Named lambda Func in .Net - c#

Example:
Dim test2 As Func(Of String, Integer) = Function(xuy As String) xuy.Length * 2
Debug.WriteLine(test2.Method.Name)
Result: _Lambda$__22-0
How to name lambda function?
I'm creating manager for code-inline functions and i need to name them somehow. I know you can add additional parameter to parameter list as name but this is crutch.
In python you can directly name lambda func:
myfunc_l = lambda: None
myfunc_l.__name__ = 'foo'
But in .Net this property is ReadOnly.

Lambda functions, both in C# and in VB.NET are compiled to methods that are put in a hidden class. What you are seeing is the name of the method. You can't change it, you can't assign it, you can't even be sure the name will be the same between compilations (the names are autogenerated based on the "order" of the lambda functions).
SharpLab example in VB.NET:
This:
Public Class C
Public Sub M()
Dim test2 As Func(Of String, Integer) = Function(xuy As String) xuy.Length * 2
End Sub
End Class
is compiled to something that if decompiled in C# is:
[Serializable]
[CompilerGenerated]
internal sealed class _Closure$__
{
public static readonly _Closure$__ $I;
public static Func<string, int> $I1-0;
static _Closure$__()
{
$I = new _Closure$__();
}
internal int _Lambda$__1-0(string xuy)
{
return checked(xuy.Length * 2);
}
}
public void M()
{
if (_Closure$__.$I1-0 != null)
{
Func<string, int> $I1- = _Closure$__.$I1-0;
}
else
{
_Closure$__.$I1-0 = new Func<string, int>(_Closure$__.$I._Lambda$__1-0);
}
}
And SharpLab example in C#:
This:
public class C {
public void M() {
Func<String, int> test2 = xuy => xuy.Length * 2;
}
}
is compiled to this:
public class C
{
[Serializable]
[CompilerGenerated]
private sealed class <>c
{
public static readonly <>c <>9 = new <>c();
public static Func<string, int> <>9__0_0;
internal int <M>b__0_0(string xuy)
{
return xuy.Length * 2;
}
}
public void M()
{
if (<>c.<>9__0_0 == null)
{
<>c.<>9__0_0 = new Func<string, int>(<>c.<>9.<M>b__0_0);
}
}
}
In both cases the hidden class introduced is quite easy to see.

Related

using a return view of two delegate function in another delegate function in same class in c#

I define 3 delegate functions in a class like
public func<datetime,string>A=>str1 { }
public func<datetime,string>B=>str2 { }
public func<datetime,string>C=>str3
{
return a+b;
}
how can I call a,b in c function, because return in function c is wrong?
See that your provided code does not compile in for many reasons. To call the A and B methods you must properly call it with passing the parameters such like:
public static Func<DateTime, string> A = (date) => { return date.ToString(); };
public static Func<DateTime, string> B = (date) => { return date.ToString(); };
public static Func<DateTime, string> C = (date) => { return A(date) + B(date); };
static void Main(string[] args)
{
var date = DateTime.Now;
Console.WriteLine(C(date));
}
See that I also added static because without that you get the error:
A field initializer cannot reference the non-static field, method, or property Program.A

Get lowered function name from lambda

Is it possible with Roslyn to get to the name of compiler generated lambda methods?
For example imagine the following class:
public sealed class Foo
{
public void Bar()
{
Func<int, int> func = x =>
{
if (x > 0)
{
return x;
}
return -x;
};
}
}
the following Code is generated:
public sealed class Foo
{
[CompilerGenerated]
[Serializable]
private sealed class <>c
{
public static readonly Foo.<>c <>9 = new Foo.<>c();
public static Func<int, int> <>9__0_0;
internal int <Bar>b__0_0(int x)
{
bool flag = x > 0;
int result;
if (flag)
{
result = x;
}
else
{
result = -x;
}
return result;
}
}
public void Bar()
{
Func<int, int> arg_20_0;
if ((arg_20_0 = Foo.<>c.<>9__0_0) == null)
{
Foo.<>c.<>9__0_0 = new Func<int, int>(Foo.<>c.<>9.<Bar>b__0_0);
}
}
}
Roslyn contains the code that is responsible for lowering the lambda into methods with different strategies depending on the circumstance (all here).
But is there any simple way to get the name Foo.<>c.<Bar>b__0_0 if I have the symbol or the SimpleLambdaExpressionSyntax node?
