Related
How do you give a C# auto-property an initial value?
I either use the constructor, or revert to the old syntax.
Using the Constructor:
class Person
{
public Person()
{
Name = "Initial Name";
}
public string Name { get; set; }
}
Using normal property syntax (with an initial value)
private string name = "Initial Name";
public string Name
{
get
{
return name;
}
set
{
name = value;
}
}
Is there a better way?
In C# 5 and earlier, to give auto implemented properties an initial value, you have to do it in a constructor.
Since C# 6.0, you can specify initial value in-line. The syntax is:
public int X { get; set; } = x; // C# 6 or higher
DefaultValueAttribute is intended to be used by the VS designer (or any other consumer) to specify a default value, not an initial value. (Even if in designed object, initial value is the default value).
At compile time DefaultValueAttribute will not impact the generated IL and it will not be read to initialize the property to that value (see DefaultValue attribute is not working with my Auto Property).
Example of attributes that impact the IL are ThreadStaticAttribute, CallerMemberNameAttribute, ...
Edited on 1/2/15
C# 6 :
With C# 6 you can initialize auto-properties directly (finally!), there are now other answers that describe that.
C# 5 and below:
Though the intended use of the attribute is not to actually set the values of the properties, you can use reflection to always set them anyway...
public class DefaultValuesTest
{
public DefaultValuesTest()
{
foreach (PropertyDescriptor property in TypeDescriptor.GetProperties(this))
{
DefaultValueAttribute myAttribute = (DefaultValueAttribute)property.Attributes[typeof(DefaultValueAttribute)];
if (myAttribute != null)
{
property.SetValue(this, myAttribute.Value);
}
}
}
public void DoTest()
{
var db = DefaultValueBool;
var ds = DefaultValueString;
var di = DefaultValueInt;
}
[System.ComponentModel.DefaultValue(true)]
public bool DefaultValueBool { get; set; }
[System.ComponentModel.DefaultValue("Good")]
public string DefaultValueString { get; set; }
[System.ComponentModel.DefaultValue(27)]
public int DefaultValueInt { get; set; }
}
When you inline an initial value for a variable it will be done implicitly in the constructor anyway.
I would argue that this syntax was best practice in C# up to 5:
class Person
{
public Person()
{
//do anything before variable assignment
//assign initial values
Name = "Default Name";
//do anything after variable assignment
}
public string Name { get; set; }
}
As this gives you clear control of the order values are assigned.
As of C#6 there is a new way:
public string Name { get; set; } = "Default Name";
Sometimes I use this, if I don't want it to be actually set and persisted in my db:
class Person
{
private string _name;
public string Name
{
get
{
return string.IsNullOrEmpty(_name) ? "Default Name" : _name;
}
set { _name = value; }
}
}
Obviously if it's not a string then I might make the object nullable ( double?, int? ) and check if it's null, return a default, or return the value it's set to.
Then I can make a check in my repository to see if it's my default and not persist, or make a backdoor check in to see the true status of the backing value, before saving.
In C# 6.0 this is a breeze!
You can do it in the Class declaration itself, in the property declaration statements.
public class Coordinate
{
public int X { get; set; } = 34; // get or set auto-property with initializer
public int Y { get; } = 89; // read-only auto-property with initializer
public int Z { get; } // read-only auto-property with no initializer
// so it has to be initialized from constructor
public Coordinate() // .ctor()
{
Z = 42;
}
}
Starting with C# 6.0, We can assign default value to auto-implemented properties.
public string Name { get; set; } = "Some Name";
We can also create read-only auto implemented property like:
public string Name { get; } = "Some Name";
See: C# 6: First reactions , Initializers for automatically implemented properties - By Jon Skeet
In Version of C# (6.0) & greater, you can do :
For Readonly properties
public int ReadOnlyProp => 2;
For both Writable & Readable properties
public string PropTest { get; set; } = "test";
In current Version of C# (7.0), you can do : (The snippet rather displays how you can use expression bodied get/set accessors to make is more compact when using with backing fields)
private string label = "Default Value";
// Expression-bodied get / set accessors.
public string Label
{
get => label;
set => this.label = value;
}
In C# 9.0 was added support of init keyword - very useful and extremly sophisticated way for declaration read-only auto-properties:
Declare:
class Person
{
public string Name { get; init; } = "Anonymous user";
}
~Enjoy~ Use:
// 1. Person with default name
var anonymous = new Person();
Console.WriteLine($"Hello, {anonymous.Name}!");
// > Hello, Anonymous user!
// 2. Person with assigned value
var me = new Person { Name = "#codez0mb1e"};
Console.WriteLine($"Hello, {me.Name}!");
// > Hello, #codez0mb1e!
