Substring interpolation - c#

Is it possible to do a string interpolation formatting a substring of a string?
I have been searching the Microsoft documents about string interpolation but cannot get a working sample done. reference.
Currently I have :
var description = "the quick brown fox";
var result = $"{description.Substring(0, description.Length < 10 ? description.Length : 10)} jumps..",
using string interpolation I would ideally like to use:
var description = "the quick brown fox";
var result = $"{description:10} jumps..",
editted
I would expect the output of result to be :
The quick jumps..

You can use ranges (C# 8):
var description = "the quick brown fox";
var result = $"{description[..10]} jumps..";

You can use Take method:
description.Take(10)
Unfortunately, this method returns IEnumerable which cannot be directly converted to string (ToString method would return name of type as usually when using it on IEnumerable).
You can't create string using it, because string constructor requires array of chars, so the easiest solution will be:
new string(description.Take(10).ToArray())
Still, such code makes it harder to read if you want to use it few times, so you can create extension method:
public static string TakeFirst(this string text, int number)
{
if (text == null)
return null;
return new string(text.Take(number).ToArray());
}
Then you can just use it:
$"{description.TakeFirst(10)} jumps..";
EDIT: As mentioned in comments, because of allocation of array each time this method is called, there might occur serious performance issues. You can avoid them by implementing TakeFirst method using Substring instead of Take(x).ToArray() solution.

As the question was:
"Is it possible to do a string interpolation formatting a substring of a string?"
In such a manner:
var result = $"{description:10} jumps..",
The answer given from #JohnSkeet and #JeroenMostert was most acurate:
"No, it is not possible."
There are various ways to simplify the call. thanks for #PiotrWojsa for pointing that out. however that doesnt involve the interpolation part..

Related

C# How to treat a string variable as interpolated string?

the interpolated string is easy, just a string lead with $ sign. But what if the string template is coming from outside of your code. For example assume you have a XML file containing following line:
<filePath from="C:\data\settle{date}.csv" to="D:\data\settle{date}.csv"/>
Then you can use LINQ to XML read the content of the attributes in.
//assume the ele is the node <filePath></filePath>
string pathFrom = ele.Attribute("from").value;
string pathTo = ele.Attibute("to").value;
string date = DateTime.Today.ToString("MMddyyyy");
Now how can I inject the date into the pathFrom variable and pathTo variable?
If I have the control of the string itself, things are easy. I can just do var xxx=$"C:\data\settle{date}.csv";But now, what I have is only the variable that I know contains the placeholder date
String interpolation is a compiler feature, so it cannot be used at runtime. This should be clear from the fact that the names of the variables in the scope will in general not be availabe at runtime.
So you will have to roll your own replacement mechanism. It depends on your exact requirements what is best here.
If you only have one (or very few replacements), just do
output = input.Replace("{date}", date);
If the possible replacements are a long list, it might be better to use
output = Regex.Replace(input, #"\{\w+?\}",
match => GetValue(match.Value));
with
string GetValue(string variable)
{
switch (variable)
{
case "{date}":
return DateTime.Today.ToString("MMddyyyy");
default:
return "";
}
}
If you can get an IDictionary<string, string> mapping variable names to values you may simplify this to
output = Regex.Replace(input, #"\{\w+?\}",
match => replacements[match.Value.Substring(1, match.Value.Length-2)]);
You can't directly; the compiler turns your:
string world = "world";
var hw = $"Hello {world}"
Into something like:
string world = "world";
var hw = string.Format("Hello {0}", world);
(It chooses concat, format or formattablestring depending on the situation)
You could engage in a similar process yourself, by replacing "{date" with "{0" and putting the date as the second argument to a string format, etc.
SOLUTION 1:
If you have the ability to change something on xml template change {date} to {0}.
<filePath from="C:\data\settle{0}.csv" to="D:\data\settle{0}.csv" />
Then you can set the value of that like this.
var elementString = string.Format(element.ToString(), DateTime.Now.ToString("MMddyyyy"));
Output: <filePath from="C:\data\settle08092020.csv" to="D:\data\settle08092020.csv" />
SOLUTION 2:
If you can't change the xml template, then this might be my personal course to go.
<filePath from="C:\data\settle{date}.csv" to="D:\data\settle{date}.csv" />
Set the placeholder like this.
element.Attribute("to").Value = element.Attribute("to").Value.Replace("{date}", DateTime.Now.ToString("MMddyyyy"));
element.Attribute("from").Value = element.Attribute("from").Value.Replace("{date}", DateTime.Now.ToString("MMddyyyy"));
Output: <filePath from="C:\data\settle08092020.csv" to="D:\data\settle08092020.csv" />
I hope it helps. Kind regards.
If you treat your original string as a user-input string (or anything that is not processed by the compiler to replace the placeholder, then the question is simple - just use String.Replace() to replace the placehoder {date}, with the value of the date as you wish. Now the followup question is: are you sure that the compiler is not substituting it during compile time, and leaving it untouched for handling at the runtime?
String interpolation allows the developer to combine variables and text to form a string.
Example
Two int variables are created: foo and bar.
int foo = 34;
int bar = 42;
string resultString = $"The foo is {foo}, and the bar is {bar}.";
Console.WriteLine(resultString);
Output:
The foo is 34, and the bar is 42.

