it has a MethodInfo.Invoke method which is very much alike Function..apply function in JS. You have already seen in the Delegate source code how that class is used.
If by "reference" you mean the C-style function pointer, it is in RuntimeMethodHandle struct. You should never use it without solid understanding how a particular .Net platform implementation and a C# compiler work.
Hopefully it clarifies things a bit.

A delegate is simply a pointer(memory location to jump to) to a method with the specified parameters and return type. Any Method that matches the signature(Parameters and return type) is eligible to fulfill the role, irrespective of the defined object. Anonymous simply means the delegate is not named.
Most times the type is implied(if it is not you will get a compiler error):
C# is a strongly typed language. That means every expression (including delegates) MUST have a return type(including void) as well as strongly typed parameters(if any). Generics were created to permit explicit types to be used within general contexts, such as Lists.
To put it another way, delegates are the type-safe managed version of C++ callbacks.
Delegates are helpful in eliminating switch statements by allowing the code to jump to the proper handler without testing any conditions.
A delegate is similar to a Closure in Javascript terminology.
In your response to Amy, you are attempting to equate a loosely typed language like JS, and a strongly typed language C#. In C# it is not possible to pass an arbitrary(loosely-typed) function anywhere. Lambdas and delegates are the only way to guarantee type safety.
I would recommend trying F#, if you are looking to pass functions around.
EDIT:
If you are trying to mimic the behavior of Javascipt, I would try looking at using inheritance through Interfaces. I can mimic multiple inheritance, and be type safe at the same time. But, be aware that it cannot fully supplant Javascript's dependency injection model.

As you probably found out C# doesn't have the concept of a function as in your JavaScript example.
C# is a statically typed language and the only way you can use function pointers is by using the built in types (Func,Action) or custom delegates.(I'm talking about safe,strongly typed pointers)
Javascript is a dynamic language that's why you can do what you describe
If you are willing to lose type safety, you can use the "dynamic" features of C# or refection to achieve what you want like in the following examples (Don't do this,use Func/Action)
using System;
using System.Collections.Generic;
using System.Linq;
using System.Reflection;
namespace ConsoleApp1
{
class Program
{
private static Dictionary<string, Func<int, int, int>> FuncOps = new Dictionary<string, Func<int, int, int>>
{
{"add", (a, b) => a + b},
{"subtract", (a, b) => a - b}
};
//There are no anonymous delegates
//private static Dictionary<string, delegate> DelecateOps = new Dictionary<string, delegate>
//{
// {"add", delegate {} }
//};
private static Dictionary<string, dynamic> DynamicOps = new Dictionary<string, dynamic>
{
{"add", new Func<int, int, int>((a, b) => a + b)},
{"subtract", new Func<int, int, int>((a, b) => a - b)},
{"inverse", new Func<int, int>((a) => -a )} //Can't do this with Func
};
private static Dictionary<string, MethodInfo> ReflectionOps = new Dictionary<string, MethodInfo>
{
{"abs", typeof(Math).GetMethods().Single(m => m.Name == "Abs" && m.ReturnParameter.ParameterType == typeof(int))}
};
static void Main(string[] args)
{
Console.WriteLine(FuncOps["add"](3, 2));//5
Console.WriteLine(FuncOps["subtract"](3, 2));//1
Console.WriteLine(DynamicOps["add"](3, 2));//5
Console.WriteLine(DynamicOps["subtract"](3, 2));//1
Console.WriteLine(DynamicOps["inverse"](3));//-3
Console.WriteLine(ReflectionOps["abs"].Invoke(null, new object[] { -1 }));//1
Console.ReadLine();
}
}
}
one more example that you shouldn't use
delegate object CustomFunc(params object[] paramaters);
private static Dictionary<string, CustomFunc> CustomParamsOps = new Dictionary<string, CustomFunc>
{
{"add", parameters => (int) parameters[0] + (int) parameters[1]},
{"subtract", parameters => (int) parameters[0] - (int) parameters[1]},
{"inverse", parameters => -((int) parameters[0])}
};
Console.WriteLine(CustomParamsOps["add"](3, 2)); //5
Console.WriteLine(CustomParamsOps["subtract"](3, 2)); //1
Console.WriteLine(CustomParamsOps["inverse"](3)); //-3

