Canceling long running task on condition - c#

I'm running cpu-bound task in asp.net mvc application. Some users can "subscribe" to this task and they should be notified of completion. But when task have no subscribers it must be cancelled. The task start via ajax request and cancel when .abort() method is called. In controller I have CancellationToken as parameter which determines cancellation.
The problem is that when one of subscribers calls abort (unsubscribe) the linked token cancels task despite other users are waiting for the result. How can I cancel CancellationToken after checking some condition? I can't check IsCancellationRequested prop after every loop iteration because I'm wrapping non-async method.
Users are notified with SignalR after task completion. I've tried to implement ConcurrentDictionary to check before cancelling whether task has subscribers or not.
private async Task<Diff> CompareAsync(Model modelName, CancellationToken ct)
{
try
{
return await Task.Factory.StartNew(() =>
{
ct.ThrowIfCancellationRequested();
return _someServiceName.CompareLines(modelName.LinesA, modelName.LinesB, ct);
}, ct, TaskCreationOptions.LongRunning, TaskScheduler.Default).ConfigureAwait(false);
}
catch (OperationCanceledException)
{
//do some things
}
}
I need something like this, but can't come up with any (not ugly)ideas:
private async Task<Diff> CompareAsync(Model modelName, CancellationToken ct)
{
try
{
return await Task.Factory.StartNew(() =>
{
using (var source = new CancellationTokenSource())
{
if (ct.IsCancellationRequested && CompareService.SharedComparison.TryGetValue(modelName.Hash, out var usersCount) && usersCount < 2)
{
source.Cancel();
}
return _someServiceName.CompareLines(modelName.LinesA, modelName.LinesB, source.Token);
}
}, ct, TaskCreationOptions.LongRunning, TaskScheduler.Default).ConfigureAwait(false);
}
catch (OperationCanceledException)
{
//do some things
}
}

You will have to maintain a thread safe subscriber count (most likely using lock), and only cancel the token when it's 0.
private int _subscribers;
private object _sync = new object();
private AddSubscribers()
{
Lock(_sync )
{
// do what ever you need to do
_subscribers++;
}
}
private RemoveSubscribers()
{
Lock(_sync )
{
// do what ever you need to do
_subscribers--;
if(_subscribers <= 0)
{
// cancel token
}
}
}
Note : Obviously this is not a complete solution and leaves a lot to the imagination.

Related

Is there a way I can cause a running method to stop immediately with a cts.Cancel();

I have code that creates a CancellationTokenSource and that passes it to a method.
I have code in another are of the app that issues a cts.Cancel();
Is there a way that I can cause that method to stop immediately without me having to wait for the two lines inside the while loop to finish?
Note that I would be okay if it caused an exception that I could handle.
public async Task OnAppearing()
{
cts = new CancellationTokenSource();
await GetCards(cts.Token);
}
public async Task GetCards(CancellationToken ct)
{
while (!ct.IsCancellationRequested)
{
App.viewablePhrases = App.DB.GetViewablePhrases(Settings.Mode, Settings.Pts);
await CheckAvailability();
}
}
What I can suggest:
Modify GetViewablePhrases and CheckAvailability so you could pass the CancellationToken to them;
Use ct.ThrowIfCancellationRequested() inside these functions;
Try / Catch the OperationCanceledException inside GetCards;
As for your your functions I don't know how exactly they work inside. But let's assume you have a long running iteration inside one of them:
CheckAvailability(CancellationToken ct)
{
for(;;)
{
// if cts.Cancel() was executed - this method throws the OperationCanceledException
// if it wasn't the method does nothing
ct.ThrowIfCancellationRequested();
...calculations...
}
}
Or let's say you are going to access your database inside one of the function and you know that this process is going to take a while:
CheckAvailability(CancellationToken ct)
{
ct.ThrowIfCancellationRequested();
AccessingDatabase();
}
This will not only prevent your functions from proceeding with execution, this also will set the executioner Task status as TaskStatus.Canceled
And don't forget to catch the Exception:
public async Task GetCards(CancellationToken ct)
{
try
{
App.viewablePhrases = App.DB.GetViewablePhrases(Settings.Mode, Settings.Pts, ct);
await CheckAvailability(ct);
}
catch(OperationCanceledException ex)
{
// handle the cancelation...
}
catch
{
// handle the unexpected exception
}
}
If you are OK with cancelling not the task, but the awaiting of the task, you could use a cancelable wrapper. In case of cancellation the underlying task will continue running, but the wrapper will complete immediately as canceled.
public static Task AsCancelable(this Task task,
CancellationToken cancellationToken)
{
var cancelable = new Task(() => { }, cancellationToken);
return Task.WhenAny(task, cancelable).Unwrap();
}
public static Task<T> AsCancelable<T>(this Task<T> task,
CancellationToken cancellationToken)
{
var cancelable = new Task<T>(() => default, cancellationToken);
return Task.WhenAny(task, cancelable).Unwrap();
}
Usage example:
await GetCards(cts.Token).AsCancelable(cts.Token);
This extension method can also be implemented using a TaskCompletionSource<T> (instead of the Task<T> constructor).

C#: wait async operation to finish for fixed amount of time, and then do some action based on the result [duplicate]

I want to wait for a Task<T> to complete with some special rules:
If it hasn't completed after X milliseconds, I want to display a message to the user.
And if it hasn't completed after Y milliseconds, I want to automatically request cancellation.
I can use Task.ContinueWith to asynchronously wait for the task to complete (i.e. schedule an action to be executed when the task is complete), but that doesn't allow to specify a timeout.
I can use Task.Wait to synchronously wait for the task to complete with a timeout, but that blocks my thread.
How can I asynchronously wait for the task to complete with a timeout?
How about this:
int timeout = 1000;
var task = SomeOperationAsync();
if (await Task.WhenAny(task, Task.Delay(timeout)) == task) {
// task completed within timeout
} else {
// timeout logic
}
And here's a great blog post "Crafting a Task.TimeoutAfter Method" (from MS Parallel Library team) with more info on this sort of thing.
Addition: at the request of a comment on my answer, here is an expanded solution that includes cancellation handling. Note that passing cancellation to the task and the timer means that there are multiple ways cancellation can be experienced in your code, and you should be sure to test for and be confident you properly handle all of them. Don't leave to chance various combinations and hope your computer does the right thing at runtime.
int timeout = 1000;
var task = SomeOperationAsync(cancellationToken);
if (await Task.WhenAny(task, Task.Delay(timeout, cancellationToken)) == task)
{
// Task completed within timeout.
// Consider that the task may have faulted or been canceled.
// We re-await the task so that any exceptions/cancellation is rethrown.
await task;
}
else
{
// timeout/cancellation logic
}
Here's a extension method version that incorporates cancellation of the timeout when the original task completes as suggested by Andrew Arnott in a comment to his answer.
public static async Task<TResult> TimeoutAfter<TResult>(this Task<TResult> task, TimeSpan timeout) {
using (var timeoutCancellationTokenSource = new CancellationTokenSource()) {
var completedTask = await Task.WhenAny(task, Task.Delay(timeout, timeoutCancellationTokenSource.Token));
if (completedTask == task) {
timeoutCancellationTokenSource.Cancel();
return await task; // Very important in order to propagate exceptions
} else {
throw new TimeoutException("The operation has timed out.");
}
}
}
From .Net 6 (Preview 7) or later, there is a new build-in method Task.WaitAsync to achieve this.
