Associating Enums with string c# - c#

Following This post : Associating enums with strings in C#
I wanted to go further as it didn't quite fully met my needs for a Enum like Class that would act as string I ended-up with a solution that allows me to do the following:
string test1 = TestEnum.Analyze; //test1 == "ANALYZE"
string test1bis = (string)TestEnum.Analyze; //test1bis == "ANALYZE"
TestEnum test2 = "ANALYZE"; //test2 == {ANALYZE}
TestEnum test3 = "ANYTHING"; //test3 == null
As seen below in the unitTests all these work fine with this:
public class TestEnum : EnumType<TestEnum>
{
public static TestEnum Analyze { get { return new EnumType<TestEnum>("ANALYZE"); } }
public static TestEnum Test { get { return new EnumType<TestEnum>("TEST"); } }
public static implicit operator TestEnum(string s) => (EnumType<TestEnum>) s;
public static implicit operator string(TestEnum e) => e.Value;
}
I can't decide if this solution is elegant or incredibly stupid, It seems to me probably unnecessary complex and I might be messing a much easier solution in any case it could help someone so I'm putting this here.
//for newtonsoft serialization
[JsonConverter(typeof(EnumTypeConverter))]
public class EnumType<T> where T : EnumType<T> , new()
{
public EnumType(string value= null)
{
Value = value;
}
//for servicestack serialization
static EnumType()
{
JsConfig<EnumType<T>>.DeSerializeFn = str =>
{
return (T)str ;
};
JsConfig<EnumType<T>>.SerializeFn = type =>
{
return type.Value;
};
JsConfig<T>.DeSerializeFn = str =>
{
return (T)str;
};
JsConfig<T>.SerializeFn = type =>
{
return type.Value;
};
}
protected string Value { get; set; }
public static T Parse(string s)
{
return (T)s;
}
public override string ToString()
{
return Value;
}
public static EnumType<T> ParseJson(string json)
{
return (T)json;
}
public static implicit operator EnumType<T>(string s)
{
if (All.Any(dt => dt.Value == s))
{
return new T { Value = s };
}
else
{
var ai = new Microsoft.ApplicationInsights.TelemetryClient(Connector.tconfiguration);
ai.TrackException(new Exception($"Value {s} is not acceptable value for {MethodBase.GetCurrentMethod().DeclaringType}, Acceptables values are {All.Select(item => item.Value).Aggregate((x, y) => $"{x},{y}")}"));
return null;
}
}
public static implicit operator string(EnumType<T> dt)
{
return dt?.Value;
}
public static implicit operator EnumType<T>(T dt)
{
if (dt == null) return null;
return new EnumType<T>(dt.Value);
}
public static implicit operator T(EnumType<T> dt)
{
if (dt == null) return null;
return new T { Value = dt.Value };
}
public static bool operator ==(EnumType<T> ct1, EnumType<T> ct2)
{
return (string)ct1 == (string)ct2;
}
public static bool operator !=(EnumType<T> ct1, EnumType<T> ct2)
{
return !(ct1 == ct2);
}
public override bool Equals(object obj)
{
try
{
if(obj.GetType() == typeof(string))
{
return Value == (string)obj;
}
return Value == obj as T;
}
catch(Exception ex)
{
return false;
}
}
public override int GetHashCode()
{
return (!string.IsNullOrWhiteSpace(Value) ? Value.GetHashCode() : 0);
}
public static IEnumerable<T> All
=> typeof(T).GetProperties()
.Where(p => p.PropertyType == typeof(T))
.Select(x => (T)x.GetValue(null, null));
//for serialisation
protected EnumType(SerializationInfo info,StreamingContext context)
{
Value = (string)info.GetValue("Value", typeof(string));
}
public void GetObjectData(SerializationInfo info, StreamingContext context)
{
info.AddValue("Value",Value);
}
}
Here are the unit tests:
[TestFixture]
public class UnitTestEnum
{
Connector cnx { get;set; }
private class Test
{
public TestEnum PropertyTest { get; set; }
public string PropertyString { get; set; }
}
[SetUp]
public void SetUp()
{
typeof(EnumType<>)
.Assembly
.GetTypes()
.Where(x => x.BaseType?.IsGenericType == true && x.BaseType.GetGenericTypeDefinition() == typeof(EnumType<>))
.Each(x =>
System.Runtime.CompilerServices.RuntimeHelpers.RunClassConstructor(x.BaseType.TypeHandle)
);
cnx = new Connector();
}
[TearDown]
public void Clear()
{
cnx.Dispose();
}
[Test]
public void EqualsString()
{
Assert.AreEqual(TestEnum.Analyze, TestEnum.Analyze);
Assert.AreEqual(TestEnum.Analyze,"ANALYZE");
Assert.IsTrue("ANALYZE" == TestEnum.Analyze);
Assert.IsTrue("ANALYZE".Equals(TestEnum.Analyze));
}
[Test]
public void Casts()
{
string test1 = TestEnum.Analyze;
string test1bis = (string)TestEnum.Analyze;
TestEnum test2 = "ANALYZE";
TestEnum test3 = "NAWAK";
Assert.AreEqual("ANALYZE", test1);
Assert.AreEqual("ANALYZE", test1bis);
Assert.IsTrue(test2 == TestEnum.Analyze);
Assert.IsTrue(test2.Equals(TestEnum.Analyze));
Assert.AreEqual(test3, null);
}
[Test]
public void Deserializations()
{
new List<TestEnum>
{
(TestEnum)ServiceStack.Text.JsonSerializer.DeserializeFromString("\"ANALYZE\"", typeof(TestEnum)),
"\"ANALYZE\"".FromJson<TestEnum>(),
(TestEnum)Newtonsoft.Json.JsonConvert.DeserializeObject("\"ANALYZE\"", typeof(TestEnum)),
Newtonsoft.Json.JsonConvert.DeserializeObject<TestEnum>("\"ANALYZE\"")
}.Each(testEnum => Assert.AreEqual(testEnum, TestEnum.Analyze));
new List<Test>
{
"{\"PropertyTest\":\"ANALYZE\",\"PropertyString\":\"ANALYZE\"}".FromJson<Test>(),
(Test)ServiceStack.Text.JsonSerializer.DeserializeFromString("{\"PropertyTest\":\"ANALYZE\",\"PropertyString\":\"ANALYZE\"}", typeof(Test)),
Newtonsoft.Json.JsonConvert.DeserializeObject<Test>("{\"PropertyTest\":\"ANALYZE\",\"PropertyString\":\"ANALYZE\"}"),
(Test)Newtonsoft.Json.JsonConvert.DeserializeObject("{\"PropertyTest\":\"ANALYZE\",\"PropertyString\":\"ANALYZE\"}",typeof(Test))
}.Each(test =>
{
Assert.AreEqual(test.PropertyTest, TestEnum.Analyze);
Assert.AreEqual(test.PropertyString, "ANALYZE");
});
}
[Test]
public void Serialisations()