Split string with plus sign as a delimiter

I have an issue with a string containing the plus sign (+).
I want to split that string (or if there is some other way to solve my problem)
string ColumnPlusLevel = "+-J10+-J10+-J10+-J10+-J10";
string strpluslevel = "";
strpluslevel = ColumnPlusLevel;
string[] strpluslevel_lines = Regex.Split(strpluslevel, "+");
foreach (string line in strpluslevel_lines)
{
MessageBox.Show(line);
strpluslevel_summa = strpluslevel_summa + line;
}
MessageBox.Show(strpluslevel_summa, "summa sumarum");
The MessageBox is for my testing purpose.
Now... The ColumnPlusLevel string can have very varied entry but it is always a repeated pattern starting with the plus sign.
i.e. "+MJ+MJ+MJ" or "+PPL14.1+PPL14.1+PPL14.1" as examples.
(It comes form Another software and I cant edit the output from that software)
How can I find out what that pattern is that is being repeated?
That in this exampels is the +-J10 or +MJ or +PPL14.1
In my case above I have tested it by using only a MessageBox to show the result but I want the repeated pattering stored in a string later on.
Maybe im doing it wrong by using Split, maybe there is another solution.
Maybe I use Split in the wrong way.
Hope you understand my problem and the result I want.
Thanks for any advice.
/Tomas
How can I find out what that pattern is that is being repeated?
Maybe i didn't understand the requirement fully, but isn't it easy as:
string[] tokens = ColumnPlusLevel.Split(new[]{'+'}, StringSplitOptions.RemoveEmptyEntries);
string first = tokens[0];
bool repeatingPattern = tokens.Skip(1).All(s => s == first);
If repeatingPattern is true you know that the pattern itself is first.
Can you maybe explain how the logic works
The line which contains tokens.Skip(1) is a LINQ query, so you need to add using System.Linq at the top of your code file. Since tokens is a string[] which implements IEnumerable<string> you can use any LINQ (extension-)method. Enumerable.Skip(1) will skip the first because i have already stored that in a variable and i want to know if all others are same. Therefore i use All which returns false as soon as one item doesn't match the condition(so one string is different to the first). If all are same you know that there is a repeating pattern which is already stored in the variable first.
You should use String.Split function :
string pattern = ColumnPlusLevel.Split("+")[0];
...but it is always a repeated pattern starting with the plus sign.
Why do you even need String.Split() here if the pattern always only repeats itself?
string input = #"+MJ+MJ+MJ";
int indexOfSecondPlus = input.IndexOf('+', 1);
string pattern = input.Remove(indexOfSecondPlus, input.Length - indexOfSecondPlus);
//pattern is now "+MJ"
No need of string split, no need to use LinQ
String has a method called Split which let's you split/divide the string based on a given character/character-set:
string givenString = "+-J10+-J10+-J10+-J10+-J10"'
string SplittedString = givenString.Split("+")[0] ///Here + is the character based on which the string would be splitted and 0 is the index number
string result = SplittedString.Replace("-","") //The mothod REPLACE replaces the given string with a targeted string,i added this so that you can get the numbers only from the string