// 3. Attempt to re-assignment Name
me.Name = "My fake";
// > Compilation error: Init-only property can only be assigned in an object initializer
In addition to the answer already accepted, for the scenario when you want to define a default property as a function of other properties you can use expression body notation on C#6.0 (and higher) for even more elegant and concise constructs like:
public class Person{
public string FullName => $"{First} {Last}"; // expression body notation
public string First { get; set; } = "First";
public string Last { get; set; } = "Last";
}
You can use the above in the following fashion
var p = new Person();
p.FullName; // First Last
p.First = "Jon";
p.Last = "Snow";
p.FullName; // Jon Snow
In order to be able to use the above "=>" notation, the property must be read only, and you do not use the get accessor keyword.
Details on MSDN
In C# 6 and above you can simply use the syntax:
public object Foo { get; set; } = bar;
Note that to have a readonly property simply omit the set, as so:
public object Foo { get; } = bar;
You can also assign readonly auto-properties from the constructor.
Prior to this I responded as below.
I'd avoid adding a default to the constructor; leave that for dynamic assignments and avoid having two points at which the variable is assigned (i.e. the type default and in the constructor). Typically I'd simply write a normal property in such cases.
One other option is to do what ASP.Net does and define defaults via an attribute:
http://msdn.microsoft.com/en-us/library/system.componentmodel.defaultvalueattribute.aspx
My solution is to use a custom attribute that provides default value property initialization by constant or using property type initializer.
[AttributeUsage(AttributeTargets.Property, AllowMultiple = false, Inherited = true)]
public class InstanceAttribute : Attribute
{
public bool IsConstructorCall { get; private set; }
public object[] Values { get; private set; }
public InstanceAttribute() : this(true) { }
public InstanceAttribute(object value) : this(false, value) { }
public InstanceAttribute(bool isConstructorCall, params object[] values)
{
IsConstructorCall = isConstructorCall;
Values = values ?? new object[0];
}
}
To use this attribute it's necessary to inherit a class from special base class-initializer or use a static helper method:
public abstract class DefaultValueInitializer
{
protected DefaultValueInitializer()
{
InitializeDefaultValues(this);
}
public static void InitializeDefaultValues(object obj)
{
var props = from prop in obj.GetType().GetProperties()
let attrs = prop.GetCustomAttributes(typeof(InstanceAttribute), false)
where attrs.Any()
select new { Property = prop, Attr = ((InstanceAttribute)attrs.First()) };
foreach (var pair in props)
{
object value = !pair.Attr.IsConstructorCall && pair.Attr.Values.Length > 0
? pair.Attr.Values[0]
: Activator.CreateInstance(pair.Property.PropertyType, pair.Attr.Values);
pair.Property.SetValue(obj, value, null);
}
}
}
Usage example:
public class Simple : DefaultValueInitializer
{
[Instance("StringValue")]
public string StringValue { get; set; }
[Instance]
public List<string> Items { get; set; }
[Instance(true, 3,4)]
public Point Point { get; set; }
}
public static void Main(string[] args)
{
var obj = new Simple
{
Items = {"Item1"}
};
Console.WriteLine(obj.Items[0]);
Console.WriteLine(obj.Point);
Console.WriteLine(obj.StringValue);
}
Output:
Item1
(X=3,Y=4)
StringValue
little complete sample:
using System.ComponentModel;
private bool bShowGroup ;
[Description("Show the group table"), Category("Sea"),DefaultValue(true)]
public bool ShowGroup
{
get { return bShowGroup; }
set { bShowGroup = value; }
}
You can simple put like this
public sealed class Employee
{
public int Id { get; set; } = 101;
}
In the constructor. The constructor's purpose is to initialized it's data members.
private string name;
public string Name
{
get
{
if(name == null)
{
name = "Default Name";
}
return name;
}
set
{
name = value;
}
}
Have you tried using the DefaultValueAttribute or ShouldSerialize and Reset methods in conjunction with the constructor? I feel like one of these two methods is necessary if you're making a class that might show up on the designer surface or in a property grid.
Use the constructor because "When the constructor is finished, Construction should be finished". properties are like states your classes hold, if you had to initialize a default state, you would do that in your constructor.
To clarify, yes, you need to set default values in the constructor for class derived objects. You will need to ensure the constructor exists with the proper access modifier for construction where used. If the object is not instantiated, e.g. it has no constructor (e.g. static methods) then the default value can be set by the field. The reasoning here is that the object itself will be created only once and you do not instantiate it.
