Accessing virtual method from abstract class using repository pattern - c#

I'm stuck in understanding - how to access and use (or is it even possible to use) base class virtual method.
So the code is:
Base class:
public abstract class Vehicle
{
public string VehicleIdentificationNumber { get; set; }
public string Make { get; set; }
public string Model { get; set; }
public abstract string DisplayName { get; }
public virtual bool HasAnAmazingColor(){
}
}
Repository pattern:
public class VehicleRepository : IVehicleRepository, ICollection
{
private readonly List<Vehicle> _vehicles;
public int Count => _vehicles.Count;
public object SyncRoot => ((ICollection)_vehicles).SyncRoot;
public bool IsSynchronized => ((ICollection)_vehicles).IsSynchronized;
public void CopyTo(Array array, int index)
{
((ICollection)_vehicles).CopyTo(array, index);
}
public IEnumerator GetEnumerator()
{
return ((ICollection)_vehicles).GetEnumerator();
}
public VehicleRepository(List<Vehicle> aVehicles)
{
_vehicles = aVehicles;
}
Then int unittest I try to get the virtual method, but do know that I'm not understanding something, but cannot figure out what, how can I use the method without overriding it?
[TestClass()]
public class VehicleRepositoryTests
{
private VehicleRepository vehicleList = new VehicleRepository(new List<Vehicle>());
[TestMethod()]
public void HasAmazingColor()
{
//arrange
//act
vehicleList.??? -- I'm missing something
//assert
}
I can access virtual method in any of the derived class that implements Vehicle, but is there a way to use it in repository pattern?

Well, you have abstract base calls Vehicle.
From careful observation of your code, I found that you have not derived your VehicleRepository Class from Vehicle.
So you will not be able to access the virtual method from Vehicle on VehicleRepository instance.
The method you are looking for HasAmazingColor will be available on every single object in List<Vehicle> _vehicles;
May be you can expose the List of Vehicles as property and then use it in the unit test, just in case you want to use it.
Or
If your design does not allow to explose the _vehicles as public collection, then you can have a public method in VehicleRepository class which internally calls the HasAmazingColor method on appropriate Vehicle object or objects.
The solution will depend on your application design.

Related

C# OOP Cast interface parameter to concrete type

i'm trying to build a sort of framework for some base process in an app. There is some common behavior where i have to execute some operations but these operations are different depending on some scenarios. I have done something i'm not sure if it's considered a bad practice to make something like this:
public interface IMyDto
{
string makerIdentifier { get; set; }
}
public class DtoOne:IMyDto
{
public string makerIdentifier { get; set; }
//Custom properties for ConcreteOne
}
public class DtoTwo:IMyDto
{
public string makerIdentifier { get; set; }
//Custom properties for ConcreteTwo
}
public abstract class AbstractMaker
{
public abstract void DoSomething(IMyDto myInterface);
}
public class ConcreteMakerOne:AbstractMaker
{
public override void DoSomething(IMyDto myInterface)
{
var concrete = myInterface as DtoOne;
// If concrete is not null..do stuff with DtoOne properties
}
}
public class ConcreteMakerTwo : AbstractMaker
{
public override void DoSomething(IMyDto myInterface)
{
var concrete = myInterface as DtoTwo;
// If concrete is not null..do stuff with DtoTwo properties
}
}
public class Customer
{
public void MakeSomething(IMyDto myDto)
{
var maker = GetMaker();
maker.DoSomething(myDto);
}
private AbstractMaker GetMaker()
{
//Stuff to determine if return ConcreteOne or ConcreteTwo
}
}
The code im not happy with is the:
var concrete = myInterface as DtoOne;
I would appreciate a lot if someone could give me some advide or tips about a pattern or good oop practice for this scenario.
It's not clear what all of your use cases are, but one option might be generics:
public abstract class AbstractMaker<T> where T:IMyDto
{
public abstract void DoSomething(T myInterface);
}
public class ConcreteMakerTwo : AbstractMaker<DtoTwo>
{
public override void DoSomething(DtoTwo myInterface)
{
// now you are certain that myInterface is a DtoTwo
}
}
I am not sure if I understand correctly what are you asking about, but why not just put method DoSomething in IMyDto and implement it differently in DtoOne, DtoTwo, etc.? There would be only one Maker and would always call the same method.

