How to handle cancellationToken.cancel for Task.delay in c#? - c#

I have an method in which I am using Task.Delay for 1 minute. So when I want to try cancel that Task then it's giving me error like system.threading.tasks.taskcanceledexception a task was canceled instead of cancel that Task.
So how can I cancel that Task with handle this error.
public static System.Threading.CancellationTokenSource tokenSource = new System.Threading.CancellationTokenSource();
tokenSource.cancel();
public static async void waitForSignal(System.Threading.CancellationToken token)
{
await Task.Delay(60000, token); //here I am getting error while I am defining tokenSource cancel.
}

So how can I cancel that Task with handle this error.
You're already canceling the task; you just need to handle the error:
try
{
await Task.Delay(60000, token);
}
catch (OperationCanceledException)
{
}
...
Actually admin is getting signals from wcf service in which if admin will not get expected signals from wcf then it will wait for 60 seconds and if admin will get expected numbers of signals in first 10 seconds then it will not required to wait for next 50 seconds.
Sounds like what you want is a signal, not a cancellation. You want to (asynchronously) wait for either a signal or a time period (delay), after which you want to take some action. You don't really want cancellation here.
One kind of asynchronous signal is TaskCompletionSource<T>. Your action code can await the Task of that TCS, and the signaling code can call SetResult to send the signal. Something like this:
public static TaskCompletionSource<object> signal = new TaskCompletionSource<object>();
...
signal.SetResult(null);
...
public static async Task waitForSignal(Task signalTask)
{
await Task.WhenAny(Task.Delay(60000), signalTask);
}

Related

How to force an ActionBlock to complete fast

According to the documentation:
A dataflow block is considered completed when it is not currently processing a message and when it has guaranteed that it will not process any more messages.
This behavior is not ideal in my case. I want to be able to cancel the job at any time, but the processing of each individual action takes a long time. So when I cancel the token, the effect is not immediate. I must wait for the currently processed item to complete. I have no way to cancel the actions directly, because the API I use is not cancelable. Can I do anything to make the block ignore the currently running action, and complete instantly?
Here is an example that demonstrates my problem. The token is canceled after 500 msec, and the duration of each action is 1000 msec:
static async Task Main()
{
var cts = new CancellationTokenSource(500);
var block = new ActionBlock<int>(async x =>
{
await Task.Delay(1000);
}, new ExecutionDataflowBlockOptions() { CancellationToken = cts.Token });
block.Post(1); // I must wait for this one to complete
block.Post(2); // This one is ignored
block.Complete();
var stopwatch = Stopwatch.StartNew();
try
{
await block.Completion;
}
catch (OperationCanceledException)
{
Console.WriteLine($"Canceled after {stopwatch.ElapsedMilliseconds} msec");
}
}
Output:
Canceled after 1035 msec
The desired output would be a cancellation after ~500 msec.
Based on this excerpt from your comment...:
What I want to happen in case of a cancellation request is to ignore the currently running workitem. I don't care about it any more, so why I have to wait for it?
...and assuming you are truly OK with leaving the Task running, you can simply wrap the job you wish to call inside another Task which will constantly poll for cancellation or completion, and cancel that Task instead. Take a look at the following "proof-of-concept" code that wraps a "long-running" task inside another Task "tasked" with constantly polling the wrapped task for completion, and a CancellationToken for cancellation (completely "spur-of-the-moment" status, you will want to re-adapt it a bit of course):
public class LongRunningTaskSource
{
public Task LongRunning(int milliseconds)
{
return Task.Run(() =>
{
Console.WriteLine("Starting long running task");
Thread.Sleep(3000);
Console.WriteLine("Finished long running task");
});
}
public Task LongRunningTaskWrapper(int milliseconds, CancellationToken token)
{
Task task = LongRunning(milliseconds);
Task wrapperTask = Task.Run(() =>
{
while (true)
{
//Check for completion (you could, of course, do different things
//depending on whether it is faulted or completed).
if (!(task.Status == TaskStatus.Running))
break;
//Check for cancellation.
if (token.IsCancellationRequested)
{
Console.WriteLine("Aborting Task.");
token.ThrowIfCancellationRequested();
}
}
}, token);
return wrapperTask;
}
}
Using the following code:
static void Main()
{
LongRunningTaskSource longRunning = new LongRunningTaskSource();
CancellationTokenSource cts = new CancellationTokenSource(1500);
Task task = longRunning.LongRunningTaskWrapper(3000, cts.Token);
//Sleep long enough to let things roll on their own.
Thread.Sleep(5000);
Console.WriteLine("Ended Main");
}
...produces the following output:
Starting long running task
Aborting Task.
Exception thrown: 'System.OperationCanceledException' in mscorlib.dll
Finished long running task
Ended Main
The wrapped Task obviously completes in its own good time. If you don't have a problem with that, which is often not the case, hopefully, this should fit your needs.
As a supplementary example, running the following code (letting the wrapped Task finish before time-out):
static void Main()
{
LongRunningTaskSource longRunning = new LongRunningTaskSource();
CancellationTokenSource cts = new CancellationTokenSource(3000);
Task task = longRunning.LongRunningTaskWrapper(1500, cts.Token);
//Sleep long enough to let things roll on their own.
Thread.Sleep(5000);
Console.WriteLine("Ended Main");
}
...produces the following output:
Starting long running task
Finished long running task
Ended Main
So the task started and finished before timeout and nothing had to be cancelled. Of course nothing is blocked while waiting. As you probably already know, of course, if you know what is being used behind the scenes in the long-running code, it would be good to clean up if necessary.
Hopefully, you can adapt this example to pass something like this to your ActionBlock.
Disclaimer & Notes
I am not familiar with the TPL Dataflow library, so this is just a workaround, of course. Also, if all you have is, for example, a synchronous method call that you do not have any influence on at all, then you will obviously need two tasks. One wrapper task to wrap the synchronous call and another one to wrap the wrapper task to include continuous status polling and cancellation checks.