// Using TimeSpan
await myTask.WaitAsync(TimeSpan.FromSeconds(10));
// Using CancellationToken
await myTask.WaitAsync(cancellationToken);
// Using both TimeSpan and CancellationToken
await myTask.WaitAsync(TimeSpan.FromSeconds(10), cancellationToken);
If the task isn't finished before the TimeSpan or CancellationToken then it throws TimeoutException or TaskCanceledException respectively
try
{
await myTask.WaitAsync(TimeSpan.FromSeconds(10), cancellationToken);
}
catch (TaskCanceledException)
{
Console.WriteLine("Task didn't get finished before the `CancellationToken`");
}
catch (TimeoutException)
{
Console.WriteLine("Task didn't get finished before the `TimeSpan`");
}
You can use Task.WaitAny to wait the first of multiple tasks.
You could create two additional tasks (that complete after the specified timeouts) and then use WaitAny to wait for whichever completes first. If the task that completed first is your "work" task, then you're done. If the task that completed first is a timeout task, then you can react to the timeout (e.g. request cancellation).
This is a slightly enhanced version of previous answers.
In addition to Lawrence's answer, it cancels the original task when timeout occurs.
In addtion to sjb's answer variants 2 and 3, you can provide CancellationToken for the original task, and when timeout occurs, you get TimeoutException instead of OperationCanceledException.
async Task<TResult> CancelAfterAsync<TResult>(
Func<CancellationToken, Task<TResult>> startTask,
TimeSpan timeout, CancellationToken cancellationToken)
{
using (var timeoutCancellation = new CancellationTokenSource())
using (var combinedCancellation = CancellationTokenSource
.CreateLinkedTokenSource(cancellationToken, timeoutCancellation.Token))
{
var originalTask = startTask(combinedCancellation.Token);
var delayTask = Task.Delay(timeout, timeoutCancellation.Token);
var completedTask = await Task.WhenAny(originalTask, delayTask);
// Cancel timeout to stop either task:
// - Either the original task completed, so we need to cancel the delay task.
// - Or the timeout expired, so we need to cancel the original task.
// Canceling will not affect a task, that is already completed.
timeoutCancellation.Cancel();
if (completedTask == originalTask)
{
// original task completed
return await originalTask;
}
else
{
// timeout
throw new TimeoutException();
}
}
}
Usage
InnerCallAsync may take a long time to complete. CallAsync wraps it with a timeout.
async Task<int> CallAsync(CancellationToken cancellationToken)
{
var timeout = TimeSpan.FromMinutes(1);
int result = await CancelAfterAsync(ct => InnerCallAsync(ct), timeout,
cancellationToken);
return result;
}
async Task<int> InnerCallAsync(CancellationToken cancellationToken)
{
return 42;
}
Using Stephen Cleary's excellent AsyncEx library, you can do:
TimeSpan timeout = TimeSpan.FromSeconds(10);
using (var cts = new CancellationTokenSource(timeout))
{
await myTask.WaitAsync(cts.Token);
}
TaskCanceledException will be thrown in the event of a timeout.
Here is a fully worked example based on the top voted answer, which is:
int timeout = 1000;
var task = SomeOperationAsync();
if (await Task.WhenAny(task, Task.Delay(timeout)) == task) {
// task completed within timeout
} else {
// timeout logic
}
The main advantage of the implementation in this answer is that generics have been added, so the function (or task) can return a value. This means that any existing function can be wrapped in a timeout function, e.g.:
Before:
int x = MyFunc();
After:
// Throws a TimeoutException if MyFunc takes more than 1 second
int x = TimeoutAfter(MyFunc, TimeSpan.FromSeconds(1));
This code requires .NET 4.5.
using System;
using System.Threading;
using System.Threading.Tasks;
namespace TaskTimeout
{
public static class Program
{
/// <summary>
/// Demo of how to wrap any function in a timeout.
/// </summary>
private static void Main(string[] args)
{
// Version without timeout.
int a = MyFunc();
Console.Write("Result: {0}\n", a);
// Version with timeout.
int b = TimeoutAfter(() => { return MyFunc(); },TimeSpan.FromSeconds(1));
Console.Write("Result: {0}\n", b);
// Version with timeout (short version that uses method groups).
int c = TimeoutAfter(MyFunc, TimeSpan.FromSeconds(1));
Console.Write("Result: {0}\n", c);
// Version that lets you see what happens when a timeout occurs.
try
{
int d = TimeoutAfter(
() =>
{
Thread.Sleep(TimeSpan.FromSeconds(123));
return 42;
},
TimeSpan.FromSeconds(1));
Console.Write("Result: {0}\n", d);
}
catch (TimeoutException e)
{
Console.Write("Exception: {0}\n", e.Message);
}
// Version that works on tasks.
var task = Task.Run(() =>
{
Thread.Sleep(TimeSpan.FromSeconds(1));
return 42;
});
// To use async/await, add "await" and remove "GetAwaiter().GetResult()".
var result = task.TimeoutAfterAsync(TimeSpan.FromSeconds(2)).
GetAwaiter().GetResult();
Console.Write("Result: {0}\n", result);
Console.Write("[any key to exit]");
Console.ReadKey();
}
public static int MyFunc()
{
return 42;
}
public static TResult TimeoutAfter<TResult>(
this Func<TResult> func, TimeSpan timeout)
{
var task = Task.Run(func);
return TimeoutAfterAsync(task, timeout).GetAwaiter().GetResult();
}
private static async Task<TResult> TimeoutAfterAsync<TResult>(
this Task<TResult> task, TimeSpan timeout)
{
var result = await Task.WhenAny(task, Task.Delay(timeout));
if (result == task)
{
// Task completed within timeout.
return task.GetAwaiter().GetResult();
}
else
{
// Task timed out.
throw new TimeoutException();
}
}
}
}
Caveats
Having given this answer, its generally not a good practice to have exceptions thrown in your code during normal operation, unless you absolutely have to:
Each time an exception is thrown, its an extremely heavyweight operation,
Exceptions can slow your code down by a factor of 100 or more if the exceptions are in a tight loop.
Only use this code if you absolutely cannot alter the function you are calling so it times out after a specific TimeSpan.
This answer is really only applicable when dealing with 3rd party library libraries that you simply cannot refactor to include a timeout parameter.
How to write robust code
If you want to write robust code, the general rule is this:
Every single operation that could potentially block indefinitely, must have a timeout.
If you do not observe this rule, your code will eventually hit an operation that fails for some reason, then it will block indefinitely, and your app has just permanently hung.
If there was a reasonable timeout after some time, then your app would hang for some extreme amount of time (e.g. 30 seconds) then it would either display an error and continue on its merry way, or retry.