Using C#6 string interpolation like String.Format [duplicate]

C#6.0 have a string interpolation - a nice feature to format strings like:
var name = "John";
WriteLine($"My name is {name}");
The example is converted to
var name = "John";
WriteLine(String.Format("My name is {0}", name));
From the localization point of view, it is much better to store strings like :
"My name is {name} {middlename} {surname}"
than in String.Format notation:
"My name is {0} {1} {2}"
How to use the string interpolation for .NET localization? Is there going to be a way to put $"..." to resource files? Or should strings be stored like "...{name}" and somehow interpolated on fly?
P.S. This question is NOT about "how to make string.FormatIt extension" (there are A LOT of such libraries, SO answers, etc.). This question is about something like Roslyn extension for "string interpolation" in "localization" context (both are terms in MS .NET vocabulary), or dynamic usage like Dylan proposed.
An interpolated string evaluates the block between the curly braces as a C# expression (e.g. {expression}, {1 + 1}, {person.FirstName}).
This means that the expressions in an interpolated string must reference names in the current context.
For example this statement will not compile:
var nameFormat = $"My name is {name}"; // Cannot use *name*
// before it is declared
var name = "Fred";
WriteLine(nameFormat);
Similarly:
class Program
{
const string interpolated = $"{firstName}"; // Name *firstName* does not exist
// in the current context
static void Main(string[] args)
{
var firstName = "fred";
Console.WriteLine(interpolated);
Console.ReadKey();
}
}
To answer your question:
There is no current mechanism provided by the framework to evaluate interpolated strings at runtime. Therefore, you cannot store strings and interpolate on the fly out of the box.
There are libraries that exist that handle runtime interpolation of strings.
According to this discussion on the Roslyn codeplex site, string interpolation will likely not be compatible with resource files (emphasis mine):
String interpolation could be neater and easier to debug than either String.Format or concatenation...
Dim y = $"Robot {name} reporting
{coolant.name} levels are {coolant.level}
{reactor.name} levels are {reactor.level}"
However, this example is fishy. Most professional programmers won't be writing
user-facing strings in code. Instead they'll be storing those strings in resources (.resw, .resx or .xlf) for reasons of localization. So there doesn't seem much use for string interpolation here.
Assuming that your question is more about how to localise interpolated strings in your source code, and not how to handle interpolated string resources...
Given the example code:
var name = "John";
var middlename = "W";
var surname = "Bloggs";
var text = $"My name is {name} {middlename} {surname}";
Console.WriteLine(text);
The output is obviously:
My name is John W Bloggs
Now change the text assignment to fetch a translation instead:
var text = Translate($"My name is {name} {middlename} {surname}");
Translate is implemented like this:
public static string Translate(FormattableString text)
{
return string.Format(GetTranslation(text.Format),
text.GetArguments());
}
private static string GetTranslation(string text)
{
return text; // actually use gettext or whatever
}
You need to provide your own implementation of GetTranslation; it will receive a string like "My name is {0} {1} {2}" and should use GetText or resources or similar to locate and return a suitable translation for this, or just return the original parameter to skip translation.
You will still need to document for your translators what the parameter numbers mean; the text used in the original code string doesn't exist at runtime.
If, for example, in this case GetTranslation returned "{2}. {0} {2}, {1}. Don't wear it out." (hey, localisation is not just about language!) then the output of the full program would be:
Bloggs. John Bloggs, W. Don't wear it out.
Having said this, while using this style of translation is easy to develop, it's hard to actually translate, since the strings are buried in the code and only surface at runtime. Unless you have a tool that can statically explore your code and extract all the translatable strings (without having to hit that code path at runtime), you're better off using more traditional resx files, since they inherently give you a table of text to be translated.
As already said in previous answers: you currently cannot load the format string at runtime (e.g. from resource files) for string interpolation because it is used at compile time.
If you don't care about the compile time feature and just want to have named placeholders, you could use something like this extension method:
public static string StringFormat(this string input, Dictionary<string, object> elements)
{
int i = 0;
var values = new object[elements.Count];
foreach (var elem in elements)
{
input = Regex.Replace(input, "{" + Regex.Escape(elem.Key) + "(?<format>[^}]+)?}", "{" + i + "${format}}");
values[i++] = elem.Value;
}
return string.Format(input, values);
}
Be aware that you cannot have inline expressions like {i+1} here and that this is not code with best performance.
You can use this with a dictionary you load from resource files or inline like this:
var txt = "Hello {name} on {day:yyyy-MM-dd}!".StringFormat(new Dictionary<string, object>
{
["name"] = "Joe",
["day"] = DateTime.Now,
});
String interpolation is difficult to combine with localization because the compiler prefers to translate it to string.Format(...), which does not support localization. However, there is a trick that makes it possible to combine localization and string interpolation; it is described near the end of this article.