I will provide a really short and simplified answer compared to the others. Everything in C# (classes, variables, properties, structs, etc) has a backed with tons of things your programs can hook into. This network of backend stuff slightly lowers the speed of C# when compared to "deeper" languages like C++, but also gives programmers a lot more tools to work with and makes the language easier to use. In this backend is included things like "garbage collection," which is a feature that automatically deletes objects from memory when there are no variables left that reference them. Speaking of reference, the whole system of passing objects by reference, which is default in C#, is also managed in the backend. In C#, Delegates are possible because of features in this backend that allow for something called "reflection."
From Wikipedia:
Reflection is the ability of a computer program to examine,
introspect, and modify its own structure and behavior at runtime.
So when C# compiles and it finds a Delegate, it is just going to make a function, and then store a reflective reference to that function in the variable, allowing you to pass it around and do all sorts of cool stuff with it. You aren't actually storing the function itself in the variable though, you are storing a reference, which is kinda like an address that points you to where the function is stored in RAM.

Related

Is it possible to simply pass a generic method with generic parameters as an argument to another method in C#?

For a test, I want to create a generic "helper" method which will take take two arguments, the first argument is a function (or a reference to the function) and the 2nd argument is a list of objects for that function that are to be called as its parameters.
The following does this perfectly:
CallMyFunctionWithParamsPlease(new Func<int, int>(MyMethod), new object[] {1});
public static int CallMyFunctionWithParamsPlease(Delegate func, params object[] args)
{
func.DynamicInvoke(args);
return 3;
}
The thing is, this doesn't look very nice when calling it and I wish to abstract it into another method to act as syntatic sugar.
Ideally I want it to be called like this:
CallMyFunctionWithParamsPlease(myMethod, new Object[] {1});
From what I can gather, there is no elegant solution to do this in C# since I cannot pass myMethod by itself as a reference anywhere, instead I must pass it by declaring a new Func along with the return type of the method. Since I'm not using this return type anywhere, I'm not sure why it's necessary to input this information. My limited understanding is that because C# is statically typed, the compiler must know everything and things like this just aren't possible.
Is this true or not? How would I create syntatic sugar to simply pass a method to another method which can be called there without needing to invoke "new Func"? I would have thought simply passing the function as a reference pointer would allow me to do this, but I'm having difficultly doing this too. I looked into delegates, using "unsafe" with pointers, and a few other options. None of them seem to make this possible, or if they do, they didn't explain it in a manner that I could understand.
I simply want to pass a method to another method, and invoke it with a variable list of object params with variable length whereby I don't need to specify this whilst invoking it. I'm not sure if I'm trying to force C# to do something it's not meant to do here, and instead I'd be better off using a dynamically typed language to do this. The problem is I really enjoy the intellisense that the static typing of C# offers, along with the performance improvements over a language like Python. I'd just like a way to syntactically abstract away the boilerplate with my own helper methods for things like this.
UPDATE: Thanks to the comments here it seems I can do this with a lambda expression nice and elegantly. The signature can be simply changed to public static long CallMyFunctionWithParamsPlease<T>(Func<T> func)
If deferred execution is what you want simply pass a Func<TReturnType> to your method (or class). The calling method doesn't need to know how many parameters are involved.
e.g. Assuming MyMethod has a signature int MyMethod(int arg):
CallMyFunctionWithParamsPlease(() => MyMethod(1));
public static int CallMyFunctionWithParamsPlease(Func<int> func)
{
return func();
}
If MyMethod takes two parameters, it's the same call:
CallMyFunctionWithParamsPlease(() => MyMethod(1, 2));

Are the placeholders of Generics compiled as an actual data type? [duplicate]