Cancel long running operation on client cancel

I started my first project with asp.net core and razor pages.
On a client request, a long running database operation will be started.
Now i want to recognize, when the user leaves the website, so the database operation can be cancelled.
I've tried it with a cancellationToken, but it will never be cancelled.
public async Task<JsonResult> OnPostReadAsync([DataSourceRequest] DataSourceRequest request, CancellationToken cancellationToken)
{
var messages = await _logMessageService.GetLogMessagesAsync(request, cancellationToken);
return new JsonResult(messages.ToDataSourceResult(request));
}
The function get called by an Telerik Kendo UI Grid.
Can you tell me, why the cancellation token don't get cancelled, or what other options I have to detect a abortion by the client?
Edit 1
I pass the Token through to this function call of a NpgsqlCommand:
var dataReader = await command.ExecuteReaderAsync(cancellationToken);
To cancel IO bound i.e. task which is running long , following is code that you can do which i got form the C# with CLR book.
Design extension method for task as below.
private static async Task<TResult> WithCancellation<TResult>(this Task<TResult> originalTask,
CancellationToken ct) {
// Create a Task that completes when the CancellationToken is canceled
var cancelTask = new TaskCompletionSource<Void>();
// When the CancellationToken is canceled, complete the Task
using (ct.Register(
t => ((TaskCompletionSource<Void>)t).TrySetResult(new Void()), cancelTask)) {
// Create a Task that completes when either the original or
// CancellationToken Task completes
Task any = await Task.WhenAny(originalTask, cancelTask.Task);
// If any Task completes due to CancellationToken, throw OperationCanceledException
if (any == cancelTask.Task) ct.ThrowIfCancellationRequested();
}
// await original task (synchronously); if it failed, awaiting it
// throws 1st inner exception instead of AggregateException
return await originalTask;
}
as given in following example code you can cancel it by using extension method designed above.
public static async Task Go() {
// Create a CancellationTokenSource that cancels itself after # milliseconds
var cts = new CancellationTokenSource(5000); // To cancel sooner, call cts.Cancel()
var ct = cts.Token;
try {
// I used Task.Delay for testing; replace this with another method that returns a Task
await Task.Delay(10000).WithCancellation(ct);
Console.WriteLine("Task completed");
}
catch (OperationCanceledException) {
Console.WriteLine("Task cancelled");
}
}
In this example cancellation done based on given time , but you can call cancellation by calling cancel method.
So I found the answer myself after some more research.
The problem is a bug in IISExpress as mentioned here: https://github.com/aspnet/Mvc/issues/5239#issuecomment-323567952
I switched to Kestrel and now everything works as expected.