Normally string interpolation is translated to string.Format, whose behavior cannot be customized. However, in much the same way as lambda methods sometimes become expression trees, the compiler will switch from string.Format to FormattableStringFactory.Create (a .NET 4.6 method) if the target method accepts a System.FormattableString object.
The problem is, the compiler prefers to call string.Format if possible, so if there were an overload of Localized() that accepted FormattableString, it would not work with string interpolation because the C# compiler would simply ignore it [because there is an overload that accepts a plain string]. Actually, it's worse than that: the compiler also refuses to use FormattableString when calling an extension method.
It can work if you use a non-extension method. For example:
static class Loca
{
public static string lize(this FormattableString message)
{ return message.Format.Localized(message.GetArguments()); }
}
Then you can use it like this:
public class Program
{
public static void Main(string[] args)
{
Localize.UseResourceManager(Resources.ResourceManager);
var name = "Dave";
Console.WriteLine(Loca.lize($"Hello, {name}"));
}
}
It's important to realize that the compiler converts the $"..." string into an old-fashioned format string. So in this example, Loca.lize actually receives "Hello, {0}" as the format string, not "Hello, {name}".
Using the Microsoft.CodeAnalysis.CSharp.Scripting package you can achieve this.
You will need to create an object to store the data in, below a dynamic object is used. You could also create an specific class with all the properties required. The reason to wrap the dynamic object in a class in described here.
public class DynamicData
{
public dynamic Data { get; } = new ExpandoObject();
}
You can then use it as shown below.
var options = ScriptOptions.Default
.AddReferences(
typeof(Microsoft.CSharp.RuntimeBinder.RuntimeBinderException).GetTypeInfo().Assembly,
typeof(System.Runtime.CompilerServices.DynamicAttribute).GetTypeInfo().Assembly);
var globals = new DynamicData();
globals.Data.Name = "John";
globals.Data.MiddleName = "James";
globals.Data.Surname = "Jamison";
var text = "My name is {Data.Name} {Data.MiddleName} {Data.Surname}";
var result = await CSharpScript.EvaluateAsync<string>($"$\"{text}\"", options, globals);
This is compiling the snippet of code and executing it, so it is true C# string interpolation. Though you will have to take into account the performance of this as it is actually compiling and executing your code at runtime. To get around this performance hit if you could use CSharpScript.Create to compile and cache the code.
The C# 6.0 string interpolation won't help you if the format string is not in your C# source code. In that case, you will have to use some other solution, like this library.
If we use interpolation then we are thinking in terms of methods, not constants. In that case we could define our translations as methods:
public abstract class InterpolatedText
{
public abstract string GreetingWithName(string firstName, string lastName);
}
public class InterpolatedTextEnglish : InterpolatedText
{
public override string GreetingWithName(string firstName, string lastName) =>
$"Hello, my name is {firstName} {lastName}.";
}
We can then load an implementation of InterpolatedText for a specific culture. This also provides a way to implement fallback, as one implementation can inherit from another. If English is the default language and other implementations inherit from it, there will at least be something to display until a translation is provided.
This seems a bit unorthodox, but offers some benefits:
Primarily, the string used for interpolation is always stored in a strongly-typed method with clearly-specified arguments.
Given this: "Hello, my name is {0} {1}" can we determine that the placeholders represent first name and last name in that order? There will always be a method which matches values to placeholders, but there's less room for confusion when the interpolated string is stored with its arguments.
Similarly, if we store our translation strings in one place and use them in another, it becomes possible to modify them in a way that breaks the code using them. We can add {2} to a string which will be used elsewhere, and that code will fail at runtime.
Using string interpolation this is impossible. If our translation string doesn't match the available arguments it won't even compile.
There are drawbacks, although I see difficulty in maintaining any solution.
The greatest is portability. If your translation is coded in C# and you switch, it's not the easiest thing to export all of your translations.
It also means that if you wish to farm out translations to different individuals (unless you have one person who speaks everything) then the translators must modify code. It's easy code, but code nonetheless.
Interpolated strings can not refactored out from their (variable) scope because of using of the embedded variables in them.
The only way to relocate the string literal part is passing the scope bound variables as parameter to an other location, and mark their position in the string with special placeholders. However this solution is already "invented" and out there:
string.Format("literal with placeholers", parameters);
or some of advanced library (interpolating runtime), but using the very same concept (passing parameters).
Then you can refactor out the "literal with placeholers" to a resource.