This is obviously implementation specific behavior, so this would require using the same roslyn version the compiler is using, but that'd be an acceptable.
It is not possible with the Roslyn APIs. You can use something like System.Reflection.Metadata to read the IL and find the names if you need to. However it should be said that the names the compiler generates are an implementation detail and they will change.

Assigning methods to object at run-time - Design Pattern

I have created an architecture in my C# code which does exactly what I want, but seems it would be very difficult to maintain in the long-run and am hoping there's a design pattern / better architecture I could be pointed towards.
I have created an object Test which, again, does exactly what I need perfectly which has the following structure:
class Test
{
public static Dictionary<string, Func<Test, object>> MethodDictionary;
public double Var1;
public double Var2;
private Lazy<object> _test1;
public object Test1 { get { return _test1.Value; } }
private Lazy<object> _test2;
public object Test2 { get { return _test2.Value; } }
public Test()
{
_test1 = new Lazy<object>(() => MethodDictionary["Test1"](this), true);
_test2 = new Lazy<object>(() => MethodDictionary["Test2"](this), true);
}
}
What this allows me to do is, at run-time to assign a dictionary of functions to my Test object and the 2 properties Test1 & Test2 will use the functions loaded into it to return values.
The implementation looking somewhat as follows:
class Program
{
static void Main(string[] args)
{
Dictionary<string, Func<Test, object>> MethodDictionary = new Dictionary<string,Func<Test,object>>();
MethodDictionary.Add("Test1", TestMethod1);
MethodDictionary.Add("Test2", TestMethod2);
Test.MethodDictionary = MethodDictionary;
var x = new Test() { Var1 = 20, Var2 = 30 };
Console.WriteLine(x.Test1.ToString());
Console.WriteLine(x.Test2.ToString());
Console.ReadKey();
}
private static object TestMethod1(Test t)
{ return t.Var1 + t.Var2; }
private static object TestMethod2(Test t)
{ return t.Var1 - t.Var2; }
}
And it works great and has proven very efficient for large sets of Test objects.
My challenge is that if I ever want to add in a new method to my Test class, I need to add in the:
private Lazy<object> _myNewMethod;
public object MyNewMethod { get { return _myNewMethod.Value; } }
Update the constuctor with the key to look for in the dictionary
And, although that is pretty simple, I'd love to have a 1-line add-in (maybe some form of custom object) or have the properties read directly form the dictionary without any need for defining them at all.
Any ideas? ANY help would be great!!!
Thanks!!!
One of the ways in which you could achieve your desired behavior, is to use something that resembles a miniature IoC framework for field injection, tuned to your specific use case.
To make things easier, allow less typing in your concrete classes and make things type-safe, we introduce the LazyField type:
public class LazyField<T>
{
private static readonly Lazy<T> Default = new Lazy<T>();
private readonly Lazy<T> _lazy;
public LazyField() : this(Default) { }
public LazyField(Lazy<T> lazy)
{
_lazy = lazy;
}
public override string ToString()
{
return _lazy.Value.ToString();
}
public static implicit operator T(LazyField<T> instance)
{
return instance._lazy.Value;
}
}
Furthermore, we define an abstract base class, that ensures that these fields will be created at construction time:
public abstract class AbstractLazyFieldHolder
{
protected AbstractLazyFieldHolder()
{
LazyFields.BuildUp(this); // ensures fields are populated.
}
}
Skipping for a moment how this is achieved (explained further below), this allows the following way of defining your Test class:
public class Test : AbstractLazyFieldHolder
{
public double Var1;
public double Var2;
public readonly LazyField<double> Test1;
public readonly LazyField<double> Test2;
}
Note that these fields are immutable, initialized in the constructor. Now, for your usage example, the below snippet shows the "new way" of doing this:
LazyFields.Configure<Test>()
// We can use a type-safe lambda
.SetProvider(x => x.Test1, inst => inst.Var1 + inst.Var2)
// Or the field name.
