Difference between integral and float point arithmetic in C#? [closed] - c#

Closed. This question needs to be more focused. It is not currently accepting answers.
Want to improve this question? Update the question so it focuses on one problem only by editing this post.
Closed 3 years ago.
Improve this question
What is difference between integral and float point arithmetic in C#?
I tried looking online and reading articles but it was not answering the question directly.

Several arithmetic operators are affected by integer vs floating point logic. The most common one that trips people up is the divisor operator
Integer division
For the operands of integer types, the result of the / operator is of an integer type and equals the quotient of the two operands rounded towards zero:
Floating-point division
For the float, double, and decimal types, the result of the / operator is the quotient of the two operands:
an example is shown below.
var intResult = 5/2; //result is 2, not 2.5
var doubleResult = 5/2.0; //result is 2.5
Other items affected by integer vs floating point logic are the following
remainder operator
Integer remainder
For the operands of integer types, the result of a % b is the value produced by a - (a / b) * b. The sign of the non-zero remainder is the same as that of the first operand...
Floating-point remainder
For the float and double operands, the result of x % y for the finite x and y is the value z such that
The sign of z, if non-zero, is the same as the sign of x.
The absolute value of z is the value produced by |x| - n * |y| where n is the largest possible integer that is less than or equal to |x| / |y| and |x| and |y| are the absolute values of x and y, respectively.
The remainder operator just produces a remainder for both integer and floating point operations. The description for a floating point remainder just has to be more descriptive since it is operating on floating point values. Examples are shown below
Console.WriteLine(5 % 4); // output: 1
Console.WriteLine(5 % -4); // output: 1
Console.WriteLine(-5 % 4); // output: -1
Console.WriteLine(-5 % -4); // output: -1
Console.WriteLine(-5.2f % 2.0f); // output: -1.2
Console.WriteLine(5.9 % 3.1); // output: 2.8
Console.WriteLine(5.9m % 3.1m); // output: 2.8
Another example just to show that integer remainders and float remainders are the same. Only difference is one returns an int and the other returns a double.
Console.WriteLine(5.0 % 4.0); // output: 1.0
arithmetic overflow and divide by zero
Integer arithmetic overflow
Integer division by zero always throws a DivideByZeroException.
In case of integer arithmetic overflow, an overflow checking context, which can be checked or unchecked, controls the resulting behavior:
In a checked context, if overflow happens in a constant expression, a compile-time error occurs. Otherwise, when the operation is performed at run time, an OverflowException is thrown.
In an unchecked context, the result is truncated by discarding any high-order bits that don't fit in the destination type.
Along with the checked and unchecked statements, you can use the checked and unchecked operators to control the overflow checking context, in which an expression is evaluated:
int a = int.MaxValue;
int b = 3;
Console.WriteLine(unchecked(a + b)); // output: -2147483646
try
{
int d = checked(a + b);
}
catch(OverflowException)
{
Console.WriteLine($"Overflow occured when adding {a} to {b}.");
}
Floating-point arithmetic overflow
Arithmetic operations with the float and double types never throw an exception. The result of arithmetic operations with those types can be one of special values that represent infinity and not-a-number:
double a = 1.0 / 0.0;
Console.WriteLine(a); // output: Infinity
Console.WriteLine(double.IsInfinity(a)); // output: True
Console.WriteLine(double.MaxValue + double.MaxValue); // output: Infinity
double b = 0.0 / 0.0;
Console.WriteLine(b); // output: NaN
Console.WriteLine(double.IsNaN(b)); // output: True
Basically, ints will throw overflow exceptions depending on if you are checking for overflow or not and will always throw divide by zero exceptions. Floating point values will not overflow, but instead take on a special value of infinity, or in some cases not a number (NaN)
These differences exist for almost every programming language, but the specifics may be handled differently.