What about something like this?
const int x = 3000;
const int y = 1000;
static void Main(string[] args)
{
// Your scheduler
TaskScheduler scheduler = TaskScheduler.Default;
Task nonblockingTask = new Task(() =>
{
CancellationTokenSource source = new CancellationTokenSource();
Task t1 = new Task(() =>
{
while (true)
{
// Do something
if (source.IsCancellationRequested)
break;
}
}, source.Token);
t1.Start(scheduler);
// Wait for task 1
bool firstTimeout = t1.Wait(x);
if (!firstTimeout)
{
// If it hasn't finished at first timeout display message
Console.WriteLine("Message to user: the operation hasn't completed yet.");
bool secondTimeout = t1.Wait(y);
if (!secondTimeout)
{
source.Cancel();
Console.WriteLine("Operation stopped!");
}
}
});
nonblockingTask.Start();
Console.WriteLine("Do whatever you want...");
Console.ReadLine();
}
You can use the Task.Wait option without blocking main thread using another Task.
Use a Timer to handle the message and automatic cancellation. When the Task completes, call Dispose on the timers so that they will never fire. Here is an example; change taskDelay to 500, 1500, or 2500 to see the different cases:
using System;
using System.Threading;
using System.Threading.Tasks;
namespace ConsoleApplication1
{
class Program
{
private static Task CreateTaskWithTimeout(
int xDelay, int yDelay, int taskDelay)
{
var cts = new CancellationTokenSource();
var token = cts.Token;
var task = Task.Factory.StartNew(() =>
{
// Do some work, but fail if cancellation was requested
token.WaitHandle.WaitOne(taskDelay);
token.ThrowIfCancellationRequested();
Console.WriteLine("Task complete");
});
var messageTimer = new Timer(state =>
{
// Display message at first timeout
Console.WriteLine("X milliseconds elapsed");
}, null, xDelay, -1);
var cancelTimer = new Timer(state =>
{
// Display message and cancel task at second timeout
Console.WriteLine("Y milliseconds elapsed");
cts.Cancel();
}
, null, yDelay, -1);
task.ContinueWith(t =>
{
// Dispose the timers when the task completes
// This will prevent the message from being displayed
// if the task completes before the timeout
messageTimer.Dispose();
cancelTimer.Dispose();
});
return task;
}
static void Main(string[] args)
{
var task = CreateTaskWithTimeout(1000, 2000, 2500);
// The task has been started and will display a message after
// one timeout and then cancel itself after the second
// You can add continuations to the task
// or wait for the result as needed
try
{
task.Wait();
Console.WriteLine("Done waiting for task");
}
catch (AggregateException ex)
{
Console.WriteLine("Error waiting for task:");
foreach (var e in ex.InnerExceptions)
{
Console.WriteLine(e);
}
}
}
}
}
Also, the Async CTP provides a TaskEx.Delay method that will wrap the timers in tasks for you. This can give you more control to do things like set the TaskScheduler for the continuation when the Timer fires.
private static Task CreateTaskWithTimeout(
int xDelay, int yDelay, int taskDelay)
{
var cts = new CancellationTokenSource();
var token = cts.Token;
var task = Task.Factory.StartNew(() =>
{
// Do some work, but fail if cancellation was requested
token.WaitHandle.WaitOne(taskDelay);
token.ThrowIfCancellationRequested();
Console.WriteLine("Task complete");
});
var timerCts = new CancellationTokenSource();
var messageTask = TaskEx.Delay(xDelay, timerCts.Token);
messageTask.ContinueWith(t =>
{
// Display message at first timeout
Console.WriteLine("X milliseconds elapsed");
}, TaskContinuationOptions.OnlyOnRanToCompletion);
var cancelTask = TaskEx.Delay(yDelay, timerCts.Token);
cancelTask.ContinueWith(t =>
{
// Display message and cancel task at second timeout
Console.WriteLine("Y milliseconds elapsed");
cts.Cancel();
}, TaskContinuationOptions.OnlyOnRanToCompletion);
task.ContinueWith(t =>
{
timerCts.Cancel();
});
return task;
}
With .Net 6 (preview 7 as the date of this answer), it is possible to use the new WaitAsync(TimeSpan, CancellationToken) which answers to this particular need.
If you can use .Net6, this version is moreover described to be optimized if we compare to the majority of good solutions proposed in this posts.
(Thanks for all participants because I used your solution for years)
Another way of solving this problem is using Reactive Extensions:
public static Task TimeoutAfter(this Task task, TimeSpan timeout, IScheduler scheduler)
{
return task.ToObservable().Timeout(timeout, scheduler).ToTask();
}
Test up above using below code in your unit test, it works for me
TestScheduler scheduler = new TestScheduler();
Task task = Task.Run(() =>
{
int i = 0;
while (i < 5)
{
Console.WriteLine(i);
i++;
Thread.Sleep(1000);
}
})
.TimeoutAfter(TimeSpan.FromSeconds(5), scheduler)
.ContinueWith(t => { }, TaskContinuationOptions.OnlyOnFaulted);
scheduler.AdvanceBy(TimeSpan.FromSeconds(6).Ticks);
You may need the following namespace:
using System.Threading.Tasks;
using System.Reactive.Subjects;
using System.Reactive.Linq;
using System.Reactive.Threading.Tasks;
using Microsoft.Reactive.Testing;
using System.Threading;
using System.Reactive.Concurrency;
A generic version of #Kevan's answer above, using Reactive Extensions.
public static Task<T> TimeoutAfter<T>(this Task<T> task, TimeSpan timeout, IScheduler scheduler)
{
return task.ToObservable().Timeout(timeout, scheduler).ToTask();
}
With optional Scheduler:
public static Task<T> TimeoutAfter<T>(this Task<T> task, TimeSpan timeout, Scheduler scheduler = null)
{
return scheduler is null
? task.ToObservable().Timeout(timeout).ToTask()
: task.ToObservable().Timeout(timeout, scheduler).ToTask();
}
BTW: When a Timeout happens, a timeout exception will be thrown
For the fun of it I made a 'OnTimeout' extension to Task. On timeout Task executes the desired inline lambda Action() and returns true, otherwise false.
public static async Task<bool> OnTimeout<T>(this T t, Action<T> action, int waitms) where T : Task
{
if (!(await Task.WhenAny(t, Task.Delay(waitms)) == t))
{
action(t);
return true;
} else {
return false;
}
}
The OnTimeout extension returns a bool result that can be assigned to a variable like in this example calling an UDP socket Async:
var t = UdpSocket.ReceiveAsync();
var timeout = await t.OnTimeout(task => {
Console.WriteLine("No Response");
}, 5000);
The 'task' variable is accessible in the timeout lambda for more processing.
The use of Action receiving an object may inspire to various other extension designs.
Create a extension to wait for the task or a delay to complete, whichever comes first. Throw an exception if the delay wins.
public static async Task<TResult> WithTimeout<TResult>(this Task<TResult> task, TimeSpan timeout)
{
if (await Task.WhenAny(task, Task.Delay(timeout)) != task)
throw new TimeoutException();
return await task;
}
I felt the Task.Delay() task and CancellationTokenSource in the other answers a bit much for my use case in a tight-ish networking loop.
And although Joe Hoag's Crafting a Task.TimeoutAfter Method on MSDN blogs was inspiring, I was a little weary of using TimeoutException for flow control for the same reason as above, because timeouts are expected more frequently than not.