How do I cancel task waiting for a blocking call

I am a beginner in UWP application in c#. I need to cancel a task in when a blocking call is going on. Please refer to the code snippet below for better understanding.
TimeSpan timeSpan = TimeSpan.FromMilliseconds(10000);
CancellationToken token = new CancellationTokenSource(timeSpan).Token;
await Task.Run(() =>
{
//This is a blocking call
Task.Delay(11002).Wait();
}, token);
As I know the if I do the blocking call like Task.Delay(11002).Wait(token); then the Delay task is canceled but my requirement is to cancel the parent task. Because I to do a sync socket write in the task.
Hope my problem is understandable to everyone.
Thanks
I'd recommend creating the cancellation token source outside of the method you're going to use it and passing it in as Neil mentioned in his comment.
Here's an example showing how you can do this and how you can cancel it.
private async Task ParentAsync()
{
TimeSpan timeSpan = TimeSpan.FromMilliseconds(10000);
CancellationTokenSource cts = new CancellationTokenSource(timeSpan);
await ExecuteAsync(cts);
cts.Cancel(); // This will cause the execution to cancel.
}
private async Task ExecuteAsync(CancellationTokenSource cts)
{
await Task.Run(() =>
{
//This is a blocking call
Task.Delay(11002).Wait();
}, cts.Token);
}
If you're looking to cancel the execution of the parent method, you follow the same steps you've already done for the child method using the token to handle the cancellation of the Task.
Hope this helps!

Task being marked as RanToCompletion at await, when still Running

I'm still getting up to speed with async & multi threading. I'm trying to monitor when the Task I Start is still running (to show in a UI). However it's indicating that it is RanToCompletion earlier than I want, when it hits an await, even when I consider its Status as still Running.
Here is the sample I'm doing. It all seems to be centred around the await's. When it hits an await, it is then marked as RanToCompletion.
I want to keep track of the main Task which starts it all, in a way which indicates to me that it is still running all the way to the end and only RanToCompletion when it is all done, including the repo call and the WhenAll.
How can I change this to get the feedback I want about the tskProdSeeding task status?
My Console application Main method calls this:
Task tskProdSeeding;
tskProdSeeding = Task.Factory.StartNew(SeedingProd, _cts.Token);
Which the runs this:
private async void SeedingProd(object state)
{
var token = (CancellationToken)state;
while (!token.IsCancellationRequested)
{
int totalSeeded = 0;
var codesToSeed = await _myRepository.All().ToListAsync(token);
await Task.WhenAll(Task.Run(async () =>
{
foreach (var code in codesToSeed)
{
if (!token.IsCancellationRequested)
{
try
{
int seedCountByCode = await _myManager.SeedDataFromLive(code);
totalSeeded += seedCountByCode;
}
catch (Exception ex)
{
_logger.InfoFormat(ex.ToString());
}
}
}
}, token));
Thread.Sleep(30000);
}
}
If you use async void the outer task can't tell when the task is finished, you need to use async Task instead.
Second, once you do switch to async Task, Task.Factory.StartNew can't handle functions that return a Task, you need to switch to Task.Run(
tskProdSeeding = Task.Run(() => SeedingProd(_cts.Token), _cts.Token);
Once you do both of those changes you will be able to await or do a .Wait() on tskProdSeeding and it will properly wait till all the work is done before continuing.
Please read "Async/Await - Best Practices in Asynchronous Programming" to learn more about not doing async void.
Please read "StartNew is Dangerous" to learn more about why you should not be using StartNew the way you are using it.
P.S. In SeedingProd you should switch it to use await Task.Delay(30000); insetad of Thread.Sleep(30000);, you will then not tie up a thread while it waits. If you do this you likely could drop the
tskProdSeeding = Task.Run(() => SeedingProd(_cts.Token), _cts.Token);
and just make it
tskProdSeeding = SeedingProd(_cts.Token);
because the function no-longer has a blocking call inside of it.
I'm not convinced that you need a second thread (Task.Run or StartNew) at all. It looks like the bulk of the work is I/O-bound and if you're doing it asynchronously and using Task.Delay instead of Thread.Sleep, then there is no thread consumed by those operations and your UI shouldn't freeze. The first thing anyone new to async needs to understand is that it's not the same thing as multithreading. The latter is all about consuming more threads, the former is all about consuming fewer. Focus on eliminating the blocking and you shouldn't need a second thread.
As others have noted, SeedingProd needs to return a Task, not void, so you can observe its completion. I believe your method can be reduced to this:
private async Task SeedingProd(CancellationToken token)
{
while (!token.IsCancellationRequested)
{
int totalSeeded = 0;
var codesToSeed = await _myRepository.All().ToListAsync(token);
foreach (var code in codesToSeed)
{
if (token.IsCancellationRequested)
return;
try
{
int seedCountByCode = await _myManager.SeedDataFromLive(code);
totalSeeded += seedCountByCode;
}
catch (Exception ex)
{
_logger.InfoFormat(ex.ToString());
}
}
await Task.Dealy(30000);
}
}
Then simply call the method, without awaiting it, and you'll have your task.
Task mainTask = SeedingProd(token);
When you specify async on a method, it compiles into a state machine with a Task, so SeedingProd does not run synchronously, but acts as a Task even if returns void. So when you call Task.Factory.StartNew(SeedingProd) you start a task that kick off another task - that's why the first one finishes immediately before the second one. All you have to do is add the Task return parameter instead of void:
private async Task SeedingProdAsync(CancellationToken ct)
{
...
}
and call it as simply as this:
Task tskProdSeeding = SeedingProdAsync(_cts.Token);