#Darren Kopp - good answer, clean, and correct. And to reiterate, you CAN write constructors for Abstract methods. You just need to access them from the base class when writing the constructor:
Constructor at Base Class:
public BaseClassAbstract()
{
this.PropertyName = "Default Name";
}
Constructor at Derived / Concrete / Sub-Class:
public SubClass() : base() { }
The point here is that the instance variable drawn from the base class may bury your base field name. Setting the current instantiated object value using "this." will allow you to correctly form your object with respect to the current instance and required permission levels (access modifiers) where you are instantiating it.
public Class ClassName{
public int PropName{get;set;}
public ClassName{
PropName=0; //Default Value
}
}
This is old now, and my position has changed. I'm leaving the original answer for posterity only.
Personally, I don't see the point of making it a property at all if you're not going to do anything at all beyond the auto-property. Just leave it as a field. The encapsulation benefit for these item are just red herrings, because there's nothing behind them to encapsulate. If you ever need to change the underlying implementation you're still free to refactor them as properties without breaking any dependent code.
Hmm... maybe this will be the subject of it's own question later
class Person
{
/// Gets/sets a value indicating whether auto
/// save of review layer is enabled or not
[System.ComponentModel.DefaultValue(true)]
public bool AutoSaveReviewLayer { get; set; }
}
I know this is an old question, but it came up when I was looking for how to have a default value that gets inherited with the option to override, I came up with
//base class
public class Car
{
public virtual string FuelUnits
{
get { return "gasoline in gallons"; }
protected set { }
}
}
//derived
public class Tesla : Car
{
public override string FuelUnits => "ampere hour";
}
I think this would do it for ya givng SomeFlag a default of false.
private bool _SomeFlagSet = false;
public bool SomeFlag
{
get
{
if (!_SomeFlagSet)
SomeFlag = false;
return SomeFlag;
}
set
{
if (!_SomeFlagSet)
_SomeFlagSet = true;
SomeFlag = value;
}
}
Closed. This question needs to be more focused. It is not currently accepting answers.
Want to improve this question? Update the question so it focuses on one problem only by editing this post.
Closed 5 years ago.
Improve this question
I'm new to C# and I can't find the right things to search for. I'm trying to understand the difference between these three types of syntax:
public string Topic(){}
public class Topic{}
public string Topic{}
I know the 1st is a function and the 2nd is a class, but what confuses me is what the 3rd is.
question
what is #3 called and how is it used?
Anything that could provide clarity please.
The 3rd is a property. The most common representation in C# is autogenerated properties, like this:
public string Topic { get; set; }
Which is equivalent to:
private string _topic;
public string Topic
{
get { return _topic; }
set { _topic = value; }
}
It should be used to hold internal states of the object.
It can be a readonly property, with getter only:
public string Topic { get; }
Or only with setter:
public string Topic { set; }
You can also apply accessibility modificators in getters and setters, for example:
public string Topic { protected get; private set; }
The third is a property, when used correctly. It's basically a variable with built in getter and setter.
public string Topic {get; set;}
This automatically creates a string variable which allows you to set or get directly via Topic = "new topic"
public string Topic {get; private set; }
allows public access to read the value but only the local class can set it.
Often, when more complexity is required than simply setting/getting, they are used with another backing value:
string _topic;
public string Topic {
get { return _topic; }
set { _topic = value; }
}
The third one is a property in C#. For example, you can have a person object (read class) with few properties. To get and set values for those properties, you use this kind of syntax.
public class Person
{
private string _name = "";
public int Id { get; set; }
public string Name {
get{
return "Jonathan";
}
set{
this._name = value;
}
}
}
Here Person has two properties namely Id and Name. The property syntax for Id is using "Automatic Property" syntax, which means someone can get and set this property like this:
var person = new Person();
person.Id = "1";//set Id value
//Or get Id value like this
var personId = person.Id;
The Name property is being set explicitly. When you request it, the hard coded value "Jonathan" will be returned and when setting, whatever value is assigned, will be set.
You can read more about properties here https://msdn.microsoft.com/en-us/library/x9fsa0sw.aspx
Hope this helps.
The third forms a property function. It lives inside of a class. For example:
public string MyProperty { get; set; }
To find out more you should look up encapsulation.
This is a shorthand:
This is getting and setting automatically, which is why they are called Auto-Implemented Properties. These two defined properties below are one & the same.
public class Constituent{
public string Name {get; set;} //This is a property,
public string Name //This is a property, The value can only be of type **string** because we've assigned it that datatype, which would also be the return type.
{
get { return _name; }
set { _name = value; }
}
}
You can also use access modifiers private, public, protected on them.