{
Assert.AreEqual("{\"PropertyTest\":\"ANALYZE\",\"PropertyString\":\"ANALYZE\"}", new Test { PropertyTest = TestEnum.Analyze, PropertyString = TestEnum.Analyze }.ToJson());
Assert.AreEqual("{\"PropertyTest\":\"ANALYZE\",\"PropertyString\":\"ANALYZE\"}", Newtonsoft.Json.JsonConvert.SerializeObject(new Test { PropertyTest = TestEnum.Analyze, PropertyString = TestEnum.Analyze }));
Assert.AreEqual("\"ANALYZE\"", TestEnum.Analyze.ToJson());
Assert.AreEqual("\"ANALYZE\"", Newtonsoft.Json.JsonConvert.SerializeObject(TestEnum.Analyze));
}
[Test]
public void TestEnums()
{
Assert.AreEqual(TestEnum.All.Count(), 2);
Assert.Contains(TestEnum.Analyze,TestEnum.All.ToList());
Assert.Contains(TestEnum.Test,TestEnum.All.ToList());
}

Elegant code is typically described as simple, clean, terse with clear intent and optimally performant, I'm not seeing any of these traits here which is especially convoluted as instead of using simple C# Enum's as intended they're wrapped in a generic base class with implicit casts and custom serialization handling for different JSON Serialization libraries (that's unlikely to work in other serialization libraries/formats) and with with all the additional artificial complexity added it's not even clear what the benefit or purpose of all the boilerplate is?
Code that's drowned in so much boilerplate increases the maintenance burden and inhibits refactoring as no one else is going to know what the desired intent or purpose of the code is meant to be & why simpler naive solutions weren't adopted instead.
If you just want to have a different Wire Serialization format to the Symbol name used in code (which IMO should have a good reason for being different), you can just use the [EnumMember] Serialization attribute:
[DataContract]
public enum TestEnum
{
[EnumMember(Value = "ANALYZE")]
Analyze,
[EnumMember(Value = "TEST")]
Test,
}
Otherwise I'd dispense with using Enums and go back to using string constants, which are simpler, faster, memory efficient and works in all Serialization libraries without custom serialization hacks:
public static class MyConstants
{
public const string Analyze = "ANALYZE";
public const string Test = "TEST";
}

Related

How to generate an object that has all the Properties of another, only Nullable (when applicable)?

I am creating a project that will manage app configurations. It will be very generic, reusable across different apps (with different config models on each) and very flexible - including the ability to create/save/store/read/merge partial configurations from multiple sources.
Without getting too much into details, here's an example of what I need to do.
I have a class like below:
public class TestConfigModel
{
public int SomeIntValue { get; set; }
public string SomeStringValue { get; set; }
public TestConfigSubsection Subsection { get; set; }
}
public class TestConfigSubsection
{
public System.DayOfWeek SomeSubsectionEnumValue { get; set; }
public Guid SomeSubsectionGuidValue { get; set; }
}
I need to dynamically generate a version of this model that has all properties nullable (unless they already take a null):
public class TestConfigModelNullable
{
public int? SomeIntValue { get; set; }
public string SomeStringValue { get; set; } // already takes a null
public TestConfigSubsection Subsection { get; set; } // already takes a null
}
public class TestConfigSubsectionNullable
{
public System.DayOfWeek? SomeSubsectionEnumValue { get; set; }
public Guid? SomeSubsectionGuidValue { get; set; }
}
Example use:
I have a default (complete) config like so:
var aConfigInstance = new TestConfigModel()
{
SomeIntValue = 3,
SomeStringValue = "hey",
Subsection = new TestConfigSubsection()
{
SomeSubsectionEnumValue = DayOfWeek.Thursday,
SomeSubsectionGuidValue = Guid.Parse("{2C475019-5AAC-43C6-AC87-21947A40E3B7}")
}
};
Now, I need to be able to create, serialize, store and later deserialize and operate on a partial configuration model, like below:
var aPartialConfigInstance = new TestConfigModelNullable()
{
SomeIntValue = 4,
Subsection = new TestConfigSubsection()
{
SomeSubsectionEnumValue = DayOfWeek.Monday
}
};
... with all missing properties null. If I try to do the same with the original class, all the other non-nullable fields will receive default values and that would be bad (how do I tell if int value of 0 is intended or not? Maybe it makes sense for the consumer app).
However, I'm new to reflection in general and not sure how to approach this. Your help would be much appreciated :)
Recall that we don't know the model ahead of time.
I happened to implement several similar mechanisms in several different flavors. Implementing an "automagical" mechanism implies quite a bit of heavy lifting.
Here I wouldn't suggest generating separate nullable versions of the models. Instead, I would opt for making all model properties Optional<T>, which is like Nullable<T> but works for reference types as well. In this way, partial models will be represented with the same types as "base" models.
Such an approach will save the complexity of code generation (T4, Roslyn, CodeDom, or Reflection.Emit -- all these imply a lot of effort, including plugging them into the build process).
In addition, in either approach, a "merging" logic must be implemented which applies a partial model over a "base" one. In code generation approach, the merge logic can be generated as part of the nullable models. In Optional<T> approach, it can be either hard-coded or implemented in generic way with runtime Reflection (not Reflection.Emit). The hard-coded way appears to be the easiest, but for large number of models and properties, runtime Reflection may be a better fit.