Related

Dividing two numbers always returns 0 [duplicate]

How come dividing two 32 bit int numbers as ( int / int ) returns to me 0, but if I use Decimal.Divide() I get the correct answer? I'm by no means a c# guy.
int is an integer type; dividing two ints performs an integer division, i.e. the fractional part is truncated since it can't be stored in the result type (also int!). Decimal, by contrast, has got a fractional part. By invoking Decimal.Divide, your int arguments get implicitly converted to Decimals.
You can enforce non-integer division on int arguments by explicitly casting at least one of the arguments to a floating-point type, e.g.:
int a = 42;
int b = 23;
double result = (double)a / b;
In the first case, you're doing integer division, so the result is truncated (the decimal part is chopped off) and an integer is returned.
In the second case, the ints are converted to decimals first, and the result is a decimal. Hence they are not truncated and you get the correct result.
The following line:
int a = 1, b = 2;
object result = a / b;
...will be performed using integer arithmetic. Decimal.Divide on the other hand takes two parameters of the type Decimal, so the division will be performed on decimal values rather than integer values. That is equivalent of this:
int a = 1, b = 2;
object result = (Decimal)a / (Decimal)b;
To examine this, you can add the following code lines after each of the above examples:
Console.WriteLine(result.ToString());
Console.WriteLine(result.GetType().ToString());
The output in the first case will be
0
System.Int32
..and in the second case:
0,5
System.Decimal
I reckon Decimal.Divide(decimal, decimal) implicitly converts its 2 int arguments to decimals before returning a decimal value (precise) where as 4/5 is treated as integer division and returns 0
You want to cast the numbers:
double c = (double)a/(double)b;
Note: If any of the arguments in C# is a double, a double divide is used which results in a double. So, the following would work too:
double c = (double)a/b;
here is a Small Program :
static void Main(string[] args)
{
int a=0, b = 0, c = 0;
int n = Convert.ToInt16(Console.ReadLine());
string[] arr_temp = Console.ReadLine().Split(' ');
int[] arr = Array.ConvertAll(arr_temp, Int32.Parse);
foreach (int i in arr)
{
if (i > 0) a++;
else if (i < 0) b++;
else c++;
}
Console.WriteLine("{0}", (double)a / n);
Console.WriteLine("{0}", (double)b / n);
Console.WriteLine("{0}", (double)c / n);
Console.ReadKey();
}
In my case nothing worked above.
what I want to do is divide 278 by 575 and multiply by 100 to find percentage.
double p = (double)((PeopleCount * 1.0 / AllPeopleCount * 1.0) * 100.0);
%: 48,3478260869565 --> 278 / 575 ---> 0
%: 51,6521739130435 --> 297 / 575 ---> 0
if I multiply the PeopleCount by 1.0 it makes it decimal and division will be 48.34...
also multiply by 100.0 not 100.
If you are looking for 0 < a < 1 answer, int / int will not suffice. int / int does integer division. Try casting one of the int's to a double inside the operation.
The answer marked as such is very nearly there, but I think it is worth adding that there is a difference between using double and decimal.
I would not do a better job explaining the concepts than Wikipedia, so I will just provide the pointers:
floating-point arithmetic
decimal data type
In financial systems, it is often a requirement that we can guarantee a certain number of (base-10) decimal places accuracy. This is generally impossible if the input/source data is in base-10 but we perform the arithmetic in base-2 (because the number of decimal places required for the decimal expansion of a number depends on the base; one third takes infinitely many decimal places to express in base-10 as 0.333333..., but it takes only one decimal in base-3: 0.1).
Floating-point numbers are faster to work with (in terms of CPU time; programming-wise they are equally simple) and preferred whenever you want to minimize rounding error (as in scientific applications).