C#6.0 string interpolation localization

C#6.0 have a string interpolation - a nice feature to format strings like:
var name = "John";
WriteLine($"My name is {name}");
The example is converted to
var name = "John";
WriteLine(String.Format("My name is {0}", name));
From the localization point of view, it is much better to store strings like :
"My name is {name} {middlename} {surname}"
than in String.Format notation:
"My name is {0} {1} {2}"
How to use the string interpolation for .NET localization? Is there going to be a way to put $"..." to resource files? Or should strings be stored like "...{name}" and somehow interpolated on fly?
P.S. This question is NOT about "how to make string.FormatIt extension" (there are A LOT of such libraries, SO answers, etc.). This question is about something like Roslyn extension for "string interpolation" in "localization" context (both are terms in MS .NET vocabulary), or dynamic usage like Dylan proposed.
An interpolated string evaluates the block between the curly braces as a C# expression (e.g. {expression}, {1 + 1}, {person.FirstName}).
This means that the expressions in an interpolated string must reference names in the current context.
For example this statement will not compile:
var nameFormat = $"My name is {name}"; // Cannot use *name*
// before it is declared
var name = "Fred";
WriteLine(nameFormat);
Similarly:
class Program
{
const string interpolated = $"{firstName}"; // Name *firstName* does not exist
// in the current context
static void Main(string[] args)
{
var firstName = "fred";
Console.WriteLine(interpolated);
Console.ReadKey();
}
}
To answer your question:
There is no current mechanism provided by the framework to evaluate interpolated strings at runtime. Therefore, you cannot store strings and interpolate on the fly out of the box.
There are libraries that exist that handle runtime interpolation of strings.
According to this discussion on the Roslyn codeplex site, string interpolation will likely not be compatible with resource files (emphasis mine):
String interpolation could be neater and easier to debug than either String.Format or concatenation...
Dim y = $"Robot {name} reporting
{coolant.name} levels are {coolant.level}
{reactor.name} levels are {reactor.level}"
However, this example is fishy. Most professional programmers won't be writing
user-facing strings in code. Instead they'll be storing those strings in resources (.resw, .resx or .xlf) for reasons of localization. So there doesn't seem much use for string interpolation here.
Assuming that your question is more about how to localise interpolated strings in your source code, and not how to handle interpolated string resources...
Given the example code:
var name = "John";
var middlename = "W";
var surname = "Bloggs";
var text = $"My name is {name} {middlename} {surname}";
Console.WriteLine(text);
The output is obviously:
My name is John W Bloggs
Now change the text assignment to fetch a translation instead:
var text = Translate($"My name is {name} {middlename} {surname}");
Translate is implemented like this:
public static string Translate(FormattableString text)
{
return string.Format(GetTranslation(text.Format),
text.GetArguments());
}
private static string GetTranslation(string text)
{
return text; // actually use gettext or whatever
}
You need to provide your own implementation of GetTranslation; it will receive a string like "My name is {0} {1} {2}" and should use GetText or resources or similar to locate and return a suitable translation for this, or just return the original parameter to skip translation.
You will still need to document for your translators what the parameter numbers mean; the text used in the original code string doesn't exist at runtime.
If, for example, in this case GetTranslation returned "{2}. {0} {2}, {1}. Don't wear it out." (hey, localisation is not just about language!) then the output of the full program would be:
Bloggs. John Bloggs, W. Don't wear it out.
