Is it possible to await Thread in C# - c#

I am in a situation where I have to spawn a new thread manually, so I am able to can call .SetApartmentState(ApartmentState.STA). This means (as far as I know) that I cannot use Task. But I would like to know when the thread was done running, something like the await which works with async. However, the best I can come up with is a loop, constantly checking Thread.IsAlive, like this:
var thread = new Thread(() =>
{
// my code here
});
thread.SetApartmentState(ApartmentState.STA);
thread.Start();
while(thread.IsAlive)
{
// Wait 100 ms
Thread.Sleep(100);
}
This should work (as long as the thread don't end up stalling), but it seems kind of clumsy. Isn't there a more clever way to check when the thread is done (or dead)?
It is only to avoid blocking the GUI thread, so any minor performance hits are fine (like some hundred milliseconds).

Here is an extension method you could use to enable the awaiting of threads (inspired from this article: await anything).
public static TaskAwaiter GetAwaiter(this Thread thread)
{
return Task.Run(async () =>
{
while (thread.IsAlive)
{
await Task.Delay(100).ConfigureAwait(false);
}
}).GetAwaiter();
}
Usage example:
var thread = new Thread(() =>
{
Thread.Sleep(1000); // Simulate some background work
});
thread.IsBackground = true;
thread.Start();
await thread; // Wait asynchronously until the thread is completed
thread.Join(); // If you want to be extra sure that the thread has finished

Could you use the BackgroundWorker class? It has an event that reports when its finished.

Related

Difference between Task.Run(()=> DoWorkAsync()) and new Thread(async()=> DoWorkAsync());

I recently came across some code which confused me heavily, I have always thought that you must use threads or Async tasks, not mix and match between them,
public async Task DoWork()
{
Task.Delay(1000);
}
Now I saw code calling this like so:
public void Main()
{
var thread = new Thread(async () => { await DoWorkAync(); })
{
Priority = ThreadPriority.Highest,
IsBackground = true
};
// Start thread
proccessThread.Start();
}
Now this magically seemed to NOT create a thread each time it was run, it seemed to be using the ThreadPool.
now what I am struggling to understand is the difference between the above and:
public void Main()
{
var task = Task.Run(DoWorkASync);
}
From my testing, it seems that C# Thread has a different functionality when passing in an Async Expression vs the standard method on which to run>
This construct:
var thread = new Thread(async () => { await DoWorkAync(); });
// Start thread
proccessThread.Start();
Calls Thread constructor overload accepting ThreadStart delegate, and ThreadStart delegate is () => void. So you have this:
var thread = new Thread(StuffYourThreadExecutes);
thread.Start();
static async void StuffYourThreadExecutes() {
await DoWorkAsync();
}
So you start new thread and it runs the code until first asynchronous operation begins. Then thread exists. After that first asynchronous operation completes - the rest executes on whatever thread task scheduler providers (usually thread pool thread). Any exceptions which happen during this process cannot be observed.
For example if DoWorkAsync is something like:
static async Task DoWorkAsync(){
await Task.Delay(1000);
}
Then thread starts and almost immediately exits, doing nothing useful.
Task.Run, when passing async delegate there, does what is stated in docs:
Queues the specified work to run on the thread pool and returns a
proxy for the task
So whole operation just runs on thread pool thread without creating threads for nothing. You can observe exceptions by awaiting task returned by Task.Run.

Trying to call Start() on a continuation task

I am writing an console application where I want to offload some CPU-bound work onto a new thread in order to keep the main thread responsive. However, I only want to create one new thread at a time; if more CPU-bound work is requested while some is still ongoing, that task should get queued. Here's my implementation:
readonly ConcurrentQueue<Task> _searchQueue = new ConcurrentQueue<Task>();
volatile bool _searchInProgress = false;
var searchTask = new Task(() =>
{
// ... do some cpu-bound work ...
// run the next task if one is queued
if (_searchQueue.TryDequeue(out var nextTask))
{
nextTask.Start();
}
else
{
_searchInProgress = false;
}
});
// *** attempt to propogate exceptions to the main thread ***
searchTask = searchTask.ContinueWith(t =>
{
if (t.IsFaulted) throw t.Exception;
});
if (!_searchInProgress)
{
_searchInProgress = true;
searchTask.Start();
}
else _searchQueue.Enqueue(searchTask);
This code worked fine before I added the ContinueWith clause. After I added it, I got the error:
Start may not be called on a continuation task.
A related SO question says to use Task.Factory.StartNew instead of the Task constructor, but this doesn't work for my use case since I want to create the Task but may not want to immediately start it.

Async-Await deadlock?