How it will look
The models would look like this:
public class TestConfigModel
{
public Optional<int> SomeIntValue { get; set; }
public Optional<string> SomeStringValue { get; set; }
public Optional<TestConfigSubsection> Subsection { get; set; }
}
With the implicit conversion operators of Optional<T>, you'll be able to initialize section values as normally:
var config = new TestConfigModel {
SomeIntValue = 123,
SomeStringValue = "ABC",
Subsection = new TestConfigSubsection {
SomeSubsectionEnumValue = DayOfWeek.Thursday
}
};
Generic merging logic can be implemented by introducing an Apply method to Optional<T>:
Optional<T> Apply(Optional<T> partial, Func<T, T, Optional<T>> merge = null)
Every model will have to implement its own ApplyXxxx() method that will be passed in the merge parameter, like this:
public class TestConfigModel
{
// ...properties
public Optional<TestConfigModel> ApplyModel(TestConfigModel partial)
{
SomeIntValue = SomeIntValue.Apply(partial.SomeIntValue);
SomeStringValue = SomeStringValue.Apply(partial.SomeStringValue);
Subsection = Subsection.Apply(
partial.Subsection,
merge: (left, right) => left.ApplySubsection(right));
return this;
}
}
public class TestConfigSubsection
{
// ...properties
public Optional<TestConfigSubsection> ApplySubsection(TestConfigSubsection partial)
{
SomeSubsectionEnumValue = SomeSubsectionEnumValue.Apply(partial.SomeSubsectionEnumValue);
SomeSubsectionGuidValue = SomeSubsectionGuidValue.Apply(partial.SomeSubsectionGuidValue);
return this;
}
}
Optional<T>
Built-in implementation of Optional<T> is planned for C# 8, but it can be implemented easily (mostly similar to Nullable<T>).
public interface IOptional
{
bool HasValue { get; }
object Value { get; }
}
public struct Optional<T> : IOptional
{
private readonly bool _hasValue;
private readonly T _value;
public Optional(T value)
{
_value = value;
_hasValue = true;
}
public bool HasValue => _hasValue;
object IOptional.Value => Value;
public T Value
{
get
{
if (!_hasValue)
{
throw new InvalidOperationException("has no value");
}
return _value;
}
}
public T GetValueOrDefault() => _value;
public T GetValueOrDefault(T defaultValue)
{
if (!_hasValue)
{
return defaultValue;
}
return _value;
}
public bool IsNullValue => _hasValue && ReferenceEquals(_value, null);
public override bool Equals(object other)
{
if (other is Optional<T> otherOptional)
{
if (_hasValue != otherOptional.HasValue)
{
return false;
}
if (_hasValue)
{
return CompareValue(otherOptional.Value);
}
return true;
}
return false;
}
bool CompareValue(object otherValue)
{
if (_value == null)
{
return (otherValue == null);
}
return _value.Equals(otherValue);
}
public override int GetHashCode()
{
if (_hasValue || ReferenceEquals(_value, null))
{
return 0;
}
return _value.GetHashCode();
}
public override string ToString()
{
if (!_hasValue || ReferenceEquals(_value, null))
{
return "";
}
return _value.ToString();
}
public Optional<T> Apply(Optional<T> partial, Func<T, T, Optional<T>> merge = null)
{
if (!_hasValue && partial.HasValue)
{
return partial;
}
if (_hasValue && partial.HasValue)
{
if (ReferenceEquals(_value, null))
{
return partial.Value;
}
if (!ReferenceEquals(partial.Value, null))
{
if (merge != null)
{
return merge(_value, partial.Value);
}
throw new InvalidOperationException("both values exist and merge not provided");
}
}
return this;
}
public static implicit operator Optional<T>(T value)
{
return new Optional<T>(value);
}
public static explicit operator T(Optional<T> value)
{
return value.Value;
}
}
Serialization
The last thing left is to teach the serializers to handle Optional<T>. For instance, Newtonsoft.Json would require a custom JsonConverter. Below isn't a complete implementation, but it demonstrates the approach:
public class OptionalConverter : JsonConverter
{
public override bool CanConvert(Type objectType)
{
return objectType.IsGenericType && objectType.GetGenericTypeDefinition() == typeof(Optional<>);
}
public override object ReadJson(JsonReader reader, Type objectType, object existingValue, JsonSerializer serializer)
{
// TODO: implement properly
// roughly the approach is like this:
var hasValue = reader.ReadAsBoolean().GetValueOrDefault();
var innerValue = hasValue
? serializer.Deserialize(reader, objectType.GetGenericArguments([0])
: null;
return Activator.CreateInstance(
objectType,
innerValue != null ? new[] {innerValue} : new object[0]);
}
public override void WriteJson(JsonWriter writer, object value, JsonSerializer serializer)
{
if (value is IOptional optional)
{
// TODO: implement writing
}
}
}
// Just for convenience
public Type CreateNullableTypeFrom<T>()
{
return CreateNullableTypeFrom(typeof(T));
}
public Type CreateNullableTypeFrom(Type typeToConvert)
{
// Get the AssemblyName where the type is defined
AssemblyName assembly = typeToConvert.Assembly.GetName();
AssemblyBuilder dynamicAssembly = AssemblyBuilder.DefineDynamicAssembly(assembly, AssemblyBuilderAccess.Run);
ModuleBuilder dynamicModule = dynamicAssembly.DefineDynamicModule(assembly.Name);
TypeBuilder typeBuilder = dynamicModule.DefineType(typeToConvert.Name + "Nullable");
// Loop through the properties
foreach(PropertyInfo property in typeToConvert.GetProperties())
{
// If property is value type, it can't be null
if(property.PropertyType.IsValueType)
{
// Create a nullable type for the property
typeBuilder.DefineProperty(property.Name, property.Attributes, typeof(Nullable<>).MakeGenericType(property.PropertyType), Type.EmptyTypes);
}
// The property can be null
else
{
// Create a similar property
typeBuilder.DefineProperty(property.Name, property.Attributes, property.PropertyType, Type.EmptyTypes);
}
}
// Finally, create the type
Type convertedType = typeBuilder.CreateType();
Console.WriteLine(convertedType.Name);
// Note: to access the properties of the converted type through reflection,
// use GetRuntimeProperties method, not GetProperties, since GetProperties
// will return an empty array because the type was created an runtime
return convertedType;
}

Assigning methods to object at run-time - Design Pattern

I have created an architecture in my C# code which does exactly what I want, but seems it would be very difficult to maintain in the long-run and am hoping there's a design pattern / better architecture I could be pointed towards.