Why is my result not displaying decimals? C# [duplicate]

Does anyone know why integer division in C# returns an integer and not a float?
What is the idea behind it? (Is it only a legacy of C/C++?)
In C#:
float x = 13 / 4;
//== operator is overridden here to use epsilon compare
if (x == 3.0)
print 'Hello world';
Result of this code would be:
'Hello world'
Strictly speaking, there is no such thing as integer division (division by definition is an operation which produces a rational number, integers are a very small subset of which.)
While it is common for new programmer to make this mistake of performing integer division when they actually meant to use floating point division, in actual practice integer division is a very common operation. If you are assuming that people rarely use it, and that every time you do division you'll always need to remember to cast to floating points, you are mistaken.
First off, integer division is quite a bit faster, so if you only need a whole number result, one would want to use the more efficient algorithm.
Secondly, there are a number of algorithms that use integer division, and if the result of division was always a floating point number you would be forced to round the result every time. One example off of the top of my head is changing the base of a number. Calculating each digit involves the integer division of a number along with the remainder, rather than the floating point division of the number.
Because of these (and other related) reasons, integer division results in an integer. If you want to get the floating point division of two integers you'll just need to remember to cast one to a double/float/decimal.
See C# specification. There are three types of division operators
Integer division
Floating-point division
Decimal division
In your case we have Integer division, with following rules applied:
The division rounds the result towards zero, and the absolute value of
the result is the largest possible integer that is less than the
absolute value of the quotient of the two operands. The result is zero
or positive when the two operands have the same sign and zero or
negative when the two operands have opposite signs.
I think the reason why C# use this type of division for integers (some languages return floating result) is hardware - integers division is faster and simpler.
Each data type is capable of overloading each operator. If both the numerator and the denominator are integers, the integer type will perform the division operation and it will return an integer type. If you want floating point division, you must cast one or more of the number to floating point types before dividing them. For instance:
int x = 13;
int y = 4;
float x = (float)y / (float)z;
or, if you are using literals:
float x = 13f / 4f;
Keep in mind, floating points are not precise. If you care about precision, use something like the decimal type, instead.
Since you don't use any suffix, the literals 13 and 4 are interpreted as integer:
Manual:
If the literal has no suffix, it has the first of these types in which its value can be represented: int, uint, long, ulong.
Thus, since you declare 13 as integer, integer division will be performed:
Manual:
For an operation of the form x / y, binary operator overload resolution is applied to select a specific operator implementation. The operands are converted to the parameter types of the selected operator, and the type of the result is the return type of the operator.
The predefined division operators are listed below. The operators all compute the quotient of x and y.
Integer division:
int operator /(int x, int y);
uint operator /(uint x, uint y);
long operator /(long x, long y);
ulong operator /(ulong x, ulong y);
And so rounding down occurs:
The division rounds the result towards zero, and the absolute value of the result is the largest possible integer that is less than the absolute value of the quotient of the two operands. The result is zero or positive when the two operands have the same sign and zero or negative when the two operands have opposite signs.
If you do the following:
int x = 13f / 4f;
You'll receive a compiler error, since a floating-point division (the / operator of 13f) results in a float, which cannot be cast to int implicitly.
If you want the division to be a floating-point division, you'll have to make the result a float:
float x = 13 / 4;
Notice that you'll still divide integers, which will implicitly be cast to float: the result will be 3.0. To explicitly declare the operands as float, using the f suffix (13f, 4f).
Might be useful:
double a = 5.0/2.0;
Console.WriteLine (a); // 2.5
double b = 5/2;
Console.WriteLine (b); // 2
int c = 5/2;
Console.WriteLine (c); // 2
double d = 5f/2f;
Console.WriteLine (d); // 2.5
It's just a basic operation.
Remember when you learned to divide. In the beginning we solved 9/6 = 1 with remainder 3.
9 / 6 == 1 //true
9 % 6 == 3 // true
The /-operator in combination with the %-operator are used to retrieve those values.
The result will always be of type that has the greater range of the numerator and the denominator. The exceptions are byte and short, which produce int (Int32).
var a = (byte)5 / (byte)2; // 2 (Int32)
var b = (short)5 / (byte)2; // 2 (Int32)
var c = 5 / 2; // 2 (Int32)
var d = 5 / 2U; // 2 (UInt32)
var e = 5L / 2U; // 2 (Int64)
var f = 5L / 2UL; // 2 (UInt64)
var g = 5F / 2UL; // 2.5 (Single/float)
var h = 5F / 2D; // 2.5 (Double)
var i = 5.0 / 2F; // 2.5 (Double)
var j = 5M / 2; // 2.5 (Decimal)
var k = 5M / 2F; // Not allowed
There is no implicit conversion between floating-point types and the decimal type, so division between them is not allowed. You have to explicitly cast and decide which one you want (Decimal has more precision and a smaller range compared to floating-point types).
As a little trick to know what you are obtaining you can use var, so the compiler will tell you the type to expect:
int a = 1;
int b = 2;
var result = a/b;
your compiler will tell you that result would be of type int here.