I'm routinely getting what I think is a deadlock in my C# code that makes heavy use of async-await. I sometimes get it on this line of code:
await context.SaveChangesAsync();
The thread just blocks indefinitely.
I'm not blocking synchronously anywhere in the code. I use async-await all the way to the top where I initialize a new background thread like so from the entry method which is synchronous:
var threads =
new ThreadStart[]
{
async () => await Run(InitiationDelegate),
}.Select(ts =>
new Thread(ts) { IsBackground = true }
);
foreach(var thread in threads)
{
thread.Start();
}
and Run has the following signature:
async Task Run(Func<Task> action)
I'm not sure where the deadlocks could be coming from?

Using threads in C# winform solution but its not aborting

I am using thread to multi tasks in winform solution, trying to abort the thread while its working but its not aborting, here is , is there any solution for this situation? need to make the thread abort/quit smoothly without any issues !
also is there any idea of how I can make the thread pause/resume?
Thanks in advance!
Thread CommentingThread;
CommentingThread = new Thread(async () =>
{
AddLog("Commenting process has been started!");
if (CommentBTN.InvokeRequired)
{
CommentBTN.Invoke((MethodInvoker)delegate () {
CommentBTN.Text = "Stop"; });
}
else
{
CommentBTN.Text = "Stop";
}
if (UrlListview.InvokeRequired)
{
if (UrlListview.InvokeRequired)
{
UrlListview.Invoke((MethodInvoker)async delegate ()
{
foreach (ListViewItem item in UrlListview.Items)
{
XtraMessageBox.Show(item.Text);
int timetodelay = RandomNumber.Next(int.Parse(CommentsMinDelayNumric.Value.ToString()), int.Parse(CommentsMaxDelayNumric.Value.ToString()));
await Task.Run(async () =>
{
await Task.Delay(timetodelay * 1000);
});
}
CommentBTN.Text = "Start";
AddLog("Commenting process has been finished sucessfully!");
});
}
}
else
{
foreach (ListViewItem item in UrlListview.Items)
{
XtraMessageBox.Show(item.Text);
int timetodelay = RandomNumber.Next(int.Parse(CommentsMinDelayNumric.Value.ToString()), int.Parse(CommentsMaxDelayNumric.Value.ToString()));
await Task.Run(async () =>
{
await Task.Delay(timetodelay * 1000 );
});
}
CommentBTN.Text = "Start";
AddLog("Commenting process has been finished sucessfully!");
}
#endregion
});
CommentingThread.Start();
if (CommentBTN.Text == "Stop")
{
CommentBTN.Text = "Start";
CommentingThread.Abort();
AddLog("Commenting process has been stopped!");
}
First of all, looking at your code, it seems that the Thread may stop immediately if UrlListview.Items does not contain any elements. You might be missing a while loop in this case.
Regarding the issue of stopping the thread:
Calling CommentingThread.Abort() will raise a ThreadAbortException which effectively crashes the thread (see the Microsoft Docs for more info for more info.
To shut a thread down gracefully you should either declare CancellationTokenSource or a boolean which can be set to true (or false, depending on your implementation), to notify the thread that it needs to be stopped. Here is an example:
var myThread_ctoks = new CancellationTokenSource();
Thread myThread = new Thread( async () =>
{
while (!myThread_ctoks.IsCancellationRequested) // simulate many long actions
{
await Task.Delay(TimeSpan.FromSeconds(2));
Console.WriteLine("Iteration finished!");
}
});
myThread.Start(); // start the thread
await Task.Delay(TimeSpan.FromMinutes(1)); // lets do some other work
myThread_ctoks.Cancel(); // and now shut down the thread
This thread checks every 2 seconds if a shutdown is required (because the simulated action takes that long). As soon as cancellation is requested (myThread_ctoks.IsCancellationRequested is set to true), the while condition will be false and thus the thread will end.
The benefit of doing it this way is that the thread will be shut down in a safe, defined way as it actually shuts down gracefully and doesn't crash.
Regarding how you could pause and resume a thread. You could also use a variable to control that, just by checking if the thread is allowed to do work or not. If it should pause then you would just wait for a second in a while loop.
There is also the possibility to use Thread.Suspend() and Thread.Resume(). There is however the possibility, according to Microsoft that you could lock up other threads under certain circumstances. Additionally, you do not know exactly what code is being executed when you interrupt it. Which may lead to further unexpected behaviour.
Thats why I am thinking its best to use a variable to control the thread behaviour.