This will determine Whether you can you get & set the property value.
public string Name {get; private set; }
In order to be be able to access the property you need to instantiate the Class(Constituent).
An example of how you can instantiate would be:
var constituent = new Constituent();
constituent.Name = "Jonathon"; //Setting the value of Name property.
var Member_Name = constituent.Name; //Storing a value into a variable
Hope this Helped you. Auto-Implemented Properties
Following on from my earlier question: c-sharp-convert-existing-class-to-use-properties-correctly
I have a class like this:
public class TestCaseInfo
{
public string text { get; set; } = "";
public string requirement_ref { get; set; } = "";
public string given { get; set; } = "";
public string when { get; set; } = "";
public string then { get; set; } = "";
public UInt32 timeLimit { get; set; } = 0;
}
I was previously populating the structure like this:
if (!getNodeValue(testcase_node.SelectSingleNode("text"), ref testcaseInfo.text))
errStr += nodeError(testcase_node, "Missing 'text' node");
Note: that I am trying to pass it by reference. I have read a load of quetions that all basically say that you can't do this. Fair enough...
So I want to pass in the "real" value (I think its called the backing value?) instead. Something like:
if (!getNodeValue(testcase_node.SelectSingleNode("text"), ref testcaseInfo._text)) // where '_text' should be the 'backing' value.
errStr += nodeError(testcase_node, "Missing 'text' node");
But I am missing two things (probably more!):
What is the backing value called?
I assume its private? - can I make it protected and make it a friend class? (that might be C++ talk... not sure if there is the same idea in C#)?
There is no valid identifier for the backing field for that property. You could not use an auto property, and instead explicitly define the get and set methods of the property, along with your own backing field, thus giving you a valid identifier for the backing field, although it would be very poor design to expose this backing field externally.
What you should do is re-design your code such that you don't need to pass the value by reference in the first place. You should just be passing the string by value and, if the result of this function is the computation of a string, returning it. The caller can then set that string back to the property if that's what they want. That would be the more idiomatic design. (Since you also have a boolean value you'd need to pass both the string and the boolean out, of course.)
As far as you are concerned, your properties may as well not have backing fields. The backing field isn't called anything you can refer to if you didn't explicitly declare it:
private string _name;
public String Name { get { return _name; } set { _name = value; } }
If you write properties with explicit backing fields, as above, you can pass them by ref into a method.
private int _id;
public String ID { get { return int _id; } set { int _id = value; } }
public void Test()
{
Int32.TryParse("Sausage Factory", out _id);
}
I am having trouble understanding the concept of getters and setters in the C# language. In languages like Objective-C, they seem an integral part of the system, but not so much in C# (as far as I can tell). I have read books and articles already, so my question is, to those of you who understand getters & setters in C#, what example would you personally use if you were teaching the concept to a complete beginner (this would include as few lines of code as possible)?
I think a bit of code will help illustrate what setters and getters are:
public class Foo
{
private string bar;
public string GetBar()
{
return bar;
}
public void SetBar(string value)
{
bar = value;
}
}
In this example we have a private member of the class that is called bar. The GetBar() and SetBar(string value) methods do exactly what they are named - one retrieves the bar member, and the other sets its value.
In C# 1.1 and later, you have properties. The basic functionality is also the same:
public class Foo
{
private string bar;
public string Bar
{
get { return bar; }
set { bar = value; }
}
}
The private member bar is not accessible outside the class, but the public Bar is, and it has two accessors: get, which returns the private member just as the GetBar() example above, and also a set, which corresponds to the SetBar(string value) method in the aforementioned example.
Starting with C# 3.0 and above, the compiler was optimized to the point that such properties do not need to be explicitly given a private member as their source. The compiler automatically generates a private member of that type and uses it as a source of a property.
public class Foo
{
public string Bar { get; set; }
}
What the code shows is an automatic property that has a private member generated by the compiler. You don't see the private member, but it is there. This also introduced a couple of other issues - mainly with access control. In C# 1.1 and 2.0, you could omit the get or set portion of a property entirely:
public class Foo
{
private string bar;
public string Bar
{
get { return bar; }
}
}
Giving you the chance to restrict how other objects interact with the Bar property of the Foo class. But from C# 3.0 to before 6.0, if you chose to use automatic properties, you would have to specify the access to the property as follows to emulate that behavior:
public class Foo
{
public string Bar { get; private set; }
}
The set accessor would still exist, but only the class itself could use it to set Bar to some value, and anyone could still get the value.
Thankfully, starting in C# 6.0, properties can be made read- or write-only again by simply omitting the property's get or set respectively (not to be confused with the readonly keyword):
public class Foo
{
// Read-only property
public string Bar { get; }
// Write-only property (less common)
public string Baz { set; }
}
In C#, Properties represent your Getters and Setters.