I have created an object Test which, again, does exactly what I need perfectly which has the following structure:
class Test
{
public static Dictionary<string, Func<Test, object>> MethodDictionary;
public double Var1;
public double Var2;
private Lazy<object> _test1;
public object Test1 { get { return _test1.Value; } }
private Lazy<object> _test2;
public object Test2 { get { return _test2.Value; } }
public Test()
{
_test1 = new Lazy<object>(() => MethodDictionary["Test1"](this), true);
_test2 = new Lazy<object>(() => MethodDictionary["Test2"](this), true);
}
}
What this allows me to do is, at run-time to assign a dictionary of functions to my Test object and the 2 properties Test1 & Test2 will use the functions loaded into it to return values.
The implementation looking somewhat as follows:
class Program
{
static void Main(string[] args)
{
Dictionary<string, Func<Test, object>> MethodDictionary = new Dictionary<string,Func<Test,object>>();
MethodDictionary.Add("Test1", TestMethod1);
MethodDictionary.Add("Test2", TestMethod2);
Test.MethodDictionary = MethodDictionary;
var x = new Test() { Var1 = 20, Var2 = 30 };
Console.WriteLine(x.Test1.ToString());
Console.WriteLine(x.Test2.ToString());
Console.ReadKey();
}
private static object TestMethod1(Test t)
{ return t.Var1 + t.Var2; }
private static object TestMethod2(Test t)
{ return t.Var1 - t.Var2; }
}
And it works great and has proven very efficient for large sets of Test objects.
My challenge is that if I ever want to add in a new method to my Test class, I need to add in the:
private Lazy<object> _myNewMethod;
public object MyNewMethod { get { return _myNewMethod.Value; } }
Update the constuctor with the key to look for in the dictionary
And, although that is pretty simple, I'd love to have a 1-line add-in (maybe some form of custom object) or have the properties read directly form the dictionary without any need for defining them at all.
Any ideas? ANY help would be great!!!
Thanks!!!
One of the ways in which you could achieve your desired behavior, is to use something that resembles a miniature IoC framework for field injection, tuned to your specific use case.
To make things easier, allow less typing in your concrete classes and make things type-safe, we introduce the LazyField type:
public class LazyField<T>
{
private static readonly Lazy<T> Default = new Lazy<T>();
private readonly Lazy<T> _lazy;
public LazyField() : this(Default) { }
public LazyField(Lazy<T> lazy)
{
_lazy = lazy;
}
public override string ToString()
{
return _lazy.Value.ToString();
}
public static implicit operator T(LazyField<T> instance)
{
return instance._lazy.Value;
}
}
Furthermore, we define an abstract base class, that ensures that these fields will be created at construction time:
public abstract class AbstractLazyFieldHolder
{
protected AbstractLazyFieldHolder()
{
LazyFields.BuildUp(this); // ensures fields are populated.
}
}
Skipping for a moment how this is achieved (explained further below), this allows the following way of defining your Test class:
public class Test : AbstractLazyFieldHolder
{
public double Var1;
public double Var2;
public readonly LazyField<double> Test1;
public readonly LazyField<double> Test2;
}
Note that these fields are immutable, initialized in the constructor. Now, for your usage example, the below snippet shows the "new way" of doing this:
LazyFields.Configure<Test>()
// We can use a type-safe lambda
.SetProvider(x => x.Test1, inst => inst.Var1 + inst.Var2)
// Or the field name.
.SetProvider("Test2", TestMethod2);
var x = new Test() { Var1 = 20, Var2 = 30 };
Console.WriteLine(x.Test1);
double test2Val = x.Test2; // type-safe conversion
Console.WriteLine(test2Val);
// Output:
// 50
// -10
The class below provides the services that support the configuration and injection of these field value.
public static class LazyFields
{
private static readonly ConcurrentDictionary<Type, IBuildUp> _registry = new ConcurrentDictionary<Type,IBuildUp>();
public interface IConfigureType<T> where T : class
{
IConfigureType<T> SetProvider<FT>(string fieldName, Func<T, FT> provider);
IConfigureType<T> SetProvider<F, FT>(Expression<Func<T, F>> fieldExpression, Func<T, FT> provider) where F : LazyField<FT>;
}
public static void BuildUp(object instance)
{
System.Diagnostics.Debug.Assert(instance != null);
var builder = _registry.GetOrAdd(instance.GetType(), BuildInitializer);
builder.BuildUp(instance);
}
public static IConfigureType<T> Configure<T>() where T : class
{
return (IConfigureType<T>)_registry.GetOrAdd(typeof(T), BuildInitializer);
}
private interface IBuildUp
{
void BuildUp(object instance);
}
private class TypeCfg<T> : IBuildUp, IConfigureType<T> where T : class
{
private readonly List<FieldInfo> _fields;
private readonly Dictionary<string, Action<T>> _initializers;
public TypeCfg()
{
_fields = typeof(T)
.GetFields(BindingFlags.Instance | BindingFlags.Public)
.Where(IsLazyField)
.ToList();
_initializers = _fields.ToDictionary(x => x.Name, BuildDefaultSetter);
}
public IConfigureType<T> SetProvider<FT>(string fieldName, Func<T,FT> provider)
{
var pi = _fields.First(x => x.Name == fieldName);
_initializers[fieldName] = BuildSetter<FT>(pi, provider);
return this;
}
public IConfigureType<T> SetProvider<F,FT>(Expression<Func<T,F>> fieldExpression, Func<T,FT> provider)
where F : LazyField<FT>
{
return SetProvider((fieldExpression.Body as MemberExpression).Member.Name, provider);
}
public void BuildUp(object instance)
{
var typedInstance = (T)instance;
foreach (var initializer in _initializers.Values)
initializer(typedInstance);
}
private bool IsLazyField(FieldInfo fi)
{
return fi.FieldType.IsGenericType && fi.FieldType.GetGenericTypeDefinition() == typeof(LazyField<>);
}
private Action<T> BuildDefaultSetter(FieldInfo fi)
{
var itemType = fi.FieldType.GetGenericArguments()[0];
var defValue = Activator.CreateInstance(typeof(LazyField<>).MakeGenericType(itemType));
return (inst) => fi.SetValue(inst, defValue);
}
private Action<T> BuildSetter<FT>(FieldInfo fi, Func<T, FT> provider)
{
return (inst) => fi.SetValue(inst, new LazyField<FT>(new Lazy<FT>(() => provider(inst))));
}
}
private static IBuildUp BuildInitializer(Type targetType)
{
return (IBuildUp)Activator.CreateInstance(typeof(TypeCfg<>).MakeGenericType(targetType));
}
}
Look at library https://github.com/ekonbenefits/impromptu-interface.