.SetProvider("Test2", TestMethod2);
var x = new Test() { Var1 = 20, Var2 = 30 };
Console.WriteLine(x.Test1);
double test2Val = x.Test2; // type-safe conversion
Console.WriteLine(test2Val);
// Output:
// 50
// -10
The class below provides the services that support the configuration and injection of these field value.
public static class LazyFields
{
private static readonly ConcurrentDictionary<Type, IBuildUp> _registry = new ConcurrentDictionary<Type,IBuildUp>();
public interface IConfigureType<T> where T : class
{
IConfigureType<T> SetProvider<FT>(string fieldName, Func<T, FT> provider);
IConfigureType<T> SetProvider<F, FT>(Expression<Func<T, F>> fieldExpression, Func<T, FT> provider) where F : LazyField<FT>;
}
public static void BuildUp(object instance)
{
System.Diagnostics.Debug.Assert(instance != null);
var builder = _registry.GetOrAdd(instance.GetType(), BuildInitializer);
builder.BuildUp(instance);
}
public static IConfigureType<T> Configure<T>() where T : class
{
return (IConfigureType<T>)_registry.GetOrAdd(typeof(T), BuildInitializer);
}
private interface IBuildUp
{
void BuildUp(object instance);
}
private class TypeCfg<T> : IBuildUp, IConfigureType<T> where T : class
{
private readonly List<FieldInfo> _fields;
private readonly Dictionary<string, Action<T>> _initializers;
public TypeCfg()
{
_fields = typeof(T)
.GetFields(BindingFlags.Instance | BindingFlags.Public)
.Where(IsLazyField)
.ToList();
_initializers = _fields.ToDictionary(x => x.Name, BuildDefaultSetter);
}
public IConfigureType<T> SetProvider<FT>(string fieldName, Func<T,FT> provider)
{
var pi = _fields.First(x => x.Name == fieldName);
_initializers[fieldName] = BuildSetter<FT>(pi, provider);
return this;
}
public IConfigureType<T> SetProvider<F,FT>(Expression<Func<T,F>> fieldExpression, Func<T,FT> provider)
where F : LazyField<FT>
{
return SetProvider((fieldExpression.Body as MemberExpression).Member.Name, provider);
}
public void BuildUp(object instance)
{
var typedInstance = (T)instance;
foreach (var initializer in _initializers.Values)
initializer(typedInstance);
}
private bool IsLazyField(FieldInfo fi)
{
return fi.FieldType.IsGenericType && fi.FieldType.GetGenericTypeDefinition() == typeof(LazyField<>);
}
private Action<T> BuildDefaultSetter(FieldInfo fi)
{
var itemType = fi.FieldType.GetGenericArguments()[0];
var defValue = Activator.CreateInstance(typeof(LazyField<>).MakeGenericType(itemType));
return (inst) => fi.SetValue(inst, defValue);
}
private Action<T> BuildSetter<FT>(FieldInfo fi, Func<T, FT> provider)
{
return (inst) => fi.SetValue(inst, new LazyField<FT>(new Lazy<FT>(() => provider(inst))));
}
}
private static IBuildUp BuildInitializer(Type targetType)
{
return (IBuildUp)Activator.CreateInstance(typeof(TypeCfg<>).MakeGenericType(targetType));
}
}
Look at library https://github.com/ekonbenefits/impromptu-interface.
With it and using DynamicObject i wrote sample code that shows how to simplify adding new methods:
public class Methods
{
public Methods()
{
MethodDictionary = new Dictionary<string, Func<ITest, object>>();
LazyObjects = new Dictionary<string, Lazy<object>>();
}
public Dictionary<string, Func<ITest, object>> MethodDictionary { get; private set; }
public Dictionary<string, Lazy<object>> LazyObjects { get; private set; }
}
public class Proxy : DynamicObject
{
Methods _methods;
public Proxy()
{
_methods = new Methods();
}
public override bool TryGetMember(GetMemberBinder binder, out object result)
{
result = _methods.LazyObjects[binder.Name].Value;
return true;
}
public override bool TrySetMember(SetMemberBinder binder, object value)
{
_methods.MethodDictionary[binder.Name] = (Func<ITest, object>)value;
_methods.LazyObjects[binder.Name] = new Lazy<object>(() => _methods.MethodDictionary[binder.Name](this.ActLike<ITest>()), true);
return true;
}
}
//now you can add new methods by add single method to interface
public interface ITest
{
object Test1 { get; set; }
object Test2 { get; set; }
}
class Program
{
static void Main(string[] args)
{
var x = new Proxy().ActLike<ITest>();
x.Test1 = new Func<ITest, object>((y) => "Test1");
x.Test2 = new Func<ITest, object>((y) => "Test2");
Console.WriteLine(x.Test1);
Console.WriteLine(x.Test2);
}
}
I don't know what you are trying to do, but I think you can use a simpler approach like this:
class Test
{
public static Dictionary<string, Func<Test, object>> MethodDictionary;
public double Var1;
public double Var2;
}
Calling the function is simple:
static void Main(string[] args)
{
Dictionary<string, Func<Test, object>> MethodDictionary = new Dictionary<string,Func<Test,object>>();
MethodDictionary.Add("Test1", TestMethod1);
MethodDictionary.Add("Test2", TestMethod2);
Test.MethodDictionary = MethodDictionary;
var x = new Test() { Var1 = 20, Var2 = 30 };
Console.WriteLine(Test.MethodDictionary["Test1"](x).ToString());
Console.WriteLine(Test.MethodDictionary["Test2"](x).ToString());
Console.ReadKey();
}

Using a delegate for value transformation

I want to develop a basic class that holds a string value and I want to pass a transformation rule how this value should be stored as an int value.