C# Calculations With Decimal Places

I am having trouble with basic multiplication and division in C#.
It returns 0 for ((150 / 336) * 460) but the answer should be 205.357142857.
I presume this is because (150/336) is a fractional number, and C# rounds this down to 0.
How do I correctly calculate this taking into consideration all decimal places?
No, it is because 150/336 is an integer division which always truncates the decimal part since the result will also be an int.
So one of both must be a decimal number:
double d = 150d / 336;
See: 7.7.2 Division operator
The division rounds the result towards zero, and the absolute value of
the result is the largest possible integer that is less than the
absolute value of the quotient of the two operands. The result is zero
or positive when the two operands have the same sign and zero or
negative when the two operands have opposite signs.
((150 / 336) * 460)
Those numbers are integers, they have no decimal places. Since 150 / 336 evaluates to 0 in integer math, multiplying it by anything will also result in 0.
You need to explicitly make each number a double. Something like this:
((150d / 336d) * 460d)
You are doing integer arithmetic not floating/double. To specify a floating point double constant use the 'd' suffix.
double d = (150d / 336d) * 460d;
150/336 gives you an int as result, thus 0. you need to the division so it you'll have a double as result
(((double)150 / 336) * 460)
If you're using variables then you should write it down like this:
double d = ((double)firstNumber/ secondNumber) * thirdNumber;
For more information: https://www.dotnetperls.com/divide

C# Math division not correct [duplicate]

This question already has answers here:
Closed 10 years ago.
Possible Duplicate:
Division returns zero
simple calculation not working for some reason
Why is this:
int prozent = (totalkcals / 2000) * 100;
returning 0?
totalkcals is in this case 567, I double-checked it.
This is because of integer division
The division rounds the result towards zero, and the absolute value of the result is the largest possible integer that is less than the absolute value of the quotient of the two operands. The result is zero or positive when the two operands have the same sign and zero or negative when the two operands have opposite signs
Its because of Integer division.
double prozent = ((double)totalkcals / 2000) * 100;
567 / 2000 = 0.2835, which when cast to an int (as specified by your data type) becomes zero. 0 * 100 = 0.
So: double prozent = ((double)totalcals / 2000.0) * 100.0;
Its because its an integer calculation, so the operation from (totalkcals / 2000) returns 0;

Why does integer division in C# return an integer and not a float?