With it and using DynamicObject i wrote sample code that shows how to simplify adding new methods:
public class Methods
{
public Methods()
{
MethodDictionary = new Dictionary<string, Func<ITest, object>>();
LazyObjects = new Dictionary<string, Lazy<object>>();
}
public Dictionary<string, Func<ITest, object>> MethodDictionary { get; private set; }
public Dictionary<string, Lazy<object>> LazyObjects { get; private set; }
}
public class Proxy : DynamicObject
{
Methods _methods;
public Proxy()
{
_methods = new Methods();
}
public override bool TryGetMember(GetMemberBinder binder, out object result)
{
result = _methods.LazyObjects[binder.Name].Value;
return true;
}
public override bool TrySetMember(SetMemberBinder binder, object value)
{
_methods.MethodDictionary[binder.Name] = (Func<ITest, object>)value;
_methods.LazyObjects[binder.Name] = new Lazy<object>(() => _methods.MethodDictionary[binder.Name](this.ActLike<ITest>()), true);
return true;
}
}
//now you can add new methods by add single method to interface
public interface ITest
{
object Test1 { get; set; }
object Test2 { get; set; }
}
class Program
{
static void Main(string[] args)
{
var x = new Proxy().ActLike<ITest>();
x.Test1 = new Func<ITest, object>((y) => "Test1");
x.Test2 = new Func<ITest, object>((y) => "Test2");
Console.WriteLine(x.Test1);
Console.WriteLine(x.Test2);
}
}
I don't know what you are trying to do, but I think you can use a simpler approach like this:
class Test
{
public static Dictionary<string, Func<Test, object>> MethodDictionary;
public double Var1;
public double Var2;
}
Calling the function is simple:
static void Main(string[] args)
{
Dictionary<string, Func<Test, object>> MethodDictionary = new Dictionary<string,Func<Test,object>>();
MethodDictionary.Add("Test1", TestMethod1);
MethodDictionary.Add("Test2", TestMethod2);
Test.MethodDictionary = MethodDictionary;
var x = new Test() { Var1 = 20, Var2 = 30 };
Console.WriteLine(Test.MethodDictionary["Test1"](x).ToString());
Console.WriteLine(Test.MethodDictionary["Test2"](x).ToString());
Console.ReadKey();
}

AutoFixture.AutoMoq supply a known value for one constructor parameter

I've just started to use AutoFixture.AutoMoq in my unit tests and I'm finding it very helpful for creating objects where I don't care about the specific value. After all, anonymous object creation is what it is all about.
What I'm struggling with is when I care about one or more of the constructor parameters. Take ExampleComponent below:
public class ExampleComponent
{
public ExampleComponent(IService service, string someValue)
{
}
}
I want to write a test where I supply a specific value for someValue but leave IService to be created automatically by AutoFixture.AutoMoq.
I know how to use Freeze on my IFixture to keep hold of a known value that will be injected into a component but I can't quite see how to supply a known value of my own.
Here is what I would ideally like to do:
[TestMethod]
public void Create_ExampleComponent_With_Known_SomeValue()
{
// create a fixture that supports automocking
IFixture fixture = new Fixture().Customize(new AutoMoqCustomization());
// supply a known value for someValue (this method doesn't exist)
string knownValue = fixture.Freeze<string>("My known value");
// create an ExampleComponent with my known value injected
// but without bothering about the IService parameter
ExampleComponent component = this.fixture.Create<ExampleComponent>();
// exercise component knowning it has my known value injected
...
}
I know I could do this by calling the constructor directly but this would no longer be anonymous object creation. Is there a way to use AutoFixture.AutoMock like this or do I need to incorporate a DI container into my tests to be able to do what I want?
EDIT:
I probably should have been less absract in my original question so here is my specific scenario.
I have an ICache interface which has generic TryRead<T> and Write<T> methods:
public interface ICache
{
bool TryRead<T>(string key, out T value);
void Write<T>(string key, T value);
// other methods not shown...
}
I'm implementing a CookieCache where ITypeConverter handles converting objects to and from strings and lifespan is used to set the expiry date of a cookie.
public class CookieCache : ICache
{
public CookieCache(ITypeConverter converter, TimeSpan lifespan)
{
// usual storing of parameters
}
public bool TryRead<T>(string key, out T result)
{
// read the cookie value as string and convert it to the target type
}
public void Write<T>(string key, T value)
{
// write the value to a cookie, converted to a string
// set the expiry date of the cookie using the lifespan
}
// other methods not shown...
}
So when writing a test for the expiry date of a cookie, I care about the lifespan but not so much about the converter.
So I'm sure people could work out the generalized implementation of Mark's suggestion but I thought I'd post it for comments.