Accessing base class function from secondarily derived functions

I seriously hope my title is clear enough. If it's not I'm happy to have better suggestions.
The situation is thus (variable types are just examples):
public abstract class A
{
public virtual string X(string arg)
{
return "blarg";
}
}
public class CommonProperties : A
{
public string foof { get; set;} = "widget";
public string yay { get; set; }
public override string X(string arg)
{
return base.X(arg);
}
}
public class B : CommonProperties
{
public string UniqueProperty1 { get; set; }
public override string X(string arg)
{
return base.X(arg);
}
}
public class C : CommonProperties
{
public string UniqueProperty2 { get; set; }
public override string X(string arg)
{
return base.X(arg);
}
}
class D : A
{
public override string X(string arg)
{
return base.X(arg);
}
}
}
I'm generalizing my problem. This is not my actual code.
The problem is that C# does not allow multiple inheritance for abstract classes, interfaces don't allow for default code (yet) nor do they allow for default initializers.
I'd like CommonProperties to be derived from the abstract class and the classes derived from it (classes B and C) to be able to directly access the original abstract class's implementation of the X function rather than the overriding CommonProperties implementation of it. I've tried doing base.base.X(arg) but that didn't work. The next best way would be to have classes B and C derived from both class A and class CommonProperties but C# doesn't allow this. Making class A an interface won't work because I have a large number of classes derived from it and that would mean I'd have to copy the needed code into every. single. one. I can't make CommonProperties an interface because of that restriction on default values. I could move the common properties into their derived classes but that defeats code reuse (I may need to add additional properties over time and that would mean updating would be slower and more prone to error, etc.)
I can't wait until C# 8.0 (theoretically) having a default implementation of functions. If I can get B and C to directly access the hidden A.X() function that is hidden by the CommonProperties.X() function that would be a good workaround. I suspect that latter solution is possible with reflection (in fact in my project the A class is doing just that so the topic isn't difficult for me), but I'd like to know if there was a more direct method.
Edit: Adding one more class to clarify the issue better. I forgot that CommonProperties was supposed to inherit from A and also show that other classes directly inherit from A.
You need to add a non virtual method to class A that calls the A.X implementation. The method name includes the class name, I used double underscore to separate method name and class name.
public abstract class A
{
public virtual string X(string arg)
{
return "blarg";
}
public string X__A(string arg)
{
return X(arg);
}
}
public class CommonProperties : A
{
public string foof { get; set;} = "widget";
public string yay { get; set; }
public override string X(string arg)
{
return "comarg";
}
}
public class B : CommonProperties
{
public string UniqueProperty1 { get; set; }
public override string X(string arg)
{
return X__A(arg);
}
}