Does anyone know why integer division in C# returns an integer and not a float?
What is the idea behind it? (Is it only a legacy of C/C++?)
In C#:
float x = 13 / 4;
//== operator is overridden here to use epsilon compare
if (x == 3.0)
print 'Hello world';
Result of this code would be:
'Hello world'
Strictly speaking, there is no such thing as integer division (division by definition is an operation which produces a rational number, integers are a very small subset of which.)
While it is common for new programmer to make this mistake of performing integer division when they actually meant to use floating point division, in actual practice integer division is a very common operation. If you are assuming that people rarely use it, and that every time you do division you'll always need to remember to cast to floating points, you are mistaken.
First off, integer division is quite a bit faster, so if you only need a whole number result, one would want to use the more efficient algorithm.
Secondly, there are a number of algorithms that use integer division, and if the result of division was always a floating point number you would be forced to round the result every time. One example off of the top of my head is changing the base of a number. Calculating each digit involves the integer division of a number along with the remainder, rather than the floating point division of the number.
Because of these (and other related) reasons, integer division results in an integer. If you want to get the floating point division of two integers you'll just need to remember to cast one to a double/float/decimal.
See C# specification. There are three types of division operators
Integer division
Floating-point division
Decimal division
In your case we have Integer division, with following rules applied:
The division rounds the result towards zero, and the absolute value of
the result is the largest possible integer that is less than the
absolute value of the quotient of the two operands. The result is zero
or positive when the two operands have the same sign and zero or
negative when the two operands have opposite signs.
I think the reason why C# use this type of division for integers (some languages return floating result) is hardware - integers division is faster and simpler.
Each data type is capable of overloading each operator. If both the numerator and the denominator are integers, the integer type will perform the division operation and it will return an integer type. If you want floating point division, you must cast one or more of the number to floating point types before dividing them. For instance:
int x = 13;
int y = 4;
float x = (float)y / (float)z;
or, if you are using literals:
float x = 13f / 4f;
Keep in mind, floating points are not precise. If you care about precision, use something like the decimal type, instead.
Since you don't use any suffix, the literals 13 and 4 are interpreted as integer:
Manual:
If the literal has no suffix, it has the first of these types in which its value can be represented: int, uint, long, ulong.
Thus, since you declare 13 as integer, integer division will be performed:
Manual:
For an operation of the form x / y, binary operator overload resolution is applied to select a specific operator implementation. The operands are converted to the parameter types of the selected operator, and the type of the result is the return type of the operator.
The predefined division operators are listed below. The operators all compute the quotient of x and y.
Integer division:
int operator /(int x, int y);
uint operator /(uint x, uint y);
long operator /(long x, long y);
ulong operator /(ulong x, ulong y);
And so rounding down occurs:
The division rounds the result towards zero, and the absolute value of the result is the largest possible integer that is less than the absolute value of the quotient of the two operands. The result is zero or positive when the two operands have the same sign and zero or negative when the two operands have opposite signs.
If you do the following:
int x = 13f / 4f;
You'll receive a compiler error, since a floating-point division (the / operator of 13f) results in a float, which cannot be cast to int implicitly.
If you want the division to be a floating-point division, you'll have to make the result a float:
float x = 13 / 4;
Notice that you'll still divide integers, which will implicitly be cast to float: the result will be 3.0. To explicitly declare the operands as float, using the f suffix (13f, 4f).
Might be useful:
double a = 5.0/2.0;
Console.WriteLine (a); // 2.5
double b = 5/2;
Console.WriteLine (b); // 2
int c = 5/2;
Console.WriteLine (c); // 2
double d = 5f/2f;
Console.WriteLine (d); // 2.5
It's just a basic operation.
Remember when you learned to divide. In the beginning we solved 9/6 = 1 with remainder 3.
9 / 6 == 1 //true
9 % 6 == 3 // true
The /-operator in combination with the %-operator are used to retrieve those values.
The result will always be of type that has the greater range of the numerator and the denominator. The exceptions are byte and short, which produce int (Int32).
var a = (byte)5 / (byte)2; // 2 (Int32)
var b = (short)5 / (byte)2; // 2 (Int32)
var c = 5 / 2; // 2 (Int32)
var d = 5 / 2U; // 2 (UInt32)
var e = 5L / 2U; // 2 (Int64)
var f = 5L / 2UL; // 2 (UInt64)
var g = 5F / 2UL; // 2.5 (Single/float)
var h = 5F / 2D; // 2.5 (Double)
var i = 5.0 / 2F; // 2.5 (Double)
var j = 5M / 2; // 2.5 (Decimal)
var k = 5M / 2F; // Not allowed
There is no implicit conversion between floating-point types and the decimal type, so division between them is not allowed. You have to explicitly cast and decide which one you want (Decimal has more precision and a smaller range compared to floating-point types).
As a little trick to know what you are obtaining you can use var, so the compiler will tell you the type to expect:
int a = 1;
int b = 2;
var result = a/b;
your compiler will tell you that result would be of type int here.

Categories