So I went with this, which also handles the optimizations mentioned in the blog:
public static async Task<bool> BeforeTimeout(this Task task, int millisecondsTimeout)
{
if (task.IsCompleted) return true;
if (millisecondsTimeout == 0) return false;
if (millisecondsTimeout == Timeout.Infinite)
{
await Task.WhenAll(task);
return true;
}
var tcs = new TaskCompletionSource<object>();
using (var timer = new Timer(state => ((TaskCompletionSource<object>)state).TrySetCanceled(), tcs,
millisecondsTimeout, Timeout.Infinite))
{
return await Task.WhenAny(task, tcs.Task) == task;
}
}
An example use case is as such:
var receivingTask = conn.ReceiveAsync(ct);
while (!await receivingTask.BeforeTimeout(keepAliveMilliseconds))
{
// Send keep-alive
}
// Read and do something with data
var data = await receivingTask;
A few variants of Andrew Arnott's answer:
If you want to wait for an existing task and find out whether it completed or timed out, but don't want to cancel it if the timeout occurs:
public static async Task<bool> TimedOutAsync(this Task task, int timeoutMilliseconds)
{
if (timeoutMilliseconds < 0 || (timeoutMilliseconds > 0 && timeoutMilliseconds < 100)) { throw new ArgumentOutOfRangeException(); }
if (timeoutMilliseconds == 0) {
return !task.IsCompleted; // timed out if not completed
}
var cts = new CancellationTokenSource();
if (await Task.WhenAny( task, Task.Delay(timeoutMilliseconds, cts.Token)) == task) {
cts.Cancel(); // task completed, get rid of timer
await task; // test for exceptions or task cancellation
return false; // did not timeout
} else {
return true; // did timeout
}
}
If you want to start a work task and cancel the work if the timeout occurs:
public static async Task<T> CancelAfterAsync<T>( this Func<CancellationToken,Task<T>> actionAsync, int timeoutMilliseconds)
{
if (timeoutMilliseconds < 0 || (timeoutMilliseconds > 0 && timeoutMilliseconds < 100)) { throw new ArgumentOutOfRangeException(); }
var taskCts = new CancellationTokenSource();
var timerCts = new CancellationTokenSource();
Task<T> task = actionAsync(taskCts.Token);
if (await Task.WhenAny(task, Task.Delay(timeoutMilliseconds, timerCts.Token)) == task) {
timerCts.Cancel(); // task completed, get rid of timer
} else {
taskCts.Cancel(); // timer completed, get rid of task
}
return await task; // test for exceptions or task cancellation
}
If you have a task already created that you want to cancel if a timeout occurs:
public static async Task<T> CancelAfterAsync<T>(this Task<T> task, int timeoutMilliseconds, CancellationTokenSource taskCts)
{
if (timeoutMilliseconds < 0 || (timeoutMilliseconds > 0 && timeoutMilliseconds < 100)) { throw new ArgumentOutOfRangeException(); }
var timerCts = new CancellationTokenSource();
if (await Task.WhenAny(task, Task.Delay(timeoutMilliseconds, timerCts.Token)) == task) {
timerCts.Cancel(); // task completed, get rid of timer
} else {
taskCts.Cancel(); // timer completed, get rid of task
}
return await task; // test for exceptions or task cancellation
}
Another comment, these versions will cancel the timer if the timeout does not occur, so multiple calls will not cause timers to pile up.
sjb
So this is ancient, but there's a much better modern solution. Not sure what version of c#/.NET is required, but this is how I do it:
... Other method code not relevant to the question.
// a token source that will timeout at the specified interval, or if cancelled outside of this scope
using var timeoutTokenSource = new CancellationTokenSource(TimeSpan.FromSeconds(5));
using var linkedTokenSource = CancellationTokenSource.CreateLinkedTokenSource(token, timeoutTokenSource.Token);
async Task<MessageResource> FetchAsync()
{
try
{
return await MessageResource.FetchAsync(m.Sid);
} catch (TaskCanceledException e)
{
if (timeoutTokenSource.IsCancellationRequested)
throw new TimeoutException("Timeout", e);
throw;
}
}
return await Task.Run(FetchAsync, linkedTokenSource.Token);
the CancellationTokenSource constructor takes a TimeSpan parameter which will cause that token to cancel after that interval has elapsed. You can then wrap your async (or syncronous, for that matter) code in another call to Task.Run, passing the timeout token.
This assumes you're passing in a cancellation token (the token variable). If you don't have a need to cancel the task separately from the timeout, you can just use timeoutTokenSource directly. Otherwise, you create linkedTokenSource, which will cancel if the timeout ocurrs, or if it's otherwise cancelled.
We then just catch OperationCancelledException and check which token threw the exception, and throw a TimeoutException if a timeout caused this to raise. Otherwise, we rethrow.
Also, I'm using local functions here, which were introduced in C# 7, but you could easily use lambda or actual functions to the same affect. Similarly, c# 8 introduced a simpler syntax for using statements, but those are easy enough to rewrite.
If you use a BlockingCollection to schedule the task, the producer can run the potentially long running task and the consumer can use the TryTake method which has timeout and cancellation token built in.
I'm recombinging the ideas of some other answers here and this answer on another thread into a Try-style extension method. This has a benefit if you want an extension method, yet avoiding an exception upon timeout.
public static async Task<bool> TryWithTimeoutAfter<TResult>(this Task<TResult> task,
TimeSpan timeout, Action<TResult> successor)
{
using var timeoutCancellationTokenSource = new CancellationTokenSource();
var completedTask = await Task.WhenAny(task, Task.Delay(timeout, timeoutCancellationTokenSource.Token))
.ConfigureAwait(continueOnCapturedContext: false);
if (completedTask == task)
{
timeoutCancellationTokenSource.Cancel();
// propagate exception rather than AggregateException, if calling task.Result.
var result = await task.ConfigureAwait(continueOnCapturedContext: false);
successor(result);
return true;
}
else return false;
}
async Task Example(Task<string> task)
{
string result = null;
if (await task.TryWithTimeoutAfter(TimeSpan.FromSeconds(1), r => result = r))
{
Console.WriteLine(result);
}
}

How Do I Create a Looping Service inside an C# Async/Await application?

I have written a class with a method that runs as a long-running Task in the thread pool. The method is a monitoring service to periodically make a REST request to check on the status of another system. It's just a while() loop with a try()catch() inside so that it can handle its own exceptions and and gracefully continuing if something unexpected happens.
Here's an example:
public void LaunchMonitorThread()
{
Task.Run(() =>
{
while (true)
{
try
{
//Check system status
Thread.Sleep(5000);
}
catch (Exception e)
{
Console.WriteLine("An error occurred. Resuming on next loop...");
}
}
});
}
It works fine, but I want to know if there's another pattern I could use that would allow the Monitor method to run as regular part of a standard Async/Await application, instead of launching it with Task.Run() -- basically I'm trying to avoid fire-and-forget pattern.
So I tried refactoring the code to this:
public async Task LaunchMonitorThread()
{
while (true)
{
try
{
//Check system status
//Use task.delay instead of thread.sleep:
await Task.Delay(5000);
}
catch (Exception e)
{
Console.WriteLine("An error occurred. Resuming on next loop...");
}
}
}
But when I try to call the method in another async method, I get the fun compiler warning:
"Because this call is not awaited, execution of the current method continues before the call is completed."