Task workflow sequence is wrong

With the code below, the final UI updates made in the final ContinueWith never take place. I think it is because of the Wait() I have at the end.
The reason I am doing that is because without the Wait, the method will return the IDataProvider before its finished being constructed in the background.
Can someone help me get this right?
Cheers,
Berryl
private IDataProvider _buildSQLiteProvider()
{
IDataProvider resultingDataProvider = null;
ISession session = null;
var watch = Stopwatch.StartNew();
var uiContext = TaskScheduler.FromCurrentSynchronizationContext();
// get the data
var buildProvider = Task.Factory
.StartNew(
() =>
{
// code to build it
});
// show some progress if we haven't finished
buildProvider.ContinueWith(
taskResult =>
{
// show we are making progress;
},
CancellationToken.None, TaskContinuationOptions.None, uiContext);
// we have data: reflect completed status in ui
buildProvider.ContinueWith(
dataProvider =>
{
// show we are finished;
},
CancellationToken.None, TaskContinuationOptions.OnlyOnRanToCompletion, uiContext);
try {
buildProvider.Wait();
}
catch (AggregateException ae)
{
foreach (var e in ae.InnerExceptions)
Console.WriteLine(e.Message);
}
Console.WriteLine("Exception handled. Let's move on.");
CurrentSessionContext.Bind(session);
return resultingDataProvider;
}
====
just to be clear
I am not having trouble talking to the ui thread. The first continue with updates the ui just fine. The trouble I am having is the timing of the last ui update and the return of the data provider.
I commented out some of the code to reduce the noise level in tis post and focus on the task sequencing.
====
ok, working code
private void _showSQLiteProjecPicker()
{
var watch = Stopwatch.StartNew();
var uiScheduler = TaskScheduler.FromCurrentSynchronizationContext();
ISession session = null;
// get the data
var buildProvider = Task.Factory.StartNew(
() =>
{
var setProgress = Task.Factory.StartNew(
() =>
{
IsBusy = true;
Status = string.Format("Fetching data...");
},
CancellationToken.None, TaskCreationOptions.None, uiScheduler);
var provider = new SQLiteDataProvider();
session = SQLiteDataProvider.Session;
return provider;
});
buildProvider.ContinueWith(
buildTask =>
{
if(buildTask.Exception != null) {
Console.WriteLine(buildTask.Exception);
}
else {
Check.RequireNotNull(buildTask.Result);
Check.RequireNotNull(session);
_updateUiTaskIsComplete(watch);
CurrentSessionContext.Bind(session);
var provider = buildTask.Result;
var dao = provider.GetActivitySubjectDao();
var vm = new ProjectPickerViewModel(dao);
_showPicker(vm);
}
},
CancellationToken.None, TaskContinuationOptions.OnlyOnRanToCompletion, uiScheduler);
}
UPDATE BELOW
This code doesn't look like it warrants TPL to me. Looks like maybe a good use for a BackgroundWorker instead!
Either way, the updates are probably not taking place because you can't update the UI from a separate thread -- you need to run the update on the UI thread. You should use the Dispatcher for this (http://stackoverflow.com/questions/303116/system-windows-threading-dispatcher-and-winforms contains info for both WPF and WinForms)
Update:
So I obviously missed some of the code so here's a revised answer. First of all, Nicholas is correct -- .ContinueWith returns a new task (http://msdn.microsoft.com/en-us/library/dd270696.aspx). So instead of
var result = Task.Factory.StartNew(...);
result.ContinueWith(...);
you probably want to create a new task and then make all the ContinueWith() calls and assign to the task and then call .Start() on the task. Something like:
var task = new Task(...).ContinueWith(...);
task.Start();
However, there is a flaw in the design to begin with (as I see it)! You're trying to run this code async, wihch is why you're using threads and TPL. However, you're calling buildProvider.Wait(); on the UI thread which blocks the UI thread until this task completes! Aside from the issue of repainting the UI in the ContinueWith() while the UI thread is blocked, there's no benefit to multithreading here since you're blocking the UI thread (a major no-no). What you probably want to do is stick the Bind()-ing inside a ContinueWith or something so that you don't have to call Wait() and block the UI thread.
My $0.02 is that if you expect the query to take a long time what you really want is 2 threads (or tasks in TPL)-- one to perform the query and one to update the UI at intervals with status. If you don't expect it to take so long I think you just want a single thread (Task) to query and then update the UI when it's done. I would probably do this via BackgroundWorker. TPL was built for managing lots of tasks and continuations and such but seems overkill for this kind of thing -- I think you could do it using a BackgroundWorker in a lot less code. But you mention you want to use TPL which is fine, but you're going to have to rework this a bit so that it actually runs in the background!
PS - you probably meant to put the Console.WriteLine("Exception handled. Let's move on."); inside the catch
I'm a little hazy, but last time I used the TPL I found it confusing. ContinueWith() returns a new Task instance. So you need to assign the second ContinueWith() result to a new variable, say var continuedTask = builderProvider.ContinueWith(...), and then change the last one to reference continuedTask.ContinueWith() instead of buildProvider.ContinueWith(). Then Wait() on the last Task.
Hope that helps!

Categories