Generic Interface inheriting Non-Generic One C#

This is class design question.
I have main abstract class
public abstract class AbstractBlockRule
{
public long Id{get;set;}
public abstract List<IRestriction> Restrictions {get;};
}
public interface IRestriction{}
public interface IRestriction<T>:IRestriction where T:struct
{
T Limit {get;}
}
public TimeRestriction:IRestriction<TimeSpan>
{
public TimeSpan Limit{get;set;}
}
public AgeRestriction:IRestriction<int>
{
public int Limit{get;set;}
}
public class BlockRule:AbstractBlockRule
{
public virtual List<IRestriction> Restrictions {get;set;}
}
BlockRule rule=new BlockRule();
TimeRestriction t=new TimeRestriction();
AgeRestriction a=new AgeRestriction();
rule.Restrictions.Add(t);
rule.Restrictions.Add(a);
I have to use non-generic Interface IRestriction just to avoid specifying generic type T in main abstract class. I'm very new to generics. Can some one let me know how to better design this thing?
Your approach is typical (for example, IEnumerable<T> implements IEnumerable like this). If you want to provide maximum utility to consumers of your code, it would be nice to provide a non-generic accessor on the non-generic interface, then hide it in the generic implementation. For example:
public abstract class AbstractBlockRule
{
public long Id{get;set;}
public abstract List<IRestriction> Restrictions { get; set; }
}
public interface IRestriction
{
object Limit { get; }
}
public interface IRestriction<T> : IRestriction
where T:struct
{
// hide IRestriction.Limit
new T Limit {get;}
}
public abstract class RestrictionBase<T> : IRestriction<T>
where T:struct
{
// explicit implementation
object IRestriction.Limit
{
get { return Limit; }
}
// override when required
public virtual T Limit { get; set; }
}
public class TimeRestriction : RestrictionBase<TimeSpan>
{
}
public class AgeRestriction : RestrictionBase<TimeSpan>
{
}
public class BlockRule : AbstractBlockRule
{
public override List<IRestriction> Restrictions { get; set; }
}
I also showed using a base restriction class here, but it is not required.
The runtime treats IRestriction<TimeSpan> and IRestriction<int> as different distinct classes (they even have their own set of static variables). In your case the only classes common to both IRestriction<TimeSpan> and IRestriction<int> in the inheritance hierarchy are IRestriction and object.
So indeed, having a list of IRestriction is the only sensible way to go.
As a side note: you have a property Limit in there that you might want to access regardless of whether you're dealing with an IRestriction<TimeSpan> or IRestriction<int>. What I would do in this case is to define another property object Limit { get; } on IRestriction, and hide it in the actual implementation. Like this:
public interface IRestriction
{
object Limit { get; }
}
public interface IRestriction<T> : IRestriction
where T : struct
{
new T Limit { get; set; }
}
public class TimeRestriction : IRestriction<TimeSpan>
{
public TimeSpan Limit { get; set; }
// Explicit interface member:
// This is hidden from IntelliSense
// unless you cast to IRestriction.
object IRestriction.Limit
{
get
{
// Note: boxing happens here.
return (object)Limit;
}
}
}
This way you can access Limit as object on all your IRestriction when you don't care what type it is. For example:
foreach(IRestriction restriction in this.Restrictions)
{
Console.WriteLine(restriction.Limit);
}
Interfaces are contracts that need to be followed by the entity that implements the contract.
You have created two contract with the same name IRestriction
As far as I can see, what you are basically may need is a flag for classes that can be restricted, which should implement the IRestriction non-generic interface.
The second interface seems to be restrictable objects that also contain a limit property.
Hence the definition of the second IRestriction interface can be ILimitRestriction or whatever name suits your business needs.
Hence ILimitRestriction can inherit from IRestriction which would mark classes inheriting ILimitRestriction still objects of IRestriction
public abstract class AbstractBlockRule
{
public long Id{get;set;}
public abstract List<IRestriction> Restrictions {get;};
}
public interface IRestriction{}
public interface IRestrictionWithLimit<T>:IRestriction where T:struct
{
T Limit {get;}
}
public TimeRestriction:IRestrictionWithLimit<TimeSpan>
{
public TimeSpan Limit{get;set;}
}
public AgeRestriction:IRestrictionWithLimit<int>
{
public int Limit{get;set;}
}
public class BlockRule:AbstractBlockRule
{
public virtual List<IRestriction> Restrictions {get;set;}
}