When I'm not completely wrong this should be possible using some kind of delegate. Unfortunately I have no idea how to begin and what to search the internet for.
Here a simple example:
class MyClass
{
public string InputString { get; private set; }
public int OutputValue { get; set; }
public MyClass(string inputString)
{
this.InputString = inputString;
}
//I suspect that I need a method here taking some kind of delegate?
}
MyClass mC = new MyClass("abcd");
//here I now want to pass something to mC saying that each character should
// be transformed to its ascii value and be added to a total value
//or another object should transform abcd interpreting it hexadecimal
You want something like a Func<string, int>:
Func<string, int> converter = (theString) => int.Parse(theString);
Then have your type take a Func<string, int>, possibly in the constructor, and call it when you need to convert:
converter(InputString);
The implementation of this delegate can be whatever you like, so long as it takes a string and returns an int.
A possible way (not demonstrating specifically the ASCII value of each character):
class MyClass
{
private Func<string, int> _valueConverter;
public string InputString { get; private set; }
public int OutputValue { get { return _valueConverter(InputString); } }
public MyClass(string inputString, Func<string, int> valueConverter)
{
_valueConverter = valueConverter;
this.InputString = inputString;
}
}
// As a lambda
MyClass mC = new MyClass("2", input => int.Parse(input));
You can supply something to fulfil the Func parameter as either a lambda expression as I show above, or a method group:
private static int AMethodThatMatchesTheFuncSignature(string value)
{
return 42;
}
var mC = new MyClass("2", AMethodThatMatchesTheFuncSignature);
If you have never seen it before, Func<T1, T2> is just a pre-made delegate provided by the framework (there are loads of Func and Action types defined for no arguments up to many arguments. Action all return void and Func all return the final defined type TResult).
You may add a Transform method that takes a delegate and apply on InputString:
class MyClass
{
public string InputString { get; private set; }
public int OutputValue { get; set; }
public MyClass(string inputString)
{
this.InputString = inputString;
}
public void Transform(Func<string, int> f){
OutputValue = f(InputString);
}
}
MyClass mC = new MyClass("abcd");
mC.Transform(c=> c.Sum(c=> ((int)c));//OutputValue is changed
mC.Transform(c=> (int)c.Average(c=> ((int)c));//OutputValue is changed
You can also use the design pattern "strategy" to "delegate" the implementation of an algorithm.
(Without error handling)
interface IConverter
{
int Convert(string value);
}
class ASCIConverter : IConverter
{
public int Convert(string value)
{
//conversion implementation here
}
}
class MyClass
{
string Input;
IConverter Converter;
public MyClass(string input, IConverter converter)
{
this.Input = input;
this.Converter = converter;
}
public int GetConvertedValue()
{
return this.Converter.Convert(this.Input);
}
}
[Edit]
From calling code:
MyClass myClass = new MyClass("abcd",new ASCIConverter());
int intRepresentation = myClass.GetConvertedValue();

Simulate variadic templates in C#

Is there a well-known way for simulating the variadic template feature in C#?
For instance, I'd like to write a method that takes a lambda with an arbitrary set of parameters. Here is in pseudo code what I'd like to have:
void MyMethod<T1,T2,...,TReturn>(Fun<T1,T2, ..., TReturn> f)
{
}
C# generics are not the same as C++ templates. C++ templates are expanded compiletime and can be used recursively with variadic template arguments. The C++ template expansion is actually Turing Complete, so there is no theoretically limit to what can be done in templates.