Having said this, while using this style of translation is easy to develop, it's hard to actually translate, since the strings are buried in the code and only surface at runtime. Unless you have a tool that can statically explore your code and extract all the translatable strings (without having to hit that code path at runtime), you're better off using more traditional resx files, since they inherently give you a table of text to be translated.
As already said in previous answers: you currently cannot load the format string at runtime (e.g. from resource files) for string interpolation because it is used at compile time.
If you don't care about the compile time feature and just want to have named placeholders, you could use something like this extension method:
public static string StringFormat(this string input, Dictionary<string, object> elements)
{
int i = 0;
var values = new object[elements.Count];
foreach (var elem in elements)
{
input = Regex.Replace(input, "{" + Regex.Escape(elem.Key) + "(?<format>[^}]+)?}", "{" + i + "${format}}");
values[i++] = elem.Value;
}
return string.Format(input, values);
}
Be aware that you cannot have inline expressions like {i+1} here and that this is not code with best performance.
You can use this with a dictionary you load from resource files or inline like this:
var txt = "Hello {name} on {day:yyyy-MM-dd}!".StringFormat(new Dictionary<string, object>
{
["name"] = "Joe",
["day"] = DateTime.Now,
});
String interpolation is difficult to combine with localization because the compiler prefers to translate it to string.Format(...), which does not support localization. However, there is a trick that makes it possible to combine localization and string interpolation; it is described near the end of this article.
Normally string interpolation is translated to string.Format, whose behavior cannot be customized. However, in much the same way as lambda methods sometimes become expression trees, the compiler will switch from string.Format to FormattableStringFactory.Create (a .NET 4.6 method) if the target method accepts a System.FormattableString object.
The problem is, the compiler prefers to call string.Format if possible, so if there were an overload of Localized() that accepted FormattableString, it would not work with string interpolation because the C# compiler would simply ignore it [because there is an overload that accepts a plain string]. Actually, it's worse than that: the compiler also refuses to use FormattableString when calling an extension method.
It can work if you use a non-extension method. For example:
static class Loca
{
public static string lize(this FormattableString message)
{ return message.Format.Localized(message.GetArguments()); }
}
Then you can use it like this:
public class Program
{
public static void Main(string[] args)
{
Localize.UseResourceManager(Resources.ResourceManager);
var name = "Dave";
Console.WriteLine(Loca.lize($"Hello, {name}"));
}
}
It's important to realize that the compiler converts the $"..." string into an old-fashioned format string. So in this example, Loca.lize actually receives "Hello, {0}" as the format string, not "Hello, {name}".
Using the Microsoft.CodeAnalysis.CSharp.Scripting package you can achieve this.
You will need to create an object to store the data in, below a dynamic object is used. You could also create an specific class with all the properties required. The reason to wrap the dynamic object in a class in described here.
public class DynamicData
{
public dynamic Data { get; } = new ExpandoObject();
}
You can then use it as shown below.
var options = ScriptOptions.Default
.AddReferences(
typeof(Microsoft.CSharp.RuntimeBinder.RuntimeBinderException).GetTypeInfo().Assembly,
typeof(System.Runtime.CompilerServices.DynamicAttribute).GetTypeInfo().Assembly);
var globals = new DynamicData();
globals.Data.Name = "John";
globals.Data.MiddleName = "James";
globals.Data.Surname = "Jamison";
var text = "My name is {Data.Name} {Data.MiddleName} {Data.Surname}";
var result = await CSharpScript.EvaluateAsync<string>($"$\"{text}\"", options, globals);