Windows Service running Async code not waiting on work to complete

In Brief
I have a Windows Service that executes several jobs as async Tasks in parallel. However, when the OnStop is called, it seems that these are all immediately terminated instead of being allowed to stop in a more gracious manner.
In more detail
Each job represents an iteration of work, so having completed its work the job then needs to run again.
To accomplish this, I am writing a proof-of-concept Windows Service that:
runs each job as an awaited async TPL Task (these are all I/O bound tasks)
each job is run iteratively within a loop
each job's loop is run in parallel
When I run the Service, I see everything executing as I expect. However, when I Stop the service, it seems that everything stops dead.
Okay - so how is this working?
In the Service I have a cancellation token, and a TaskCompletion Source:
private static CancellationTokenSource _cancelSource = new CancellationTokenSource();
private TaskCompletionSource<bool> _jobCompletion = new TaskCompletionSource<bool>();
private Task<bool> AllJobsCompleted { get { return _finalItems.Task; } }
The idea is that when every Job has gracefully stopped, then the Task AllJobsCompleted will be marked as completed.
The OnStart simply starts running these jobs:
protected override async void OnStart(string[] args)
{
_cancelSource = new CancellationTokenSource();
var jobsToRun = GetJobsToRun(); // details of jobs not relevant
Task.Run(() => this.RunJobs(jobsToRun, _cancelSource.Token).ConfigureAwait(false), _cancelSource.Token);
}
The Task RunJobs will run each job in a parallel loop:
private async Task RunModules(IEnumerable<Jobs> jobs, CancellationToken cancellationToken)
{
var parallelOptions = new ParallelOptions { CancellationToken = cancellationToken };
int jobsRunningCount = jobs.Count();
object lockObject = new object();
Parallel.ForEach(jobs, parallelOptions, async (job, loopState) =>
{
try
{
do
{
await job.DoWork().ConfigureAwait(false); // could take 5 seconds
parallelOptions.CancellationToken.ThrowIfCancellationRequested();
}while(true);
}
catch(OperationCanceledException)
{
lock (lockObject) { jobsRunningCount --; }
}
});
do
{
await Task.Delay(TimeSpan.FromSeconds(5));
} while (modulesRunningCount > 0);
_jobCompletion.SetResult(true);
}
So, what should be happening is that when each job finishes its current iteration, it should see that the cancellation has been signalled and it should then exit the loop and decrement the counter.
Then, when jobsRunningCount reaches zero, then we update the TaskCompletionSource. (There may be a more elegant way of achieving this...)
So, for the OnStop:
protected override async void OnStop()
{
this.RequestAdditionalTime(100000); // some large number
_cancelSource.Cancel();
TraceMessage("Task cancellation requested."); // Last thing traced
try
{
bool allStopped = await this.AllJobsCompleted;
TraceMessage(string.Format("allStopped = '{0}'.", allStopped));
}
catch (Exception e)
{
TraceMessage(e.Message);
}
}
What what I expect is this:
Click [STOP] on the Service
The Service should take sometime to stop
I should see a trace statement "Task cancellation requested."
I should see a trace statement saying either "allStopped = true", or the exception message
And when I debug this using a WPF Form app, I get this.
However, when I install it as a service:
Click [STOP] on the Service
The Service stops almost immediately
I only see the trace statement "Task cancellation requested."
What do I need to do to ensure the OnStop doesn't kill off my parallel async jobs and waits for the TaskCompletionSource?
Your problem is that OnStop is async void. So, when it does await this.AllJobsCompleted, what actually happens is that it returns from OnStop, which the SCM interprets as having stopped, and terminates the process.
This is one of the rare scenarios where you'd need to block on a task, because you cannot allow OnStop to return until after the task completes.
This should do it:
protected override void OnStop()
{
this.RequestAdditionalTime(100000); // some large number
_cancelSource.Cancel();
TraceMessage("Task cancellation requested."); // Last thing traced
try
{
bool allStopped = this.AllJobsCompleted.GetAwaiter().GetResult();
TraceMessage(string.Format("allStopped = '{0}'.", allStopped));
}
catch (Exception e)
{
TraceMessage(e.Message);
}
}

Categories