I had thought that Generics in C# were implemented such that a new class/method/what-have-you was generated, either at run-time or compile-time, when a new generic type was used, similar to C++ templates (which I've never actually looked into and I very well could be wrong, about which I'd gladly accept correction).
But in my coding I came up with an exact counterexample:
static class Program {
static void Main()
{
Test testVar = new Test();
GenericTest<Test> genericTest = new GenericTest<Test>();
int gen = genericTest.Get(testVar);
RegularTest regTest = new RegularTest();
int reg = regTest.Get(testVar);
if (gen == ((object)testVar).GetHashCode())
{
Console.WriteLine("Got Object's hashcode from GenericTest!");
}
if (reg == testVar.GetHashCode())
{
Console.WriteLine("Got Test's hashcode from RegularTest!");
}
}
class Test
{
public new int GetHashCode()
{
return 0;
}
}
class GenericTest<T>
{
public int Get(T obj)
{
return obj.GetHashCode();
}
}
class RegularTest
{
public int Get(Test obj)
{
return obj.GetHashCode();
}
}
}
Both of those console lines print.
I know that the actual reason this happens is that the virtual call to Object.GetHashCode() doesn't resolve to Test.GetHashCode() because the method in Test is marked as new rather than override. Therefore, I know if I used "override" rather than "new" on Test.GetHashCode() then the return of 0 would polymorphically override the method GetHashCode in object and this wouldn't be true, but according to my (previous) understanding of C# generics it wouldn't have mattered because every instance of T would have been replaced with Test, and thus the method call would have statically (or at generic resolution time) been resolved to the "new" method.
So my question is this: How are generics implemented in C#? I don't know CIL bytecode, but I do know Java bytecode so I understand how Object-oriented CLI languages work at a low level. Feel free to explain at that level.
As an aside, I thought C# generics were implemented that way because everyone always calls the generic system in C# "True Generics," compared to the type-erasure system of Java.
In GenericTest<T>.Get(T), the C# compiler has already picked that object.GetHashCode should be called (virtually). There's no way this will resolve to the "new" GetHashCode method at runtime (which will have its own slot in the method-table, rather than overriding the slot for object.GetHashCode).
From Eric Lippert's What's the difference, part one: Generics are not templates, the issue is explained (the setup used is slightly different, but the lessons translate well to your scenario):
This illustrates that generics in C# are not like templates in C++.
You can think of templates as a fancy-pants search-and-replace
mechanism.[...] That’s not how generic types work; generic types are,
well, generic. We do the overload resolution once and bake in the
result. [...] The IL we’ve generated for the generic type already has
the method its going to call picked out. The jitter does not say
“well, I happen to know that if we asked the C# compiler to execute
right now with this additional information then it would have picked a
different overload. Let me rewrite the generated code to ignore the
code that the C# compiler originally generated...” The jitter knows
nothing about the rules of C#.
And a workaround for your desired semantics:
Now, if you do want overload resolution to be re-executed at runtime based on the runtime types of
the arguments, we can do that for you; that’s what the new “dynamic”
feature does in C# 4.0. Just replace “object” with “dynamic” and when
you make a call involving that object, we’ll run the overload
resolution algorithm at runtime and dynamically spit code that calls
the method that the compiler would have picked, had it known all the
runtime types at compile time.

Overhead of delegate definition inside of another method

I'm curious to understand what's happening behind the scenes in a situation like this:
public static void OuterMethod() {
// some random code
var a = 42;
var b = "meaning of life";
Func<string, object> factory = (aString) {
// do something with a and b
return "Hello World";
};
// some more random code
factory("My string");
}
I'm particularly interested in cases where OuterMethod is called very often. In my case it's the MVC request pipeline where OuterMethod is called once for each request.
Am I incurring a lot overhead by having to build factory each time the method is called? I could easily move the Func outside of OuterMethod into its own static method however in my actual scenario because it is defined inside I have access to a lot of variables I need to do my calculation that I would otherwise need to include in the signature of a method defined outside. Maybe this is just a micro optimization but I would like to better understand how the compiler treats these kinds of statements.
The actual lambda is going to result in a new named method (you just don't know what that name is) being created at compile time (the exact semantics will vary based on some of the specifics).
The only work being done on each invocation of the method is the creation of a new delegate object that has its own pointer to the same named method. If constructing that one object instance is really too much for you (hint: its not) then you could save that work by extracting the delegate out of the method.