Here's an example:
public class PropertyExample
{
private int myIntField = 0;
public int MyInt
{
// This is your getter.
// it uses the accessibility of the property (public)
get
{
return myIntField;
}
// this is your setter
// Note: you can specify different accessibility
// for your getter and setter.
protected set
{
// You can put logic into your getters and setters
// since they actually map to functions behind the scenes
if (DoSomeValidation(value))
{
// The input of the setter is always called "value"
// and is of the same type as your property definition
myIntField = value;
}
}
}
}
You would access this property just like a field. For example:
PropertyExample example = new PropertyExample();
example.MyInt = 4; // sets myIntField to 4
Console.WriteLine( example.MyInt ); // prints 4
A few other things to note:
You don't have to specifiy both a getter and a setter, you can omit either one.
Properties are just "syntactic sugar" for your traditional getter and setter. The compiler will actually build get_ and set_ functions behind the scenes (in the compiled IL) and map all references to your property to those functions.
My explanation would be following. (It's not so short, but it's quite simple.)
Imagine a class with a variable:
class Something
{
int weight;
// and other methods, of course, not shown here
}
Well, there is a small problem with this class: no one can see the weight. We could make weight public, but then everyone would be able to change the weight at any moment (which is perhaps not what we want). So, well, we can do a function:
class Something
{
int weight;
public int GetWeight() { return weight; }
// and other methods
}
This is already better, but now everyone instead of plain something.Weight has to type something.GetWeight(), which is, well, ugly.
With properties, we can do the same, but the code stays clean:
class Something
{
public int weight { get; private set; }
// and other methods
}
int w = something.weight // works!
something.weight = x; // doesn't even compile
Nice, so with the properties we have finer control over the variable access.
Another problem: okay, we want the outer code to be able to set weight, but we'd like to control its value, and not allow the weights lower than 100. Moreover, there are is some other inner variable density, which depends on weight, so we'd want to recalculate the density as soon as the weight changes.
This is traditionally achieved in the following way:
class Something
{
int weight;
public int SetWeight(int w)
{
if (w < 100)
throw new ArgumentException("weight too small");
weight = w;
RecalculateDensity();
}
// and other methods
}
something.SetWeight(anotherSomething.GetWeight() + 1);
But again, we don't want expose to our clients that setting the weight is a complicated operation, it's semantically nothing but assigning a new weight. So the code with a setter looks the same way, but nicer:
class Something
{
private int _w;
public int Weight
{
get { return _w; }
set
{
if (value < 100)
throw new ArgumentException("weight too small");
_w = value;
RecalculateDensity();
}
}
// and other methods
}
something.Weight = otherSomething.Weight + 1; // much cleaner, right?
So, no doubt, properties are "just" a syntactic sugar. But it makes the client's code be better. Interestingly, the need for property-like things arises very often, you can check how often you find the functions like GetXXX() and SetXXX() in the other languages.
Most languages do it this way, and you can do it in C# too.
public void setRAM(int RAM)
{
this.RAM = RAM;
}
public int getRAM()
{
return this.RAM;
}
But C# also gives a more elegant solution to this:
public class Computer
{
int ram;
public int RAM
{
get
{
return ram;
}
set
{
ram = value; // value is a reserved word and it is a variable that holds the input that is given to ram ( like in the example below )
}
}
}
And later access it with:
Computer comp = new Computer();
comp.RAM = 1024;
int var = comp.RAM;
For newer versions of C# it's even better:
public class Computer
{
public int RAM { get; set; }
}
and later:
Computer comp = new Computer();
comp.RAM = 1024;
int var = comp.RAM;
C# introduces properties which do most of the heavy lifting for you...
ie
public string Name { get; set; }
is a C# shortcut to writing...
private string _name;
public string getName { return _name; }
public void setName(string value) { _name = value; }
Basically getters and setters are just means of helping encapsulation. When you make a class you have several class variables that perhaps you want to expose to other classes to allow them to get a glimpse of some of the data you store. While just making the variables public to begin with may seem like an acceptable alternative, in the long run you will regret letting other classes manipulate your classes member variables directly. If you force them to do it through a setter, you can add logic to ensure no strange values ever occur, and you can always change that logic in the future without effecting things already manipulating this class.
ie
private string _name;
public string getName { return _name; }
public void setName(string value)
{
//Don't want things setting my Name to null
if (value == null)
{
throw new InvalidInputException();
}
_name = value;
}
well here is common usage of getter setter in actual use case,
public class OrderItem
{
public int Id {get;set;}
public int quantity {get;set;}
public int Price {get;set;}
public int TotalAmount {get {return this.quantity *this.Price;}set;}
}
This would be a get/set in C# using the smallest amount of code possible. You get auto-implemented properties in C# 3.0+.
public class Contact
{
public string Name { get; set; }
}
As far as I understand getters and setters are to improve encapsulation.