I've created a generic ParameterNameSpecimenBuilder based on Mark's LifeSpanArg:
public class ParameterNameSpecimenBuilder<T> : ISpecimenBuilder
{
private readonly string name;
private readonly T value;
public ParameterNameSpecimenBuilder(string name, T value)
{
// we don't want a null name but we might want a null value
if (string.IsNullOrWhiteSpace(name))
{
throw new ArgumentNullException("name");
}
this.name = name;
this.value = value;
}
public object Create(object request, ISpecimenContext context)
{
var pi = request as ParameterInfo;
if (pi == null)
{
return new NoSpecimen(request);
}
if (pi.ParameterType != typeof(T) ||
!string.Equals(
pi.Name,
this.name,
StringComparison.CurrentCultureIgnoreCase))
{
return new NoSpecimen(request);
}
return this.value;
}
}
I've then defined a generic FreezeByName extension method on IFixture which sets the customization:
public static class FreezeByNameExtension
{
public static void FreezeByName<T>(this IFixture fixture, string name, T value)
{
fixture.Customizations.Add(new ParameterNameSpecimenBuilder<T>(name, value));
}
}
The following test will now pass:
[TestMethod]
public void FreezeByName_Sets_Value1_And_Value2_Independently()
{
//// Arrange
IFixture arrangeFixture = new Fixture();
string myValue1 = arrangeFixture.Create<string>();
string myValue2 = arrangeFixture.Create<string>();
IFixture sutFixture = new Fixture();
sutFixture.FreezeByName("value1", myValue1);
sutFixture.FreezeByName("value2", myValue2);
//// Act
TestClass<string> result = sutFixture.Create<TestClass<string>>();
//// Assert
Assert.AreEqual(myValue1, result.Value1);
Assert.AreEqual(myValue2, result.Value2);
}
public class TestClass<T>
{
public TestClass(T value1, T value2)
{
this.Value1 = value1;
this.Value2 = value2;
}
public T Value1 { get; private set; }
public T Value2 { get; private set; }
}
You have to replace:
string knownValue = fixture.Freeze<string>("My known value");
with:
fixture.Inject("My known value");
You can read more about Inject here.
Actually the Freeze extension method does:
var value = fixture.Create<T>();
fixture.Inject(value);
return value;
Which means that the overload you used in the test actually called Create<T> with a seed: My known value resulting in "My known value4d41f94f-1fc9-4115-9f29-e50bc2b4ba5e".
You could do something like this. Imagine that you want to assign a particular value to the TimeSpan argument called lifespan.
public class LifespanArg : ISpecimenBuilder
{
private readonly TimeSpan lifespan;
public LifespanArg(TimeSpan lifespan)
{
this.lifespan = lifespan;
}
public object Create(object request, ISpecimenContext context)
{
var pi = request as ParameterInfo;
if (pi == null)
return new NoSpecimen(request);
if (pi.ParameterType != typeof(TimeSpan) ||
pi.Name != "lifespan")
return new NoSpecimen(request);
return this.lifespan;
}
}
Imperatively, it could be used like this:
var fixture = new Fixture();
fixture.Customizations.Add(new LifespanArg(mySpecialLifespanValue));
var sut = fixture.Create<CookieCache>();
This approach can be generalized to some degree, but in the end, we're limited by the lack of a strongly typed way to extract a ParameterInfo from a particular constructor or method argument.
I fee like #Nick was almost there. When overriding the constructor argument, it needs to be for the given type and have it limited to that type only.
First we create a new ISpecimenBuilder that looks at the "Member.DeclaringType" to keep the correct scope.
public class ConstructorArgumentRelay<TTarget,TValueType> : ISpecimenBuilder
{
private readonly string _paramName;
private readonly TValueType _value;
public ConstructorArgumentRelay(string ParamName, TValueType value)
{
_paramName = ParamName;
_value = value;
}
public object Create(object request, ISpecimenContext context)
{
if (context == null)
throw new ArgumentNullException("context");
ParameterInfo parameter = request as ParameterInfo;
if (parameter == null)
return (object)new NoSpecimen(request);
if (parameter.Member.DeclaringType != typeof(TTarget) ||
parameter.Member.MemberType != MemberTypes.Constructor ||
parameter.ParameterType != typeof(TValueType) ||
parameter.Name != _paramName)
return (object)new NoSpecimen(request);
return _value;
}
}
Next we create an extension method to allow us to easily wire it up with AutoFixture.
public static class AutoFixtureExtensions
{
public static IFixture ConstructorArgumentFor<TTargetType, TValueType>(
this IFixture fixture,
string paramName,
TValueType value)
{
fixture.Customizations.Add(
new ConstructorArgumentRelay<TTargetType, TValueType>(paramName, value)
);
return fixture;
}
}
Now we create two similar classes to test with.
public class TestClass<T>
{
public TestClass(T value1, T value2)
{
Value1 = value1;
Value2 = value2;
}
public T Value1 { get; private set; }
public T Value2 { get; private set; }
}
public class SimilarClass<T>
{
public SimilarClass(T value1, T value2)
{
Value1 = value1;
Value2 = value2;
}
public T Value1 { get; private set; }
public T Value2 { get; private set; }
}
Finally we test it with an extension of the original test to see that it will not override similarly named and typed constructor arguments.