Now I think this is correct and what I want. But I have doubts because I'm new to async/await. Is this code going to run the way I expect or is it going to DEADLOCK or do something else fatal?
What you are really looking for is the use of a Timer. Use the one in the System.Threading namespace. There is no need to use Task or any other variation thereof (for the code sample you have shown).
private System.Threading.Timer timer;
void StartTimer()
{
timer = new System.Threading.Timer(TimerExecution, null, TimeSpan.FromSeconds(5), TimeSpan.FromSeconds(5));
}
void TimerExecution(object state)
{
try
{
//Check system status
}
catch (Exception e)
{
Console.WriteLine("An error occurred. Resuming on next loop...");
}
}
From the documentation
Provides a mechanism for executing a method on a thread pool thread at specified intervals
You could also use System.Timers.Timer but you might not need it. For a comparison between the 2 Timers see also System.Timers.Timer vs System.Threading.Timer.
If you need fire-and-forget operation, it is fine. I'd suggest to improve it with CancellationToken
public async Task LaunchMonitorThread(CancellationToken token)
{
while (!token.IsCancellationRequested)
{
try
{
//Check system status
//Use task.delay instead of thread.sleep:
await Task.Delay(5000, token);
}
catch (Exception e)
{
Console.WriteLine("An error occurred. Resuming on next loop...");
}
}
}
besides that, you can use it like
var cancellationToken = new CancellationToken();
var monitorTask = LaunchMonitorThread(cancellationToken);
and save task and/or cancellationToken to interrupt monitor wherever you want
The method Task.Run that you use to fire is perfect to start long-running async functions from a non-async method.
You are right: the forget part is not correct. If for instance your process is going to close, it would be neater if you kindly asked the started thread to finish its task.
The proper way to do this would be to use a CancellationTokenSource. If you order the CancellationTokenSource to Cancel, then all procedures that were started using Tokens from this CancellationTokenSource will stop neatly within reasonable time.
So let's create a class LongRunningTask, that will create a long running Task upon construction and Cancel this task using the CancellationTokenSource upon Dispose().
As both the CancellationTokenSource as the Task implement IDisposable the neat way would be to Dispose these two when the LongRunningTask object is disposed
class LongRunningTask : IDisposable
{
public LongRunningTask(Action<CancellationToken> action)
{ // Starts a Task that will perform the action
this.cancellationTokenSource = new CancellationTokenSource();
this.longRunningTask = Task.Run( () => action (this.cancellationTokenSource.Token));
}
private readonly CancellationTokenSource cancellationTokenSource;
private readonly Task longRunningTask;
private bool isDisposed = false;
public async Task CancelAsync()
{ // cancel the task and wait until the task is completed:
if (this.isDisposed) throw new ObjectDisposedException();
this.cancellationTokenSource.Cancel();
await this.longRunningTask;
}
// for completeness a non-async version:
public void Cancel()
{ // cancel the task and wait until the task is completed:
if (this.isDisposed) throw new ObjectDisposedException();
this.cancellationTokenSource.Cancel();
this.longRunningTask.Wait;
}
}
Add a standard Dispose Pattern
public void Dispose()
{
this.Dispose(true);
GC.SuppressFinalize(this);
}
protected void Dispose(bool disposing)
{
if (disposing && !this.isDisposed)
{ // cancel the task, and wait until task completed:
this.Cancel();
this.IsDisposed = true;
}
}
Usage:
var longRunningTask = new LongRunningTask( (token) => MyFunction(token)
...
// when application closes:
await longRunningTask.CancelAsync(); // not necessary but the neat way to do
longRunningTask.Dispose();
The Action {...} has a CancellationToken as input parameter, your function should regularly check it
async Task MyFunction(CancellationToken token)
{
while (!token.IsCancellationrequested)
{
// do what you have to do, make sure to regularly (every second?) check the token
// when calling other tasks: pass the token
await Task.Delay(TimeSpan.FromSeconds(5), token);
}
}
Instead of checking for Token, you could call token.ThrowIfCancellationRequested. This will throw an exception that you'll have to catch

C# How to handle cancel task with eventhandler inside

I have requirement to update ui control when status of dependent service will change. I have this sample code, which polling service api to get status and sends result to recalculate and update ui by main thread:
public void StartObserving() {
this.cts = new CancellationTokenSource();
this.cts.Token.ThrowIfCancellationRequested();
this.isRunning = true;
var token = this.cts.Token;
Task.Run(async () =>
{
try
{
while (this.isRunning)
{
var result = this.serviceAPI.GetStatus();
this.OnServiceStatusChanged(result);
await Task.Delay(3000);
}
}
catch (OperationCanceledException)
{
this.isRunning = false;
}
catch (Exception ex)
{
this.isRunning = false;
this.logger.LogError(ex);
}
}, token);
}
And the problem is when I want to cancel above Task. When I call this.cts.Cancel() in another method in this class, I get Exception 'A task was canceled' on dispatcher which was triggered by EventHandler: OnServiceStatusChanged
How I should properly implement this scenario?
I would simply check whether the token in cancelled in the inner loop, and exit the loop if it is. No need to pass the token to the Task.Run() method.
public void StartObserving()
{
this.cts = new CancellationTokenSource();
var token = this.cts.Token;
Task.Run(async () =>
{
try
{
while (!token.IsCancellationRequested)
{
var result = this.serviceAPI.GetStatus();
this.OnServiceStatusChanged(result);
await Task.Delay(3000);
}
}
catch
{
}
});
}
Tried to simulate this behavior in a console app. Task started, but after calling cts.Cancel(), the task continues to execute... Very strange.
However, I could cancel the task by simply setting this.isRunning to false (instead of calling cts.Cancel()). But I am not sure if this is the solution you want.
If serviceAPI.GetStatus() is a blocking call that waits indeffinitly, then you cannot properly cancel this task.
Proper cancellation of async methods involves marking safe cancellation points with CancellationToken.ThrowIfCancellationRequested().
You would have to rewrite serviceAPI.GetStatus() as an async method that you await the result of. It should contain calls to CancellationToken.ThrowIfCancellationRequested() at points where it can be safely cancelled. You would want to pass the cancellation token in to both that method, and the call to Task.Delay() for optimal performance.

Setting timeout for an async operation [duplicate]

I want to wait for a Task<T> to complete with some special rules:
If it hasn't completed after X milliseconds, I want to display a message to the user.
And if it hasn't completed after Y milliseconds, I want to automatically request cancellation.
I can use Task.ContinueWith to asynchronously wait for the task to complete (i.e. schedule an action to be executed when the task is complete), but that doesn't allow to specify a timeout.
I can use Task.Wait to synchronously wait for the task to complete with a timeout, but that blocks my thread.
How can I asynchronously wait for the task to complete with a timeout?
How about this:
int timeout = 1000;
var task = SomeOperationAsync();
if (await Task.WhenAny(task, Task.Delay(timeout)) == task) {
// task completed within timeout
} else {
// timeout logic
}
And here's a great blog post "Crafting a Task.TimeoutAfter Method" (from MS Parallel Library team) with more info on this sort of thing.