FxCop rule around ensuring a certain method accepting a lambda is called first in a test

Using a custom FXCop rule, I want to ensure that a method is called at the top of each unit test and that all unit test code is part of an Action passed into that method. Essentially I want this:
[TestMethod]
public void SomeTest()
{
Run(() => {
// ALL unit test code has to be inside a Run call
});
}
It's not hard to ensure that Run is indeed called:
public override void VisitMethod(Method member)
{
var method = member as Method;
if (method == null || method.Attributes == null)
return;
if (method.Attributes.Any(attr => attr.Type.Name.Name == "TestMethodAttribute") &&
method.Instructions != null)
{
if (!method.Instructions.Any(i => i.OpCode == OpCode.Call || i.Value.ToString() == "MyNamespace.Run"))
{
this.Problems.Add(new Problem(this.GetResolution(), method.GetUnmangledNameWithoutTypeParameters()));
}
base.VisitMethod(method);
}
The trick is to ensure there isn't something at the top of the test that is called BEFORE the Run statement. I've spent the past few hours hacking at the Instructions collection for patterns and trying to understand how to use the Body.Statements collection in code effectively.
This could also be posed as a simple IL question. I want to know a specific pattern I can validate that will accept this:
public void SomeTest()
{
Run(() => {
// Potentially lots of code
});
}
But will reject either of these:
public void SomeTest()
{
String blah = “no code allowed before Run”;
Run(() => {
// Potentially lots of code
});
}
public void SomeTest()
{
Run(() => {
// Potentially lots of code
});
String blah = “no code allowed after Run”;
}
Although you can access an expression tree like structure using Method.Body I would probably examine the instructions anyway as I have found it to get confused by common situations in the past (eg. inline array initialisation).
How C# generates the lambda expression depends on what the lambda expression accesses:
If the lambda expression accesses any locals/parameters, it will create an object to hold those values where they can be accessed from the lambda expression, and then create a delegate to an instance method on the object.
If the lambda expression accesses any instance members via this, then it will simply create the delegate to the instance method on this.
Otherwise if the lambda expression doesn't access locals or fields:
Prior to the Roslyn compiler that came with VS2015, it would create a delegate to a static method and cache it in a static field.
As of the Roslyn compiler, it would create an instance method on a nested class and cache the delegate in a static method. (this change was made for performance reasons, calling a delegate to an instance method is faster than calling a delegate to a static method as it doesn't have to shuffle arguments across.)
You could probably create your own evaluation stack and trace the values through the method (I have had to do this in the past, non-trivial and a fair bit of code but not particularly difficult), but I suspect you could achieve "good enough" just by enforcing the following rules:
All locals for the method must be compiler generated.
Static fields may be accessed only if they are compiler generated.
Only System.Action and compiler generated types may be created.
Only Run may be called, and it must be called exactly once.
The call to Run must be followed by a ret instruction (ignoring any number of nop instructions that may appear between them).
No branch instruction may jump to a location after the call to Run.
Prohibit all instructions other than the following:
branch instructions (conditional and unconditional)
argument, local and field accessor instructions.
newobj, call, callvirt, ldftn, nop, ret, ldnull
_Locals (this is just a pseudo instruction that FxCop inserts for local variables.)
FxCop provides RuleUtilities.IsCompilerGenerated to determine if a local is compiler generated, but it won't help for fields and I suspect only for locals if FxCop can find the pdb file. You might find it easier to say "the local/field/type is compiler generated if it's type name is not a valid identifier in C#".
Having said all that, insisting that all tests run entirely via the Run method seems a little arbitrary. If the goal is for the Run method to provide common setup/tear-down logic, there are better ways provided via nunit. Enforcing that people apply your action attribute is much easier than enforcing that they write their test in a particular way.
Alternatively, you could write a Roslyn analyzer instead; analyzers have access to the syntax tree describing how the code was written, without having to reverse engineer the structure from the IL & metadata.