[TestFixture]
public class AutoFixtureTests
{
[Test]
public void Can_Create_Class_With_Specific_Parameter_Value()
{
string wanted = "This is the first string";
string wanted2 = "This is the second string";
Fixture fixture = new Fixture();
fixture.ConstructorArgumentFor<TestClass<string>, string>("value1", wanted)
.ConstructorArgumentFor<TestClass<string>, string>("value2", wanted2);
TestClass<string> t = fixture.Create<TestClass<string>>();
SimilarClass<string> s = fixture.Create<SimilarClass<string>>();
Assert.AreEqual(wanted,t.Value1);
Assert.AreEqual(wanted2,t.Value2);
Assert.AreNotEqual(wanted,s.Value1);
Assert.AreNotEqual(wanted2,s.Value2);
}
}
This seems to be the most comprehensive solution set here. So I'm going to add mine:
The first thing to create ISpecimenBuilder that can handle multiple constructor parameters
internal sealed class CustomConstructorBuilder<T> : ISpecimenBuilder
{
private readonly Dictionary<string, object> _ctorParameters = new Dictionary<string, object>();
public object Create(object request, ISpecimenContext context)
{
var type = typeof (T);
var sr = request as SeededRequest;
if (sr == null || !sr.Request.Equals(type))
{
return new NoSpecimen(request);
}
var ctor = type.GetConstructors(BindingFlags.Instance | BindingFlags.Public).FirstOrDefault();
if (ctor == null)
{
return new NoSpecimen(request);
}
var values = new List<object>();
foreach (var parameter in ctor.GetParameters())
{
if (_ctorParameters.ContainsKey(parameter.Name))
{
values.Add(_ctorParameters[parameter.Name]);
}
else
{
values.Add(context.Resolve(parameter.ParameterType));
}
}
return ctor.Invoke(BindingFlags.CreateInstance, null, values.ToArray(), CultureInfo.InvariantCulture);
}
public void Addparameter(string paramName, object val)
{
_ctorParameters.Add(paramName, val);
}
}
Then create extension method that simplifies usage of created builder
public static class AutoFixtureExtensions
{
public static void FreezeActivator<T>(this IFixture fixture, object parameters)
{
var builder = new CustomConstructorBuilder<T>();
foreach (var prop in parameters.GetType().GetProperties())
{
builder.Addparameter(prop.Name, prop.GetValue(parameters));
}
fixture.Customize<T>(x => builder);
}
}
And usage:
var f = new Fixture();
f.FreezeActivator<UserInfo>(new { privateId = 15, parentId = (long?)33 });
Good thread, I added another twist based on many of the aswers already posted:
Usage
Example:
var sut = new Fixture()
.For<AClass>()
.Set("value1").To(aInterface)
.Set("value2").ToEnumerableOf(22, 33)
.Create();
Test classes:
public class AClass
{
public AInterface Value1 { get; private set; }
public IEnumerable<int> Value2 { get; private set; }
public AClass(AInterface value1, IEnumerable<int> value2)
{
Value1 = value1;
Value2 = value2;
}
}
public interface AInterface
{
}
Full test
public class ATest
{
[Theory, AutoNSubstituteData]
public void ATestMethod(AInterface aInterface)
{
var sut = new Fixture()
.For<AClass>()
.Set("value1").To(aInterface)
.Set("value2").ToEnumerableOf(22, 33)
.Create();
Assert.True(ReferenceEquals(aInterface, sut.Value1));
Assert.Equal(2, sut.Value2.Count());
Assert.Equal(22, sut.Value2.ElementAt(0));
Assert.Equal(33, sut.Value2.ElementAt(1));
}
}
Infrastructure
Extension method:
public static class AutoFixtureExtensions
{
public static SetCreateProvider<TTypeToConstruct> For<TTypeToConstruct>(this IFixture fixture)
{
return new SetCreateProvider<TTypeToConstruct>(fixture);
}
}
Classes participating in the fluent style:
public class SetCreateProvider<TTypeToConstruct>
{
private readonly IFixture _fixture;
public SetCreateProvider(IFixture fixture)
{
_fixture = fixture;
}
public SetProvider<TTypeToConstruct> Set(string parameterName)
{
return new SetProvider<TTypeToConstruct>(this, parameterName);
}
public TTypeToConstruct Create()
{
var instance = _fixture.Create<TTypeToConstruct>();
return instance;
}
internal void AddConstructorParameter<TTypeOfParam>(ConstructorParameterRelay<TTypeToConstruct, TTypeOfParam> constructorParameter)
{
_fixture.Customizations.Add(constructorParameter);
}
}
public class SetProvider<TTypeToConstruct>
{
private readonly string _parameterName;
private readonly SetCreateProvider<TTypeToConstruct> _father;
public SetProvider(SetCreateProvider<TTypeToConstruct> father, string parameterName)
{
_parameterName = parameterName;
_father = father;
}
public SetCreateProvider<TTypeToConstruct> To<TTypeOfParam>(TTypeOfParam parameterValue)
{
var constructorParameter = new ConstructorParameterRelay<TTypeToConstruct, TTypeOfParam>(_parameterName, parameterValue);
_father.AddConstructorParameter(constructorParameter);
return _father;
}
public SetCreateProvider<TTypeToConstruct> ToEnumerableOf<TTypeOfParam>(params TTypeOfParam[] parametersValues)
{
IEnumerable<TTypeOfParam> actualParamValue = parametersValues;
var constructorParameter = new ConstructorParameterRelay<TTypeToConstruct, IEnumerable<TTypeOfParam>>(_parameterName, actualParamValue);
_father.AddConstructorParameter(constructorParameter);
return _father;
}
}
Constructor parameter relay from other answers:
public class ConstructorParameterRelay<TTypeToConstruct, TValueType> : ISpecimenBuilder
{
private readonly string _paramName;
private readonly TValueType _paramValue;
public ConstructorParameterRelay(string paramName, TValueType paramValue)
{
_paramName = paramName;
_paramValue = paramValue;
}
public object Create(object request, ISpecimenContext context)
{
if (context == null)
throw new ArgumentNullException(nameof(context));
ParameterInfo parameter = request as ParameterInfo;
if (parameter == null)
return new NoSpecimen();
if (parameter.Member.DeclaringType != typeof(TTypeToConstruct) ||
parameter.Member.MemberType != MemberTypes.Constructor ||
parameter.ParameterType != typeof(TValueType) ||
parameter.Name != _paramName)
return new NoSpecimen();
return _paramValue;
}
}

Linq .Except function "At least one object must implement IComparable."