Addition: at the request of a comment on my answer, here is an expanded solution that includes cancellation handling. Note that passing cancellation to the task and the timer means that there are multiple ways cancellation can be experienced in your code, and you should be sure to test for and be confident you properly handle all of them. Don't leave to chance various combinations and hope your computer does the right thing at runtime.
int timeout = 1000;
var task = SomeOperationAsync(cancellationToken);
if (await Task.WhenAny(task, Task.Delay(timeout, cancellationToken)) == task)
{
// Task completed within timeout.
// Consider that the task may have faulted or been canceled.
// We re-await the task so that any exceptions/cancellation is rethrown.
await task;
}
else
{
// timeout/cancellation logic
}
Here's a extension method version that incorporates cancellation of the timeout when the original task completes as suggested by Andrew Arnott in a comment to his answer.
public static async Task<TResult> TimeoutAfter<TResult>(this Task<TResult> task, TimeSpan timeout) {
using (var timeoutCancellationTokenSource = new CancellationTokenSource()) {
var completedTask = await Task.WhenAny(task, Task.Delay(timeout, timeoutCancellationTokenSource.Token));
if (completedTask == task) {
timeoutCancellationTokenSource.Cancel();
return await task; // Very important in order to propagate exceptions
} else {
throw new TimeoutException("The operation has timed out.");
}
}
}
From .Net 6 (Preview 7) or later, there is a new build-in method Task.WaitAsync to achieve this.
// Using TimeSpan
await myTask.WaitAsync(TimeSpan.FromSeconds(10));
// Using CancellationToken
await myTask.WaitAsync(cancellationToken);
// Using both TimeSpan and CancellationToken
await myTask.WaitAsync(TimeSpan.FromSeconds(10), cancellationToken);
If the task isn't finished before the TimeSpan or CancellationToken then it throws TimeoutException or TaskCanceledException respectively
try
{
await myTask.WaitAsync(TimeSpan.FromSeconds(10), cancellationToken);
}
catch (TaskCanceledException)
{
Console.WriteLine("Task didn't get finished before the `CancellationToken`");
}
catch (TimeoutException)
{
Console.WriteLine("Task didn't get finished before the `TimeSpan`");
}
You can use Task.WaitAny to wait the first of multiple tasks.
You could create two additional tasks (that complete after the specified timeouts) and then use WaitAny to wait for whichever completes first. If the task that completed first is your "work" task, then you're done. If the task that completed first is a timeout task, then you can react to the timeout (e.g. request cancellation).
This is a slightly enhanced version of previous answers.
In addition to Lawrence's answer, it cancels the original task when timeout occurs.
In addtion to sjb's answer variants 2 and 3, you can provide CancellationToken for the original task, and when timeout occurs, you get TimeoutException instead of OperationCanceledException.
async Task<TResult> CancelAfterAsync<TResult>(
Func<CancellationToken, Task<TResult>> startTask,
TimeSpan timeout, CancellationToken cancellationToken)
{
using (var timeoutCancellation = new CancellationTokenSource())
using (var combinedCancellation = CancellationTokenSource
.CreateLinkedTokenSource(cancellationToken, timeoutCancellation.Token))
{
var originalTask = startTask(combinedCancellation.Token);
var delayTask = Task.Delay(timeout, timeoutCancellation.Token);
var completedTask = await Task.WhenAny(originalTask, delayTask);
// Cancel timeout to stop either task:
// - Either the original task completed, so we need to cancel the delay task.
// - Or the timeout expired, so we need to cancel the original task.
// Canceling will not affect a task, that is already completed.
timeoutCancellation.Cancel();
if (completedTask == originalTask)
{
// original task completed
return await originalTask;
}
else
{
// timeout
throw new TimeoutException();
}
}
}
Usage
InnerCallAsync may take a long time to complete. CallAsync wraps it with a timeout.
async Task<int> CallAsync(CancellationToken cancellationToken)
{
var timeout = TimeSpan.FromMinutes(1);
int result = await CancelAfterAsync(ct => InnerCallAsync(ct), timeout,
cancellationToken);
return result;
}
async Task<int> InnerCallAsync(CancellationToken cancellationToken)
{
return 42;
}
Using Stephen Cleary's excellent AsyncEx library, you can do:
TimeSpan timeout = TimeSpan.FromSeconds(10);
using (var cts = new CancellationTokenSource(timeout))
{
await myTask.WaitAsync(cts.Token);
}
TaskCanceledException will be thrown in the event of a timeout.
Here is a fully worked example based on the top voted answer, which is:
int timeout = 1000;
var task = SomeOperationAsync();
if (await Task.WhenAny(task, Task.Delay(timeout)) == task) {
// task completed within timeout
} else {
// timeout logic
}
The main advantage of the implementation in this answer is that generics have been added, so the function (or task) can return a value. This means that any existing function can be wrapped in a timeout function, e.g.:
Before:
int x = MyFunc();
After:
// Throws a TimeoutException if MyFunc takes more than 1 second
int x = TimeoutAfter(MyFunc, TimeSpan.FromSeconds(1));
This code requires .NET 4.5.
using System;
using System.Threading;
using System.Threading.Tasks;
namespace TaskTimeout
{
public static class Program
{
/// <summary>
/// Demo of how to wrap any function in a timeout.
/// </summary>
private static void Main(string[] args)
{
// Version without timeout.
int a = MyFunc();
Console.Write("Result: {0}\n", a);
// Version with timeout.
int b = TimeoutAfter(() => { return MyFunc(); },TimeSpan.FromSeconds(1));
Console.Write("Result: {0}\n", b);
// Version with timeout (short version that uses method groups).
int c = TimeoutAfter(MyFunc, TimeSpan.FromSeconds(1));
Console.Write("Result: {0}\n", c);
// Version that lets you see what happens when a timeout occurs.
try
{
int d = TimeoutAfter(
() =>
{
Thread.Sleep(TimeSpan.FromSeconds(123));
return 42;
},
TimeSpan.FromSeconds(1));
Console.Write("Result: {0}\n", d);
}
catch (TimeoutException e)
{
Console.Write("Exception: {0}\n", e.Message);
}
// Version that works on tasks.
var task = Task.Run(() =>
{
Thread.Sleep(TimeSpan.FromSeconds(1));
return 42;
});
// To use async/await, add "await" and remove "GetAwaiter().GetResult()".
var result = task.TimeoutAfterAsync(TimeSpan.FromSeconds(2)).
GetAwaiter().GetResult();
Console.Write("Result: {0}\n", result);
Console.Write("[any key to exit]");
Console.ReadKey();
}
public static int MyFunc()
{
return 42;
}
public static TResult TimeoutAfter<TResult>(
this Func<TResult> func, TimeSpan timeout)
{
var task = Task.Run(func);
return TimeoutAfterAsync(task, timeout).GetAwaiter().GetResult();
}
private static async Task<TResult> TimeoutAfterAsync<TResult>(
this Task<TResult> task, TimeSpan timeout)
{
var result = await Task.WhenAny(task, Task.Delay(timeout));
if (result == task)
{
// Task completed within timeout.
return task.GetAwaiter().GetResult();
}
else
{
// Task timed out.
throw new TimeoutException();
}
}
}
}
Caveats
Having given this answer, its generally not a good practice to have exceptions thrown in your code during normal operation, unless you absolutely have to:
Each time an exception is thrown, its an extremely heavyweight operation,
Exceptions can slow your code down by a factor of 100 or more if the exceptions are in a tight loop.