Creating read-only versions of classes in a complex object structure

In my current project I need to be able to have both editable and read-only versions of classes. So that when the classes are displayed in a List or PropertGrid the user is not able to edit objects they should not be allowed to.
To do this I'm following the design pattern shown in the diagram below. I start with a read-only interface (IWidget), and then create an edtiable class which implements this interface (Widget). Next I create a read-only class (ReadOnlyWidget) which simply wraps the mutable class and also implements the read only interface.
I'm following this pattern for a number of different unrelated types. But now I want to add a search function to my program, which can generate results that include any variety of types including both mutable and immutable versions. So now I want to add another set of interfaces (IItem, IMutableItem) that define properties which apply to all types. So IItem defines a set of generic immutable properties, and IMutableItem defines the same properties but editable. In the end a search will return a collection of IItems, which can then later be cast to more specific types if needed.
Yet, I'm not sure if I'm setting up the relationships to IMutable and IItem correctly. Right now I have each of the interfaces (IWidget, IDooHickey) inheriting from IItem, and then the mutable classes (Widget, DooHickey) in addition also implement IMutableItem.
Alternatively, I was also thinking I could then set IMutableItem to inherit from IItem, which would hide its read-only properties with new properties that have both get and set accessors. Then the mutable classes would implement IMutableItem, and the read-only classes would implement IItem.
I'd appreciate any suggestions or criticisms regarding any of this.
Class Diagram
Code
public interface IItem
{
string ItemName { get; }
}
public interface IMutableItem
{
string ItemName { get; set; }
}
public interface IWidget:IItem
{
void Wiggle();
}
public abstract class Widget : IWidget, IMutableItem
{
public string ItemName
{
get;
set;
}
public void Wiggle()
{
//wiggle a little
}
}
public class ReadOnlyWidget : IWidget
{
private Widget _widget;
public ReadOnlyWidget(Widget widget)
{
this._widget = widget;
}
public void Wiggle()
{
_widget.Wiggle();
}
public string ItemName
{
get {return _widget.ItemName; }
}
}
public interface IDoohickey:IItem
{
void DoSomthing();
}
public abstract class Doohickey : IDoohickey, IMutableItem
{
public void DoSomthing()
{
//work it, work it
}
public string ItemName
{
get;
set;
}
}
public class ReadOnlyDoohickey : IDoohickey
{
private Doohickey _doohicky;
public ReadOnlyDoohickey(Doohickey doohicky)
{
this._doohicky = doohicky;
}
public string ItemName
{
get { return _doohicky.ItemName; }
}
public void DoSomthing()
{
this._doohicky.DoSomthing();
}
}
Is it OK to create another object when you need a readonly copy? If so then you can use the technique in the included code. If not, I think a wrapper is probably your best bet when it comes to this.
internal class Test
{
private int _id;
public virtual int ID
{
get
{
return _id;
}
set
{
if (ReadOnly)
{
throw new InvalidOperationException("Cannot set properties on a readonly instance.");
}
}
}
private string _name;
public virtual string Name
{
get
{
return _name;
}
set
{
if (ReadOnly)
{
throw new InvalidOperationException("Cannot set properties on a readonly instance.");
}
}
}
public bool ReadOnly { get; private set; }
public Test(int id = -1, string name = null)
: this(id, name, false)
{ }
private Test(int id, string name, bool readOnly)
{
ID = id;
Name = name;
ReadOnly = readOnly;
}
public Test AsReadOnly()
{
return new Test(ID, Name, true);
}
}
I would suggest that for each main class or interface, there be three defined classes: a "readable" class, a "changeable" class, and an "immutable" class. Only the "changeable" or "immutable" classes should exist as concrete types; they should both derive from an abstract "readable" class. Code which wants to store an object secure in the knowledge that it never changes should store the "immutable" class; code that wants to edit an object should use the "changeable" class. Code which isn't going to write to something but doesn't care if it holds the same value forever can accept objects of the "readable" base type.
The readable version should include public abstract methods AsChangeable(), AsImmutable(), public virtual method AsNewChangeable(), and protected virtual method AsNewImmutable(). The "changeable" classes should define AsChangeable() to return this, and AsImmutable to return AsNewImmutable(). The "immutable" classes should define AsChangeable() to return AsNewChangeable() and AsImmutable() to return this.
The biggest difficulty with all this is that inheritance doesn't work terribly well if one tries to use class types rather than interfaces. For example, if one would like to have an EnhancedCustomer class which inherits from BasicCustomer, then ImmutableEnhancedCustomer should inherit from both ImmutableBasicCustomer and ReadableEnhancedCustomer, but .net doesn't allow such dual inheritance. One could use an interface IImmutableEnhancedCustomer rather than a class, but some people would consider an 'immutable interace' to be a bit of a smell since there's no way a module that defines an interface in such a way that outsiders can use it without also allowing outsiders to define their own implementations.
Abandon hope all ye who enter here!!!
I suspect that in the long run your code is going to be very confusing. Your class diagram suggests that all properties are editable (or not) in a given object. Or are your (I'm)mutable interfaces introducing new properties that are all immutable or not, separate from the "core"/inheriting class?
Either way I think you're going to end up with playing games with property name variations and/or hiding inherited properties
Marker Interfaces Perhaps?
Consider making all properties in your classes mutable. Then implement IMutable (I don't like the name IItem) and IImutable as a marker interfaces. That is, there is literally nothing defined in the interface body. But it allows client code to handle the objects as a IImutable reference, for example.
This implies that either (a) your client code plays nice and respects it's mutability, or (b) all your objects are wrapped by a "controller" class that enforces the given object's mutability.
Could be too late :-), but the cause "The keyword 'new' is required on property because it hides property ..." is a bug in Resharper, no problem with the compiler. See the example below:
public interface IEntityReadOnly
{
int Prop { get; }
}
public interface IEntity : IEntityReadOnly
{
int Prop { set; }
}
public class Entity : IEntity
{
public int Prop { get; set; }
}
[TestClass]
public class UnitTest1
{
[TestMethod]
public void TestMethod1()
{
var entity = new Entity();
(entity as IEntity).Prop = 2;
Assert.AreEqual(2, (entity as IEntityReadOnly).Prop);
}
}
Same for the case without interfaces. The only limitation, you can't use auto-properties
public class User
{
public User(string userName)
{
this.userName = userName;
}
protected string userName;
public string UserName { get { return userName; } }
}
public class UserUpdatable : User
{
public UserUpdatable()
: base(null)
{
}
public string UserName { set { userName = value; } }
}
[TestClass]
public class UnitTest1
{
[TestMethod]
public void TestMethod1()
{
var user = new UserUpdatable {UserName = "George"};
Assert.AreEqual("George", (user as User).UserName);
}
}