C# generics are compiled directly, with an empty "placeholder" for the type that will be used at runtime.
To accept a lambda taking any number of arguments you would either have to generate a lot of overloads (through a code generator) or accept a LambdaExpression.
There is no varadic support for generic type arguments (on either methods or types). You will have to add lots of overloads.
varadic support is only available for arrays, via params, i.e.
void Foo(string key, params int[] values) {...}
Improtantly - how would you even refer to those various T* to write a generic method? Perhaps your best option is to take a Type[] or similar (depending on the context).
I know this is an old question, but if all you want to do is something simple like print those types out, you can do this very easily without Tuple or anything extra using 'dynamic':
private static void PrintTypes(params dynamic[] args)
{
foreach (var arg in args)
{
Console.WriteLine(arg.GetType());
}
}
static void Main(string[] args)
{
PrintTypes(1,1.0,"hello");
Console.ReadKey();
}
Will print "System.Int32" , "System.Double", "System.String"
If you want to perform some action on these things, as far as I know you have two choices. One is to trust the programmer that these types can do a compatible action, for example if you wanted to make a method to Sum any number of parameters. You could write a method like the following saying how you want to receive the result and the only prerequisite I guess would be that the + operation works between these types:
private static void AddToFirst<T>(ref T first, params dynamic[] args)
{
foreach (var arg in args)
{
first += arg;
}
}
static void Main(string[] args)
{
int x = 0;
AddToFirst(ref x,1,1.5,2.0,3.5,2);
Console.WriteLine(x);
double y = 0;
AddToFirst(ref y, 1, 1.5, 2.0, 3.5, 2);
Console.WriteLine(y);
Console.ReadKey();
}
With this, the output for the first line would be "9" because adding to an int, and the second line would be "10" because the .5s didn't get rounded, adding as a double. The problem with this code is if you pass some incompatible type in the list, it will have an error because the types can't get added together, and you won't see that error at compile time, only at runtime.
So, depending on your use case there might be another option which is why I said there were two choices at first. Assuming you know the choices for the possible types, you could make an interface or abstract class and make all of those types implement the interface. For example, the following. Sorry this is a bit crazy. And it can probably be simplfied.
public interface Applyable<T>
{
void Apply(T input);
T GetValue();
}
public abstract class Convertable<T>
{
public dynamic value { get; set; }
public Convertable(dynamic value)
{
this.value = value;
}
public abstract T GetConvertedValue();
}
public class IntableInt : Convertable<int>, Applyable<int>
{
public IntableInt(int value) : base(value) {}
public override int GetConvertedValue()
{
return value;
}
public void Apply(int input)
{
value += input;
}
public int GetValue()
{
return value;
}
}
public class IntableDouble : Convertable<int>
{
public IntableDouble(double value) : base(value) {}
public override int GetConvertedValue()
{
return (int) value;
}
}
public class IntableString : Convertable<int>
{
public IntableString(string value) : base(value) {}
public override int GetConvertedValue()
{
// If it can't be parsed return zero
int result;
return int.TryParse(value, out result) ? result : 0;
}
}
private static void ApplyToFirst<TResult>(ref Applyable<TResult> first, params Convertable<TResult>[] args)
{
foreach (var arg in args)
{
first.Apply(arg.GetConvertedValue());
}
}
static void Main(string[] args)
{
Applyable<int> result = new IntableInt(0);
IntableInt myInt = new IntableInt(1);
IntableDouble myDouble1 = new IntableDouble(1.5);
IntableDouble myDouble2 = new IntableDouble(2.0);
IntableDouble myDouble3 = new IntableDouble(3.5);
IntableString myString = new IntableString("2");
ApplyToFirst(ref result, myInt, myDouble1, myDouble2, myDouble3, myString);
Console.WriteLine(result.GetValue());
Console.ReadKey();
}
Will output "9" the same as the original Int code, except the only values you can actually pass in as parameters are things that you actually have defined and you know will work and not cause any errors. Of course, you would have to make new classes i.e. DoubleableInt , DoubleableString, etc.. in order to re-create the 2nd result of 10. But this is just an example, so you wouldn't even be trying to add things at all depending on what code you are writing and you would just start out with the implementation that served you the best.