Only use this code if you absolutely cannot alter the function you are calling so it times out after a specific TimeSpan.
This answer is really only applicable when dealing with 3rd party library libraries that you simply cannot refactor to include a timeout parameter.
How to write robust code
If you want to write robust code, the general rule is this:
Every single operation that could potentially block indefinitely, must have a timeout.
If you do not observe this rule, your code will eventually hit an operation that fails for some reason, then it will block indefinitely, and your app has just permanently hung.
If there was a reasonable timeout after some time, then your app would hang for some extreme amount of time (e.g. 30 seconds) then it would either display an error and continue on its merry way, or retry.
What about something like this?
const int x = 3000;
const int y = 1000;
static void Main(string[] args)
{
// Your scheduler
TaskScheduler scheduler = TaskScheduler.Default;
Task nonblockingTask = new Task(() =>
{
CancellationTokenSource source = new CancellationTokenSource();
Task t1 = new Task(() =>
{
while (true)
{
// Do something
if (source.IsCancellationRequested)
break;
}
}, source.Token);
t1.Start(scheduler);
// Wait for task 1
bool firstTimeout = t1.Wait(x);
if (!firstTimeout)
{
// If it hasn't finished at first timeout display message
Console.WriteLine("Message to user: the operation hasn't completed yet.");
bool secondTimeout = t1.Wait(y);
if (!secondTimeout)
{
source.Cancel();
Console.WriteLine("Operation stopped!");
}
}
});
nonblockingTask.Start();
Console.WriteLine("Do whatever you want...");
Console.ReadLine();
}
You can use the Task.Wait option without blocking main thread using another Task.
Use a Timer to handle the message and automatic cancellation. When the Task completes, call Dispose on the timers so that they will never fire. Here is an example; change taskDelay to 500, 1500, or 2500 to see the different cases:
using System;
using System.Threading;
using System.Threading.Tasks;
namespace ConsoleApplication1
{
class Program
{
private static Task CreateTaskWithTimeout(
int xDelay, int yDelay, int taskDelay)
{
var cts = new CancellationTokenSource();
var token = cts.Token;
var task = Task.Factory.StartNew(() =>
{
// Do some work, but fail if cancellation was requested
token.WaitHandle.WaitOne(taskDelay);
token.ThrowIfCancellationRequested();
Console.WriteLine("Task complete");
});
var messageTimer = new Timer(state =>
{
// Display message at first timeout
Console.WriteLine("X milliseconds elapsed");
}, null, xDelay, -1);
var cancelTimer = new Timer(state =>
{
// Display message and cancel task at second timeout
Console.WriteLine("Y milliseconds elapsed");
cts.Cancel();
}
, null, yDelay, -1);
task.ContinueWith(t =>
{
// Dispose the timers when the task completes
// This will prevent the message from being displayed
// if the task completes before the timeout
messageTimer.Dispose();
cancelTimer.Dispose();
});
return task;
}
static void Main(string[] args)
{
var task = CreateTaskWithTimeout(1000, 2000, 2500);
// The task has been started and will display a message after
// one timeout and then cancel itself after the second
// You can add continuations to the task
// or wait for the result as needed
try
{
task.Wait();
Console.WriteLine("Done waiting for task");
}
catch (AggregateException ex)
{
Console.WriteLine("Error waiting for task:");
foreach (var e in ex.InnerExceptions)
{
Console.WriteLine(e);
}
}
}
}
}
Also, the Async CTP provides a TaskEx.Delay method that will wrap the timers in tasks for you. This can give you more control to do things like set the TaskScheduler for the continuation when the Timer fires.
private static Task CreateTaskWithTimeout(
int xDelay, int yDelay, int taskDelay)
{
var cts = new CancellationTokenSource();
var token = cts.Token;
var task = Task.Factory.StartNew(() =>
{
// Do some work, but fail if cancellation was requested
token.WaitHandle.WaitOne(taskDelay);
token.ThrowIfCancellationRequested();
Console.WriteLine("Task complete");
});
var timerCts = new CancellationTokenSource();
var messageTask = TaskEx.Delay(xDelay, timerCts.Token);
messageTask.ContinueWith(t =>
{
// Display message at first timeout
Console.WriteLine("X milliseconds elapsed");
}, TaskContinuationOptions.OnlyOnRanToCompletion);
var cancelTask = TaskEx.Delay(yDelay, timerCts.Token);
cancelTask.ContinueWith(t =>
{
// Display message and cancel task at second timeout
Console.WriteLine("Y milliseconds elapsed");
cts.Cancel();
}, TaskContinuationOptions.OnlyOnRanToCompletion);
task.ContinueWith(t =>
{
timerCts.Cancel();
});
return task;
}
With .Net 6 (preview 7 as the date of this answer), it is possible to use the new WaitAsync(TimeSpan, CancellationToken) which answers to this particular need.
If you can use .Net6, this version is moreover described to be optimized if we compare to the majority of good solutions proposed in this posts.
(Thanks for all participants because I used your solution for years)
Another way of solving this problem is using Reactive Extensions:
public static Task TimeoutAfter(this Task task, TimeSpan timeout, IScheduler scheduler)
{
return task.ToObservable().Timeout(timeout, scheduler).ToTask();
}
Test up above using below code in your unit test, it works for me
TestScheduler scheduler = new TestScheduler();
Task task = Task.Run(() =>
{
int i = 0;
while (i < 5)
{
Console.WriteLine(i);
i++;
Thread.Sleep(1000);
}
})
.TimeoutAfter(TimeSpan.FromSeconds(5), scheduler)
.ContinueWith(t => { }, TaskContinuationOptions.OnlyOnFaulted);
scheduler.AdvanceBy(TimeSpan.FromSeconds(6).Ticks);
You may need the following namespace:
using System.Threading.Tasks;
using System.Reactive.Subjects;
using System.Reactive.Linq;
using System.Reactive.Threading.Tasks;
using Microsoft.Reactive.Testing;
using System.Threading;
using System.Reactive.Concurrency;
A generic version of #Kevan's answer above, using Reactive Extensions.
public static Task<T> TimeoutAfter<T>(this Task<T> task, TimeSpan timeout, IScheduler scheduler)
{
return task.ToObservable().Timeout(timeout, scheduler).ToTask();
}
With optional Scheduler:
public static Task<T> TimeoutAfter<T>(this Task<T> task, TimeSpan timeout, Scheduler scheduler = null)
{
return scheduler is null
? task.ToObservable().Timeout(timeout).ToTask()
: task.ToObservable().Timeout(timeout, scheduler).ToTask();
}
BTW: When a Timeout happens, a timeout exception will be thrown
For the fun of it I made a 'OnTimeout' extension to Task. On timeout Task executes the desired inline lambda Action() and returns true, otherwise false.
public static async Task<bool> OnTimeout<T>(this T t, Action<T> action, int waitms) where T : Task
{
if (!(await Task.WhenAny(t, Task.Delay(waitms)) == t))
{
action(t);
return true;
} else {
return false;
}
}
The OnTimeout extension returns a bool result that can be assigned to a variable like in this example calling an UDP socket Async:
var t = UdpSocket.ReceiveAsync();
var timeout = await t.OnTimeout(task => {
Console.WriteLine("No Response");
}, 5000);
The 'task' variable is accessible in the timeout lambda for more processing.