Basically i have a container which implements IEquatable (sample shown below)
public class ContainerClass : IEquatable<ContainerClass>
{
public IEnumerable<CustomClass> CustomClass { get; set; }
public override bool Equals(object obj) { ... }
public bool Equals(ContainerClass other) { ... }
public static bool operator ==(ContainerClass cc1, ContainerClass cc2) { ... }
public static bool operator !=(ContainerClass cc1, ContainerClass cc2) { ... }
public override int GetHashCode() { ... }
}
and a CustomClass which also implements IEquatable
public class CustomClass : IEquatable<CustomClass>
{
public string stringone { get; set; }
public string stringtwo { get; set; }
public override bool Equals(object obj) { ... }
public bool Equals(CustomClass other) { ... }
public static bool operator ==(CustomClass cc1, CustomClass cc2) { ... }
public static bool operator !=(CustomClass cc1, CustomClass cc2) { ... }
public override int GetHashCode() { ... }
}
All this is working fine, so for example, the following works
IEnumerable<CustomClass> customclassone = new List<CustomClass>
{
new CustomClass { stringone = "hi" },
new CustomClass { stringone = "lo" }
};
IEnumerable<CustomClass> customclasstwo = new List<CustomClass>
{
new CustomClass { stringone = "hi" }
};
var diff = customclassone.Except(customclasstwo);
ContainerClass containerclassone = new ContainerClass
{
CustomClass = customclassone.AsEnumerable()
};
ContainerClass containerclasstwo = new ContainerClass
{
CustomClass = customclasstwo.AsEnumerable()
};
var diff2 = containerclassone.CustomClass.Except(customclasstwo.CustomClass);
After this code both diff and diff2 when enumerated contain the expected results. However, if i then try
IEnumerable<CustomClass> oldCustom = oldContainerClass.CustomClass;
IEnumerable<CustomClass> newcustom = newContainerClass.CustomClass;
var exceptlist = oldCustom.Except(newcustom);
When i try to enumerate the exceptlist i get "At least one object must implement IComparable.". The only difference between oldCustom and newCustom from the ones in the above working examples is the way they are populated. Anyone got any idea why this is happening?
I suspect that you attempted to sort these contents of the ContainerClass.CustomClass. Due to the deferred execution, you don't know there's a problem until you iterate through it and Except() is just a red herring. CustomClass doesn't implement the IComparable interface so the sort fails with that error. Your CustomClass should either implement the IComparable<T> interface or you should pass in an IComparer on your OrderBy().
e.g.,
oldContainerClass.CustomClass = someListOfSomeType.OrderBy(x => x.CustomClasss, myComparer)
.Select(x => x.CustomClass);
Though it would help to see what exactly you assigned to these properties so we can give you a more precise reason.

Duck Typing DynamicObject derivate

I wrote a class that allows a derivate to specify which of its properties can be lazy loaded. The code is:
public abstract class SelfHydratingEntity<T> : DynamicObject where T : class {
private readonly Dictionary<string, LoadableBackingField> fields;
public SelfHydratingEntity(T original) {
this.Original = original;
this.fields = this.GetBackingFields().ToDictionary(f => f.Name);
}
public T Original { get; private set; }
protected virtual IEnumerable<LoadableBackingField> GetBackingFields() {
yield break;
}
public override bool TryGetMember(GetMemberBinder binder, out object result) {
LoadableBackingField field;
if (this.fields.TryGetValue(binder.Name, out field)) {
result = field.GetValue();
return true;
} else {
var getter = PropertyAccessor.GetGetter(this.Original.GetType(), binder.Name);
result = getter(this.Original);
return true;
}
}
public override bool TrySetMember(SetMemberBinder binder, object value) {
LoadableBackingField field;
if (this.fields.TryGetValue(binder.Name, out field)) {
field.SetValue(value);
return true;
} else {
var setter = PropertyAccessor.GetSetter(this.Original.GetType(), binder.Name);
setter(this.Original, value);
return true;
}
}
}
And a derivate class:
public class SelfHydratingPerson : SelfHydratingEntity<IPerson> {
private readonly IDataRepository dataRepository;
public SelfHydratingDerivate(IDataRepository dataRepository, IPerson person)
: base(person) {
this.dataRepository = dataRepository
}
protected override IEnumerable<LoadableBackingField> GetBackingFields() {
yield return new LoadableBackingField("Address", () => this.dataRepository.Addresses.Get(this.Original.AddressID));
}
}
This works perfectly fine for getting and settings property values, but I get a either a RuntimeBinderException when I implicitly cast or an InvalidCastException with an explicitly cast SelfHydratingEntity back to T.
I know that you can override the DynamicObject.TryConvert method, but I'm wondering what exactly to put in this method. I've read a lot about duck typing today, and have tried out several libraries, but none of them work for this particular scenario. All of the libraries I've tried today generate a wrapper class using Reflection.Emit that makes calls to "get_" and "set_" methods and naturally use reflection to find these methods on the wrapped instance. SelfHydratingEntity of course doesn't have the "get_" and "set_" methods defined.
So, I'm wondering if this kind of thing is even possible. Is there any way to cast an instance of SelfHydratingEntity to T? I'm looking for something like this:
var original = GetOriginalPerson();
dynamic person = new SelfHydratingPerson(new DataRepository(), original);
string name = person.Name; // Gets property value on original
var address = person.Address; // Gets property value using LoadableBackingField registration
var iPerson = (IPerson)person;
- or -
var iPerson = DuckType.As<IPerson>(person);
Have you seen this Duck Typing project. It looks pretty good. I have just found a great example from Mauricio. It uses the Windsor Castle dynamic proxy to intercept method calls
Using the code from Mauricio the following code works like a dream
class Program
{
static void Main(string[] args)
{
dynamic person = new { Name = "Peter" };
var p = DuckType.As<IPerson>(person);
Console.WriteLine(p.Name);
}
}
public interface IPerson
{
string Name { get; set; }
}
public static class DuckType
{
private static readonly ProxyGenerator generator = new ProxyGenerator();
public static T As<T>(object o)
{
return generator.CreateInterfaceProxyWithoutTarget<T>(new DuckTypingInterceptor(o));
}
}
public class DuckTypingInterceptor : IInterceptor
{
private readonly object target;
public DuckTypingInterceptor(object target)
{
this.target = target;
}
public void Intercept(IInvocation invocation)
{
var methods = target.GetType().GetMethods()
.Where(m => m.Name == invocation.Method.Name)
.Where(m => m.GetParameters().Length == invocation.Arguments.Length)
.ToList();
if (methods.Count > 1)
throw new ApplicationException(string.Format("Ambiguous method match for '{0}'", invocation.Method.Name));
if (methods.Count == 0)
throw new ApplicationException(string.Format("No method '{0}' found", invocation.Method.Name));
var method = methods[0];
if (invocation.GenericArguments != null && invocation.GenericArguments.Length > 0)
method = method.MakeGenericMethod(invocation.GenericArguments);
invocation.ReturnValue = method.Invoke(target, invocation.Arguments);
}
}
impromptu-interface
https://github.com/ekonbenefits/impromptu-interface
Can static cast interfaces onto objects derived from DynamicObject.

Categories