There is nothing complex about them in C#.
You define a property of on object like this:
int m_colorValue = 0;
public int Color
{
set { m_colorValue = value; }
get { return m_colorValue; }
}
This is the most simple use. It basically sets an internal variable or retrieves its value.
You use a Property like this:
someObject.Color = 222; // sets a color 222
int color = someObject.Color // gets the color of the object
You could eventually do some processing on the value in the setters or getters like this:
public int Color
{
set { m_colorValue = value + 5; }
get { return m_colorValue - 30; }
}
if you skip set or get, your property will be read or write only. That's how I understand the stuff.
Simple example
public class Simple
{
public int Propery { get; set; }
}
Getters and Setters in C# are something that simplifies the code.
private string name = "spots";
public string Name
{
get { return name; }
set { name = value; }
}
And calling it (assume we have a person obj with a name property):
Console.WriteLine(Person.Name); //prints "spots"
Person.Name = "stops";
Console.Writeline(Person.Name); //prints "stops"
This simplifies your code. Where in Java you might have to have two methods, one to Get() and one to Set() the property, in C# it is all done in one spot. I usually do this at the start of my classes:
public string foobar {get; set;}
This creates a getter and setter for my foobar property. Calling it is the same way as shown before. Somethings to note are that you don't have to include both get and set. If you don't want the property being modified, don't include set!
Internally, getters and setters are just methods. When C# compiles, it generates methods for your getters and setters like this, for example:
public int get_MyProperty() { ... }
public void set_MyProperty(int value) { ... }
C# allows you to declare these methods using a short-hand syntax. The line below will be compiled into the methods above when you build your application.
public int MyProperty { get; set; }
or
private int myProperty;
public int MyProperty
{
get { return myProperty; }
set { myProperty = value; } // value is an implicit parameter containing the value being assigned to the property.
}
This is a basic example of an object "Article" with getters and setters:
public class Article
{
public String title;
public String link;
public String description;
public string getTitle()
{
return title;
}
public void setTitle(string value)
{
title = value;
}
public string getLink()
{
return link;
}
public void setLink(string value)
{
link = value;
}
public string getDescription()
{
return description;
}
public void setDescription(string value)
{
description = value;
}
}
In case someone is looking for a short version of getter only (I was):
public class Foo
{
private string bar;
public string Bar => bar;
}
How do you give a C# auto-property an initial value?
I either use the constructor, or revert to the old syntax.
Using the Constructor:
class Person
{
public Person()
{
Name = "Initial Name";
}
public string Name { get; set; }
}
Using normal property syntax (with an initial value)
private string name = "Initial Name";
public string Name
{
get
{
return name;
}
set
{
name = value;
}
}
Is there a better way?
In C# 5 and earlier, to give auto implemented properties an initial value, you have to do it in a constructor.
Since C# 6.0, you can specify initial value in-line. The syntax is:
public int X { get; set; } = x; // C# 6 or higher
DefaultValueAttribute is intended to be used by the VS designer (or any other consumer) to specify a default value, not an initial value. (Even if in designed object, initial value is the default value).
At compile time DefaultValueAttribute will not impact the generated IL and it will not be read to initialize the property to that value (see DefaultValue attribute is not working with my Auto Property).
Example of attributes that impact the IL are ThreadStaticAttribute, CallerMemberNameAttribute, ...
Edited on 1/2/15
C# 6 :
With C# 6 you can initialize auto-properties directly (finally!), there are now other answers that describe that.
C# 5 and below:
Though the intended use of the attribute is not to actually set the values of the properties, you can use reflection to always set them anyway...
public class DefaultValuesTest
{
public DefaultValuesTest()
{
foreach (PropertyDescriptor property in TypeDescriptor.GetProperties(this))
{
DefaultValueAttribute myAttribute = (DefaultValueAttribute)property.Attributes[typeof(DefaultValueAttribute)];
if (myAttribute != null)
{
property.SetValue(this, myAttribute.Value);
}
}
}
public void DoTest()
{
var db = DefaultValueBool;
var ds = DefaultValueString;
var di = DefaultValueInt;
}
[System.ComponentModel.DefaultValue(true)]
public bool DefaultValueBool { get; set; }
[System.ComponentModel.DefaultValue("Good")]
public string DefaultValueString { get; set; }
[System.ComponentModel.DefaultValue(27)]
public int DefaultValueInt { get; set; }
}
When you inline an initial value for a variable it will be done implicitly in the constructor anyway.