The use of Action receiving an object may inspire to various other extension designs.
Create a extension to wait for the task or a delay to complete, whichever comes first. Throw an exception if the delay wins.
public static async Task<TResult> WithTimeout<TResult>(this Task<TResult> task, TimeSpan timeout)
{
if (await Task.WhenAny(task, Task.Delay(timeout)) != task)
throw new TimeoutException();
return await task;
}
I felt the Task.Delay() task and CancellationTokenSource in the other answers a bit much for my use case in a tight-ish networking loop.
And although Joe Hoag's Crafting a Task.TimeoutAfter Method on MSDN blogs was inspiring, I was a little weary of using TimeoutException for flow control for the same reason as above, because timeouts are expected more frequently than not.
So I went with this, which also handles the optimizations mentioned in the blog:
public static async Task<bool> BeforeTimeout(this Task task, int millisecondsTimeout)
{
if (task.IsCompleted) return true;
if (millisecondsTimeout == 0) return false;
if (millisecondsTimeout == Timeout.Infinite)
{
await Task.WhenAll(task);
return true;
}
var tcs = new TaskCompletionSource<object>();
using (var timer = new Timer(state => ((TaskCompletionSource<object>)state).TrySetCanceled(), tcs,
millisecondsTimeout, Timeout.Infinite))
{
return await Task.WhenAny(task, tcs.Task) == task;
}
}
An example use case is as such:
var receivingTask = conn.ReceiveAsync(ct);
while (!await receivingTask.BeforeTimeout(keepAliveMilliseconds))
{
// Send keep-alive
}
// Read and do something with data
var data = await receivingTask;
A few variants of Andrew Arnott's answer:
If you want to wait for an existing task and find out whether it completed or timed out, but don't want to cancel it if the timeout occurs:
public static async Task<bool> TimedOutAsync(this Task task, int timeoutMilliseconds)
{
if (timeoutMilliseconds < 0 || (timeoutMilliseconds > 0 && timeoutMilliseconds < 100)) { throw new ArgumentOutOfRangeException(); }
if (timeoutMilliseconds == 0) {
return !task.IsCompleted; // timed out if not completed
}
var cts = new CancellationTokenSource();
if (await Task.WhenAny( task, Task.Delay(timeoutMilliseconds, cts.Token)) == task) {
cts.Cancel(); // task completed, get rid of timer
await task; // test for exceptions or task cancellation
return false; // did not timeout
} else {
return true; // did timeout
}
}
If you want to start a work task and cancel the work if the timeout occurs:
public static async Task<T> CancelAfterAsync<T>( this Func<CancellationToken,Task<T>> actionAsync, int timeoutMilliseconds)
{
if (timeoutMilliseconds < 0 || (timeoutMilliseconds > 0 && timeoutMilliseconds < 100)) { throw new ArgumentOutOfRangeException(); }
var taskCts = new CancellationTokenSource();
var timerCts = new CancellationTokenSource();
Task<T> task = actionAsync(taskCts.Token);
if (await Task.WhenAny(task, Task.Delay(timeoutMilliseconds, timerCts.Token)) == task) {
timerCts.Cancel(); // task completed, get rid of timer
} else {
taskCts.Cancel(); // timer completed, get rid of task
}
return await task; // test for exceptions or task cancellation
}
If you have a task already created that you want to cancel if a timeout occurs:
public static async Task<T> CancelAfterAsync<T>(this Task<T> task, int timeoutMilliseconds, CancellationTokenSource taskCts)
{
if (timeoutMilliseconds < 0 || (timeoutMilliseconds > 0 && timeoutMilliseconds < 100)) { throw new ArgumentOutOfRangeException(); }
var timerCts = new CancellationTokenSource();
if (await Task.WhenAny(task, Task.Delay(timeoutMilliseconds, timerCts.Token)) == task) {
timerCts.Cancel(); // task completed, get rid of timer
} else {
taskCts.Cancel(); // timer completed, get rid of task
}
return await task; // test for exceptions or task cancellation
}
Another comment, these versions will cancel the timer if the timeout does not occur, so multiple calls will not cause timers to pile up.
sjb
So this is ancient, but there's a much better modern solution. Not sure what version of c#/.NET is required, but this is how I do it:
... Other method code not relevant to the question.
// a token source that will timeout at the specified interval, or if cancelled outside of this scope
using var timeoutTokenSource = new CancellationTokenSource(TimeSpan.FromSeconds(5));
using var linkedTokenSource = CancellationTokenSource.CreateLinkedTokenSource(token, timeoutTokenSource.Token);
async Task<MessageResource> FetchAsync()
{
try
{
return await MessageResource.FetchAsync(m.Sid);
} catch (TaskCanceledException e)
{
if (timeoutTokenSource.IsCancellationRequested)
throw new TimeoutException("Timeout", e);
throw;
}
}
return await Task.Run(FetchAsync, linkedTokenSource.Token);
the CancellationTokenSource constructor takes a TimeSpan parameter which will cause that token to cancel after that interval has elapsed. You can then wrap your async (or syncronous, for that matter) code in another call to Task.Run, passing the timeout token.
This assumes you're passing in a cancellation token (the token variable). If you don't have a need to cancel the task separately from the timeout, you can just use timeoutTokenSource directly. Otherwise, you create linkedTokenSource, which will cancel if the timeout ocurrs, or if it's otherwise cancelled.
We then just catch OperationCancelledException and check which token threw the exception, and throw a TimeoutException if a timeout caused this to raise. Otherwise, we rethrow.
Also, I'm using local functions here, which were introduced in C# 7, but you could easily use lambda or actual functions to the same affect. Similarly, c# 8 introduced a simpler syntax for using statements, but those are easy enough to rewrite.
If you use a BlockingCollection to schedule the task, the producer can run the potentially long running task and the consumer can use the TryTake method which has timeout and cancellation token built in.
I'm recombinging the ideas of some other answers here and this answer on another thread into a Try-style extension method. This has a benefit if you want an extension method, yet avoiding an exception upon timeout.
public static async Task<bool> TryWithTimeoutAfter<TResult>(this Task<TResult> task,
TimeSpan timeout, Action<TResult> successor)
{
using var timeoutCancellationTokenSource = new CancellationTokenSource();
var completedTask = await Task.WhenAny(task, Task.Delay(timeout, timeoutCancellationTokenSource.Token))
.ConfigureAwait(continueOnCapturedContext: false);
if (completedTask == task)
{
timeoutCancellationTokenSource.Cancel();
// propagate exception rather than AggregateException, if calling task.Result.
var result = await task.ConfigureAwait(continueOnCapturedContext: false);
successor(result);
return true;
}
else return false;
}
async Task Example(Task<string> task)
{
string result = null;
if (await task.TryWithTimeoutAfter(TimeSpan.FromSeconds(1), r => result = r))
{
Console.WriteLine(result);
}
}

Categories