Hopefully someone can improve on what I wrote here or use it to see how this can be done in C#.
Another alternative besides those mentioned above is to use Tuple<,> and reflection, for example:
class PrintVariadic<T>
{
public T Value { get; set; }
public void Print()
{
InnerPrint(Value);
}
static void InnerPrint<Tn>(Tn t)
{
var type = t.GetType();
if (type.IsGenericType && type.GetGenericTypeDefinition() == typeof(Tuple<,>))
{
var i1 = type.GetProperty("Item1").GetValue(t, new object[]{});
var i2 = type.GetProperty("Item2").GetValue(t, new object[]{ });
InnerPrint(i1);
InnerPrint(i2);
return;
}
Console.WriteLine(t.GetType());
}
}
class Program
{
static void Main(string[] args)
{
var v = new PrintVariadic<Tuple<
int, Tuple<
string, Tuple<
double,
long>>>>();
v.Value = Tuple.Create(
1, Tuple.Create(
"s", Tuple.Create(
4.0,
4L)));
v.Print();
Console.ReadKey();
}
}
I don't necessarily know if there's a name for this pattern, but I arrived at the following formulation for a recursive generic interface that allows an unlimited amount of values to be passed in, with the returned type retaining type information for all passed values.
public interface ITraversalRoot<TRoot>
{
ITraversalSpecification<TRoot> Specify();
}
public interface ITraverser<TRoot, TCurrent>: ITraversalRoot<TRoot>
{
IDerivedTraverser<TRoot, TInclude, TCurrent, ITraverser<TRoot, TCurrent>> AndInclude<TInclude>(Expression<Func<TCurrent, TInclude>> path);
}
public interface IDerivedTraverser<TRoot, TDerived, TParent, out TParentTraverser> : ITraverser<TRoot, TParent>
{
IDerivedTraverser<TRoot, TInclude, TDerived, IDerivedTraverser<TRoot, TDerived, TParent, TParentTraverser>> FromWhichInclude<TInclude>(Expression<Func<TDerived, TInclude>> path);
TParentTraverser ThenBackToParent();
}
There's no casting or "cheating" of the type system involved here: you can keep stacking on more values and the inferred return type keeps storing more and more information. Here is what the usage looks like:
var spec = Traversal
.StartFrom<VirtualMachine>() // ITraverser<VirtualMachine, VirtualMachine>
.AndInclude(vm => vm.EnvironmentBrowser) // IDerivedTraverser<VirtualMachine, EnvironmentBrowser, VirtualMachine, ITraverser<VirtualMachine, VirtualMachine>>
.AndInclude(vm => vm.Datastore) // IDerivedTraverser<VirtualMachine, Datastore, VirtualMachine, ITraverser<VirtualMachine, VirtualMachine>>
.FromWhichInclude(ds => ds.Browser) // IDerivedTraverser<VirtualMachine, HostDatastoreBrowser, Datastore, IDerivedTraverser<VirtualMachine, Datastore, VirtualMachine, ITraverser<VirtualMachine, VirtualMachine>>>
.FromWhichInclude(br => br.Mountpoints) // IDerivedTraverser<VirtualMachine, Mountpoint, HostDatastoreBrowser, IDerivedTraverser<VirtualMachine, HostDatastoreBrowser, Datastore, IDerivedTraverser<VirtualMachine, Datastore, VirtualMachine, ITraverser<VirtualMachine, VirtualMachine>>>>
.Specify(); // ITraversalSpecification<VirtualMachine>
As you can see the type signature becomes basically unreadable near after a few chained calls, but this is fine so long as type inference works and suggests the right type to the user.
In my example I am dealing with Funcs arguments, but you could presumably adapt this code to deal with arguments of arbitrary type.
For a simulation you can say:
void MyMethod<TSource, TResult>(Func<TSource, TResult> f) where TSource : Tparams {
where Tparams to be a variadic arguments implementation class. However, the framework does not provide an out-of-box stuff to do that, Action, Func, Tuple, etc., are all have limited length of their signatures. The only thing I can think of is to apply the CRTP .. in a way I've not find somebody blogged. Here's my implementation:
*: Thank #SLaks for mentioning Tuple<T1, ..., T7, TRest> also works in a recursive way. I noticed it's recursive on the constructor and the factory method instead of its class definition; and do a runtime type checking of the last argument of type TRest is required to be a ITupleInternal; and this works a bit differently.