C# Cannot use ref or out parameter inside an anonymous method body

I'm trying to create a function that can create an Action that increments whatever integer is passed in. However my first attempt is giving me an error "cannot use ref or out parameter inside an anonymous method body".
public static class IntEx {
public static Action CreateIncrementer(ref int reference) {
return () => {
reference += 1;
};
}
}
I understand why the compiler doesn't like this, but nonetheless I'd like to have a graceful way to provide a nice incrementer factory that can point to any integer. The only way I'm seeing to do this is something like the following:
public static class IntEx {
public static Action CreateIncrementer(Func<int> getter, Action<int> setter) {
return () => setter(getter() + 1);
}
}
But of course that is more of a pain for the caller to use; requiring the caller to create two lambdas instead of just passing in a reference. Is there any more graceful way of providing this functionality, or will I just have to live with the two-lambda option?
Okay, I've found that it actually is possible with pointers if in unsafe context:
public static class IntEx {
unsafe public static Action CreateIncrementer(int* reference) {
return () => {
*reference += 1;
};
}
}
However, the garbage collector can wreak havoc with this by moving your reference during garbage collection, as the following indicates:
class Program {
static void Main() {
new Program().Run();
Console.ReadLine();
}
int _i = 0;
public unsafe void Run() {
Action incr;
fixed (int* p_i = &_i) {
incr = IntEx.CreateIncrementer(p_i);
}
incr();
Console.WriteLine(_i); // Yay, incremented to 1!
GC.Collect();
incr();
Console.WriteLine(_i); // Uh-oh, still 1!
}
}
One can get around this problem by pinning the variable to a specific spot in memory. This can be done by adding the following to the constructor:
public Program() {
GCHandle.Alloc(_i, GCHandleType.Pinned);
}
That keeps the garbage collector from moving the object around, so exactly what we're looking for. However then you've got to add a destructor to release the pin, and it fragments the memory throughout the lifetime of the object. Not really any easier. This would make more sense in C++, where stuff doesn't get moved around, and resource management is par the course, but not so much in C# where all that is supposed to be automatic.
So looks like the moral of the story is, just wrap that member int in a reference type and be done with it.
(And yes, that's the way I had it working before asking the question, but was just trying to figure out if there was a way I could get rid of all my Reference<int> member variables and just use regular ints. Oh well.)
This is not possible.
The compiler will transform all local variables and parameters used by anonymous methods into fields in an automatically generated closure class.
The CLR does not allow ref types to be stored in fields.
For example, if you pass a value type in a local variable as such a ref parameter, the value's lifetime would extend beyond its stack frame.
It might have been a useful feature for the runtime to allow the creation of variable references with a mechanism to prevent their persistence; such a feature would have allowed an indexer to behave like an array (e.g. so a Dictionary<Int32, Point> could be accessed via "myDictionary[5].X = 9;"). I think such a feature could have been provided safely if such references could not be downcast to other types of objects, nor used as fields, nor passed by reference themselves (since anyplace such a reference could be stored would go out of scope before the reference itself would). Unfortunately, the CLR does not provide such a feature.
To implement what you're after would require that the caller of any function which uses a reference parameter within a closure must wrap within a closure any variable it wants to pass to such a function. If there were a special declaration to indicate that a parameter would be used in such a fashion, it might be practical for a compiler to implement the required behavior. Maybe in a .net 5.0 compiler, though I'm not sure how useful that would be.
BTW, my understanding is that closures in Java use by-value semantics, while those in .net are by-reference. I can understand some occasional uses for by-reference semantics, but using reference by default seems a dubious decision, analogous to the use of default by-reference parameter-passing semantics for VB versions up through VB6. If one wants to capture the value of a variable when creating a delegate to call a function (e.g. if one wants a delegate to call MyFunction(X) using the value of X when the delegate is created), is it better to use a lambda with an extra temp, or is it better to simply use a delegate factory and not bother with Lambda expressions.

Categories