IDescription interface using generics and extension methods

I am trying to implement an IDescription Interface. Basic purpose of this interface is that I have many different classes that have a list of multilingual descriptions and I want the the basic AddDescription EditDescription and some other basic behaviours to be defined by the interface and not implemented by the classes individually that inherits the interface. I am trying to assign the behavior to the interface using extension methods.
I have some road blocks such as how do I access the descriptions collection of the entity that I am passing on to the IDescription interface (entity.Descriptions.Add)?
I am very new to generics, extension methods, anonymous types etc so please bear with me with my misunderstandings of how these are used. Will appreciate if you can help me correct the below code. I wrote it to give the idea of what I am trying to achieve, it obviously fundamental errors in it. Thanks
public class Company : IDescription<Company, CompanyDescription>
{
public IList<CompanyDescription> Desriptions { get; set; }
}
public class Location : IDescription<Location, LocationDescription>
{
public IList<LocationDescription> Desriptions { get; set; }
}
public interface IDescription<eT, dT>
{
void AddDescription(eT, string text);
void EditDescription(eT, dT, string text);
}
public static DescriptionInterfaceExtensions
{
public static void AddDescription(this IDescription<eT, dT> description, eT entity, string text)
{
dT newDescription = new dT(text);
entity.Descriptions.Add(newDescription);
}
}
Another possible rewrite that should work is to remove the Add/Edit methods from the interface and simply provide the required IList in the interface. Then, for ease of use, you can use the extension methods to make it easier.
I'm not saying this example is a great use of generics or extension methods, but it will work:
public class CompanyDescription : IDescription { public string Text { get; set; } }
public class LocationDescription : IDescription { public string Text { get; set; } }
public class Company : IHaveDescriptions<CompanyDescription>
{
public IList<CompanyDescription> Desriptions { get; set; }
}
public class Location : IHaveDescriptions<LocationDescription>
{
public IList<LocationDescription> Desriptions { get; set; }
}
public interface IDescription
{
string Text { get; set; }
}
public interface IHaveDescriptions<T>
where T : class, IDescription, new()
{
IList<T> Desriptions { get; set; }
}
public static class DescriptionInterfaceExtensions
{
public static void AddDescription<T>(this IHaveDescriptions<T> entity, string text)
where T : class, IDescription, new()
{
T newDescription = new T();
newDescription.Text = text;
entity.Desriptions.Add(newDescription);
}
public static void EditDescription<T>(this IHaveDescriptions<T> entity, T original, string text)
where T : class, IDescription, new()
{
T newDescription = new T();
newDescription.Text = text;
entity.Desriptions.Remove(original);
entity.Desriptions.Add(newDescription);
}
}
I your example it seems the contract is that objects that have a description store a list of descriptions. So, to avoid having to declare Add and Remove methods in the classes directly, you could do something like this:
Interfaces
public interface IDescription<T>
{
}
public interface IHasDescription<THasDescription, TDescription>
where THasDescription : IHasDescription<THasDescription, TDescription>
where TDescription : IDescription<THasDescription>
{
IList<TDescription> Descriptions { get; }
}
Concrete implementations
public class CompanyDescription : IDescription<Company>
{
}
public class Company : IHasDescription<Company, CompanyDescription>
{
private readonly IList<CompanyDescription> descriptions;
public IList<CompanyDescription> Descriptions
{
get { return this.descriptions; }
}
}
Extension methods
public static class DescriptionExtensions
{
public static void AddDescription<THasDescription, TDescription>(
this THasDescription subject,
TDescription description)
where THasDescription : IHasDescription<THasDescription, TDescription>
where TDescription : IDescription<THasDescription>
{
subject.Descriptions.Add(description);
}
}
But I don't think it's worth to do this just to have
mycompany.AddDescription(mydescription);
instead of
mycompany.Descriptions.Add(mydescription);
You can't add interface implementations to classes using extension methods, although that seems to be what you are trying to do.
The purpose of extension methods is to add behavior to existing types (classes or interfaces).
The problem with your code is that you declare that Company and Location should implement the IDescription interface; yet they don't. They have no AddDescription or EditDescription methods, so that's not going to work.
Why don't you instead define a concrete generic Description class and attach that class to Company and Location?

Categories