This is compiling the snippet of code and executing it, so it is true C# string interpolation. Though you will have to take into account the performance of this as it is actually compiling and executing your code at runtime. To get around this performance hit if you could use CSharpScript.Create to compile and cache the code.
The C# 6.0 string interpolation won't help you if the format string is not in your C# source code. In that case, you will have to use some other solution, like this library.
If we use interpolation then we are thinking in terms of methods, not constants. In that case we could define our translations as methods:
public abstract class InterpolatedText
{
public abstract string GreetingWithName(string firstName, string lastName);
}
public class InterpolatedTextEnglish : InterpolatedText
{
public override string GreetingWithName(string firstName, string lastName) =>
$"Hello, my name is {firstName} {lastName}.";
}
We can then load an implementation of InterpolatedText for a specific culture. This also provides a way to implement fallback, as one implementation can inherit from another. If English is the default language and other implementations inherit from it, there will at least be something to display until a translation is provided.
This seems a bit unorthodox, but offers some benefits:
Primarily, the string used for interpolation is always stored in a strongly-typed method with clearly-specified arguments.
Given this: "Hello, my name is {0} {1}" can we determine that the placeholders represent first name and last name in that order? There will always be a method which matches values to placeholders, but there's less room for confusion when the interpolated string is stored with its arguments.
Similarly, if we store our translation strings in one place and use them in another, it becomes possible to modify them in a way that breaks the code using them. We can add {2} to a string which will be used elsewhere, and that code will fail at runtime.
Using string interpolation this is impossible. If our translation string doesn't match the available arguments it won't even compile.
There are drawbacks, although I see difficulty in maintaining any solution.
The greatest is portability. If your translation is coded in C# and you switch, it's not the easiest thing to export all of your translations.
It also means that if you wish to farm out translations to different individuals (unless you have one person who speaks everything) then the translators must modify code. It's easy code, but code nonetheless.
Interpolated strings can not refactored out from their (variable) scope because of using of the embedded variables in them.
The only way to relocate the string literal part is passing the scope bound variables as parameter to an other location, and mark their position in the string with special placeholders. However this solution is already "invented" and out there:
string.Format("literal with placeholers", parameters);
or some of advanced library (interpolating runtime), but using the very same concept (passing parameters).
Then you can refactor out the "literal with placeholers" to a resource.

Replacing _x with string.empty using Regex.Replace

I have a string "region_2>0" where I want to replace _2 with string.empty using Regex.
My expression is ((_)[^_]*)\w(?=[\s=!><]) which in both Regulator and Expresso gives me _2. However, the code(c#):
Regex.Match(legacyExpression, "((_)[^_]*)\\w(?=[\\s=!><])").Value
gives me "_2>0", which also causes the replace to be wrong (It returns "region" since removing the whole "_2>0" instead of "_2". The result I want is "region>0". Shouldn't the code and the regex programs give the same results? And how can I get it to work?
(Note the string is not static, it could be in many different forms, but the rule is I want to replace the last _X in the string with string.empty.
Thanks!
I copied your code as is into the new project:
static void Main(string[] args)
{
var legacyExpression = "region_2>0";
var rex = Regex.Match(legacyExpression, "((_)[^_]*)\\w(?=[\\s=!><])").Value;
Console.WriteLine(rex);
Console.ReadKey();
}
The output is _2.
I think this could work
(_\d+)

Categories