I would argue that this syntax was best practice in C# up to 5:
class Person
{
public Person()
{
//do anything before variable assignment
//assign initial values
Name = "Default Name";
//do anything after variable assignment
}
public string Name { get; set; }
}
As this gives you clear control of the order values are assigned.
As of C#6 there is a new way:
public string Name { get; set; } = "Default Name";
Sometimes I use this, if I don't want it to be actually set and persisted in my db:
class Person
{
private string _name;
public string Name
{
get
{
return string.IsNullOrEmpty(_name) ? "Default Name" : _name;
}
set { _name = value; }
}
}
Obviously if it's not a string then I might make the object nullable ( double?, int? ) and check if it's null, return a default, or return the value it's set to.
Then I can make a check in my repository to see if it's my default and not persist, or make a backdoor check in to see the true status of the backing value, before saving.
In C# 6.0 this is a breeze!
You can do it in the Class declaration itself, in the property declaration statements.
public class Coordinate
{
public int X { get; set; } = 34; // get or set auto-property with initializer
public int Y { get; } = 89; // read-only auto-property with initializer
public int Z { get; } // read-only auto-property with no initializer
// so it has to be initialized from constructor
public Coordinate() // .ctor()
{
Z = 42;
}
}
Starting with C# 6.0, We can assign default value to auto-implemented properties.
public string Name { get; set; } = "Some Name";
We can also create read-only auto implemented property like:
public string Name { get; } = "Some Name";
See: C# 6: First reactions , Initializers for automatically implemented properties - By Jon Skeet
In Version of C# (6.0) & greater, you can do :
For Readonly properties
public int ReadOnlyProp => 2;
For both Writable & Readable properties
public string PropTest { get; set; } = "test";
In current Version of C# (7.0), you can do : (The snippet rather displays how you can use expression bodied get/set accessors to make is more compact when using with backing fields)
private string label = "Default Value";
// Expression-bodied get / set accessors.
public string Label
{
get => label;
set => this.label = value;
}
In C# 9.0 was added support of init keyword - very useful and extremly sophisticated way for declaration read-only auto-properties:
Declare:
class Person
{
public string Name { get; init; } = "Anonymous user";
}
~Enjoy~ Use:
// 1. Person with default name
var anonymous = new Person();
Console.WriteLine($"Hello, {anonymous.Name}!");
// > Hello, Anonymous user!
// 2. Person with assigned value
var me = new Person { Name = "#codez0mb1e"};
Console.WriteLine($"Hello, {me.Name}!");
// > Hello, #codez0mb1e!
// 3. Attempt to re-assignment Name
me.Name = "My fake";
// > Compilation error: Init-only property can only be assigned in an object initializer
In addition to the answer already accepted, for the scenario when you want to define a default property as a function of other properties you can use expression body notation on C#6.0 (and higher) for even more elegant and concise constructs like:
public class Person{
public string FullName => $"{First} {Last}"; // expression body notation
public string First { get; set; } = "First";
public string Last { get; set; } = "Last";
}
You can use the above in the following fashion
var p = new Person();
p.FullName; // First Last
p.First = "Jon";
p.Last = "Snow";
p.FullName; // Jon Snow
In order to be able to use the above "=>" notation, the property must be read only, and you do not use the get accessor keyword.
Details on MSDN
In C# 6 and above you can simply use the syntax:
public object Foo { get; set; } = bar;
Note that to have a readonly property simply omit the set, as so:
public object Foo { get; } = bar;
You can also assign readonly auto-properties from the constructor.
Prior to this I responded as below.
I'd avoid adding a default to the constructor; leave that for dynamic assignments and avoid having two points at which the variable is assigned (i.e. the type default and in the constructor). Typically I'd simply write a normal property in such cases.
One other option is to do what ASP.Net does and define defaults via an attribute:
http://msdn.microsoft.com/en-us/library/system.componentmodel.defaultvalueattribute.aspx
My solution is to use a custom attribute that provides default value property initialization by constant or using property type initializer.