Code
using System;
namespace VariadicGenerics {
public interface INode {
INode Next {
get;
}
}
public interface INode<R>:INode {
R Value {
get; set;
}
}
public abstract class Tparams {
public static C<TValue> V<TValue>(TValue x) {
return new T<TValue>(x);
}
}
public class T<P>:C<P> {
public T(P x) : base(x) {
}
}
public abstract class C<R>:Tparams, INode<R> {
public class T<P>:C<T<P>>, INode<P> {
public T(C<R> node, P x) {
if(node is R) {
Next=(R)(node as object);
}
else {
Next=(node as INode<R>).Value;
}
Value=x;
}
public T() {
if(Extensions.TypeIs(typeof(R), typeof(C<>.T<>))) {
Next=(R)Activator.CreateInstance(typeof(R));
}
}
public R Next {
private set;
get;
}
public P Value {
get; set;
}
INode INode.Next {
get {
return this.Next as INode;
}
}
}
public new T<TValue> V<TValue>(TValue x) {
return new T<TValue>(this, x);
}
public int GetLength() {
return m_expandedArguments.Length;
}
public C(R x) {
(this as INode<R>).Value=x;
}
C() {
}
static C() {
m_expandedArguments=Extensions.GetExpandedGenericArguments(typeof(R));
}
// demonstration of non-recursive traversal
public INode this[int index] {
get {
var count = m_expandedArguments.Length;
for(INode node = this; null!=node; node=node.Next) {
if(--count==index) {
return node;
}
}
throw new ArgumentOutOfRangeException("index");
}
}
R INode<R>.Value {
get; set;
}
INode INode.Next {
get {
return null;
}
}
static readonly Type[] m_expandedArguments;
}
}
Note the type parameter for the inherited class C<> in the declaration of
public class T<P>:C<T<P>>, INode<P> {
is T<P>, and the class T<P> is nested so that you can do some crazy things such as:
Test
[Microsoft.VisualStudio.TestTools.UnitTesting.TestClass]
public class TestClass {
void MyMethod<TSource, TResult>(Func<TSource, TResult> f) where TSource : Tparams {
T<byte>.T<char>.T<uint>.T<long>.
T<byte>.T<char>.T<long>.T<uint>.
T<byte>.T<long>.T<char>.T<uint>.
T<long>.T<byte>.T<char>.T<uint>.
T<long>.T<byte>.T<uint>.T<char>.
T<byte>.T<long>.T<uint>.T<char>.
T<byte>.T<uint>.T<long>.T<char>.
T<byte>.T<uint>.T<char>.T<long>.
T<uint>.T<byte>.T<char>.T<long>.
T<uint>.T<byte>.T<long>.T<char>.
T<uint>.T<long>.T<byte>.T<char>.
T<long>.T<uint>.T<byte>.T<char>.
T<long>.T<uint>.T<char>.T<byte>.
T<uint>.T<long>.T<char>.T<byte>.
T<uint>.T<char>.T<long>.T<byte>.
T<uint>.T<char>.T<byte>.T<long>.
T<char>.T<uint>.T<byte>.T<long>.
T<char>.T<uint>.T<long>.T<byte>.
T<char>.T<long>.T<uint>.T<byte>.
T<long>.T<char>.T<uint>.T<byte>.
T<long>.T<char>.T<byte>.T<uint>.
T<char>.T<long>.T<byte>.T<uint>.
T<char>.T<byte>.T<long>.T<uint>.
T<char>.T<byte>.T<uint>.T<long>
crazy = Tparams
// trying to change any value to not match the
// declaring type makes the compilation fail
.V((byte)1).V('2').V(4u).V(8L)
.V((byte)1).V('2').V(8L).V(4u)
.V((byte)1).V(8L).V('2').V(4u)
.V(8L).V((byte)1).V('2').V(4u)
.V(8L).V((byte)1).V(4u).V('2')
.V((byte)1).V(8L).V(4u).V('2')
.V((byte)1).V(4u).V(8L).V('2')
.V((byte)1).V(4u).V('2').V(8L)
.V(4u).V((byte)1).V('2').V(8L)
.V(4u).V((byte)1).V(8L).V('2')
.V(4u).V(8L).V((byte)1).V('2')
.V(8L).V(4u).V((byte)1).V('2')
.V(8L).V(4u).V('9').V((byte)1)
.V(4u).V(8L).V('2').V((byte)1)
.V(4u).V('2').V(8L).V((byte)1)
.V(4u).V('2').V((byte)1).V(8L)
.V('2').V(4u).V((byte)1).V(8L)
.V('2').V(4u).V(8L).V((byte)1)
.V('2').V(8L).V(4u).V((byte)1)
.V(8L).V('2').V(4u).V((byte)1)
.V(8L).V('2').V((byte)1).V(4u)
.V('2').V(8L).V((byte)1).V(4u)
.V('2').V((byte)1).V(8L).V(4u)
.V('7').V((byte)1).V(4u).V(8L);
var args = crazy as TSource;
if(null!=args) {
f(args);
}
}
[TestMethod]
public void TestMethod() {
Func<
T<byte>.T<char>.T<uint>.T<long>.
T<byte>.T<char>.T<long>.T<uint>.
T<byte>.T<long>.T<char>.T<uint>.
T<long>.T<byte>.T<char>.T<uint>.
T<long>.T<byte>.T<uint>.T<char>.
T<byte>.T<long>.T<uint>.T<char>.
T<byte>.T<uint>.T<long>.T<char>.
T<byte>.T<uint>.T<char>.T<long>.
T<uint>.T<byte>.T<char>.T<long>.
T<uint>.T<byte>.T<long>.T<char>.
T<uint>.T<long>.T<byte>.T<char>.
T<long>.T<uint>.T<byte>.T<char>.
T<long>.T<uint>.T<char>.T<byte>.
T<uint>.T<long>.T<char>.T<byte>.
T<uint>.T<char>.T<long>.T<byte>.
T<uint>.T<char>.T<byte>.T<long>.
T<char>.T<uint>.T<byte>.T<long>.
T<char>.T<uint>.T<long>.T<byte>.
T<char>.T<long>.T<uint>.T<byte>.
T<long>.T<char>.T<uint>.T<byte>.
T<long>.T<char>.T<byte>.T<uint>.
T<char>.T<long>.T<byte>.T<uint>.
T<char>.T<byte>.T<long>.T<uint>.
T<char>.T<byte>.T<uint>.T<long>, String>
f = args => {
Debug.WriteLine(String.Format("Length={0}", args.GetLength()));
// print fourth value from the last
Debug.WriteLine(String.Format("value={0}", args.Next.Next.Next.Value));
args.Next.Next.Next.Value='x';
Debug.WriteLine(String.Format("value={0}", args.Next.Next.Next.Value));
return "test";
};
MyMethod(f);
}
}
Another thing to note is we have two classes named T, the non-nested T:
public class T<P>:C<P> {
is just for the consistency of usage, and I made class C abstract to not directly being newed.
The Code part above needs to expand ther generic argument to calculate about their length, here are two extension methods it used:
Code(extensions)
using System.Diagnostics;
using System;
namespace VariadicGenerics {
[DebuggerStepThrough]
public static class Extensions {
public static readonly Type VariadicType = typeof(C<>.T<>);
public static bool TypeIs(this Type x, Type d) {
if(null==d) {
return false;
}
for(var c = x; null!=c; c=c.BaseType) {
var a = c.GetInterfaces();
for(var i = a.Length; i-->=0;) {
var t = i<0 ? c : a[i];
if(t==d||t.IsGenericType&&t.GetGenericTypeDefinition()==d) {
return true;
}
}
}
return false;
}
public static Type[] GetExpandedGenericArguments(this Type t) {
var expanded = new Type[] { };
for(var skip = 1; t.TypeIs(VariadicType) ? true : skip-->0;) {
var args = skip>0 ? t.GetGenericArguments() : new[] { t };
if(args.Length>0) {
var length = args.Length-skip;
var temp = new Type[length+expanded.Length];
Array.Copy(args, skip, temp, 0, length);
Array.Copy(expanded, 0, temp, length, expanded.Length);
expanded=temp;
t=args[0];
}
}
return expanded;
}
}
}
For this implementation, I choosed not to break the compile-time type checking, so we do not have a constructor or a factory with the signature like params object[] to provide values; instead, use a fluent pattern of method V for mass object instantiation to keep type can be statically type checked as much as possible.

Categories