[AttributeUsage(AttributeTargets.Property, AllowMultiple = false, Inherited = true)]
public class InstanceAttribute : Attribute
{
public bool IsConstructorCall { get; private set; }
public object[] Values { get; private set; }
public InstanceAttribute() : this(true) { }
public InstanceAttribute(object value) : this(false, value) { }
public InstanceAttribute(bool isConstructorCall, params object[] values)
{
IsConstructorCall = isConstructorCall;
Values = values ?? new object[0];
}
}
To use this attribute it's necessary to inherit a class from special base class-initializer or use a static helper method:
public abstract class DefaultValueInitializer
{
protected DefaultValueInitializer()
{
InitializeDefaultValues(this);
}
public static void InitializeDefaultValues(object obj)
{
var props = from prop in obj.GetType().GetProperties()
let attrs = prop.GetCustomAttributes(typeof(InstanceAttribute), false)
where attrs.Any()
select new { Property = prop, Attr = ((InstanceAttribute)attrs.First()) };
foreach (var pair in props)
{
object value = !pair.Attr.IsConstructorCall && pair.Attr.Values.Length > 0
? pair.Attr.Values[0]
: Activator.CreateInstance(pair.Property.PropertyType, pair.Attr.Values);
pair.Property.SetValue(obj, value, null);
}
}
}
Usage example:
public class Simple : DefaultValueInitializer
{
[Instance("StringValue")]
public string StringValue { get; set; }
[Instance]
public List<string> Items { get; set; }
[Instance(true, 3,4)]
public Point Point { get; set; }
}
public static void Main(string[] args)
{
var obj = new Simple
{
Items = {"Item1"}
};
Console.WriteLine(obj.Items[0]);
Console.WriteLine(obj.Point);
Console.WriteLine(obj.StringValue);
}
Output:
Item1
(X=3,Y=4)
StringValue
little complete sample:
using System.ComponentModel;
private bool bShowGroup ;
[Description("Show the group table"), Category("Sea"),DefaultValue(true)]
public bool ShowGroup
{
get { return bShowGroup; }
set { bShowGroup = value; }
}
You can simple put like this
public sealed class Employee
{
public int Id { get; set; } = 101;
}
In the constructor. The constructor's purpose is to initialized it's data members.
private string name;
public string Name
{
get
{
if(name == null)
{
name = "Default Name";
}
return name;
}
set
{
name = value;
}
}
Have you tried using the DefaultValueAttribute or ShouldSerialize and Reset methods in conjunction with the constructor? I feel like one of these two methods is necessary if you're making a class that might show up on the designer surface or in a property grid.
Use the constructor because "When the constructor is finished, Construction should be finished". properties are like states your classes hold, if you had to initialize a default state, you would do that in your constructor.
To clarify, yes, you need to set default values in the constructor for class derived objects. You will need to ensure the constructor exists with the proper access modifier for construction where used. If the object is not instantiated, e.g. it has no constructor (e.g. static methods) then the default value can be set by the field. The reasoning here is that the object itself will be created only once and you do not instantiate it.
#Darren Kopp - good answer, clean, and correct. And to reiterate, you CAN write constructors for Abstract methods. You just need to access them from the base class when writing the constructor:
Constructor at Base Class:
public BaseClassAbstract()
{
this.PropertyName = "Default Name";
}
Constructor at Derived / Concrete / Sub-Class:
public SubClass() : base() { }
The point here is that the instance variable drawn from the base class may bury your base field name. Setting the current instantiated object value using "this." will allow you to correctly form your object with respect to the current instance and required permission levels (access modifiers) where you are instantiating it.
public Class ClassName{
public int PropName{get;set;}
public ClassName{
PropName=0; //Default Value
}
}
This is old now, and my position has changed. I'm leaving the original answer for posterity only.
Personally, I don't see the point of making it a property at all if you're not going to do anything at all beyond the auto-property. Just leave it as a field. The encapsulation benefit for these item are just red herrings, because there's nothing behind them to encapsulate. If you ever need to change the underlying implementation you're still free to refactor them as properties without breaking any dependent code.
Hmm... maybe this will be the subject of it's own question later
class Person
{
/// Gets/sets a value indicating whether auto
/// save of review layer is enabled or not
[System.ComponentModel.DefaultValue(true)]
public bool AutoSaveReviewLayer { get; set; }
}
I know this is an old question, but it came up when I was looking for how to have a default value that gets inherited with the option to override, I came up with
//base class
public class Car
{
public virtual string FuelUnits
{
get { return "gasoline in gallons"; }
protected set { }
}
}
//derived
public class Tesla : Car
{
public override string FuelUnits => "ampere hour";
}
I think this would do it for ya givng SomeFlag a default of false.
private bool _SomeFlagSet = false;
public bool SomeFlag
{
get
{
if (!_SomeFlagSet)
SomeFlag = false;
return SomeFlag;
}
set
{
if (!_SomeFlagSet)
_SomeFlagSet = true;
SomeFlag = value;
}
}