How to a specify a list/enumerable's length/size using an attribute on a property passed into a test using Autofixture's declarative parameter style?
I want to be able to make this test pass without moving parameters into the test body.
[Theory, AutoData]
public void CollectionSizeTest(
List<int> defaultSize,
List<int> customSize,
List<int> customSize2,
IEnumerable<string> empty
)
{
Assert.Equal(3, defaultSize.Count);
Assert.Equal(5, customSize.Count);
Assert.Equal(6, customSize2.Count);
Assert.Empty(empty);
}
You can create a custom attribute for this, such as this CollectionSizeAttribute:
[Theory, AutoData]
public void CollectionSizeTest(
List<int> defaultSize,
[CollectionSize(5)] List<int> customSize,
[CollectionSize(6)] List<int> customSize2,
[CollectionSize(0)] IEnumerable<string> empty,
List<string> defaultSize2
)
{
Assert.Equal(3, defaultSize.Count);
Assert.Equal(5, customSize.Count);
Assert.Equal(6, customSize2.Count);
Assert.Empty(empty);
Assert.Equal(3, defaultSize2.Count);
}
public class CollectionSizeAttribute : CustomizeAttribute
{
private readonly int _size;
public CollectionSizeAttribute(int size)
{
_size = size;
}
public override ICustomization GetCustomization(ParameterInfo parameter)
{
if (parameter == null) throw new ArgumentNullException(nameof(parameter));
var objectType = parameter.ParameterType.GetGenericArguments()[0];
var isTypeCompatible =
parameter.ParameterType.IsGenericType
&& parameter.ParameterType.GetGenericTypeDefinition().MakeGenericType(objectType).IsAssignableFrom(typeof(List<>).MakeGenericType(objectType))
;
if (!isTypeCompatible)
{
throw new InvalidOperationException($"{nameof(CollectionSizeAttribute)} specified for type incompatible with List: {parameter.ParameterType} {parameter.Name}");
}
var customizationType = typeof(CollectionSizeCustomization<>).MakeGenericType(objectType);
return (ICustomization) Activator.CreateInstance(customizationType, parameter, _size);
}
public class CollectionSizeCustomization<T> : ICustomization
{
private readonly ParameterInfo _parameter;
private readonly int _repeatCount;
public CollectionSizeCustomization(ParameterInfo parameter, int repeatCount)
{
_parameter = parameter;
_repeatCount = repeatCount;
}
public void Customize(IFixture fixture)
{
fixture.Customizations.Add(new FilteringSpecimenBuilder(
new FixedBuilder(fixture.CreateMany<T>(_repeatCount).ToList()),
new EqualRequestSpecification(_parameter)
));
}
}
}
This causes the parameter to be created as a list with the given size by calling fixture.CreateMany<T>(_repeatCount).
Related
I am making a command handler in .NET CORE.
I have a base abstract class:
public abstract class ConsoleCommandBase
{
public string CommandName;
public bool FailsOnBadArgument;
public abstract void Execute(string[] args);
}
And a few classes that inherit from it so
public class ConsoleCommand<T> : ConsoleCommandBase
{
private Action<T> Action;
public ConsoleCommand(string commandName,Action<T> action)
{
CommandName = commandName;
Action = action;
}
public override void Execute(string[] args)
{
//Expected Arguments are 1 so check if args has at least a length of 1
if (args.Length < 1)
{
Console.WriteLine($"{CommandName} could not be executed too few arguments were present.");
return;
}
Action?.Invoke(GenericConversion<T>.GetValueFromString(args[0]));
}
}
I have ConsoleCommand<T..Tn> but all of them are structured the same way.
The generic conversion class is just a simple try catch that attempts to convert the
string value to whatever T is with (T) Convert.ChangeType(var,typeof(T))
Now the problem:
All the commands are stored in a List<ConsoleCommandBase>
and then are converted to whatever type they where when added with if statements so:
if (consoleCommand is ConsoleCommand<string> command1)
{
command1.Execute(args);
return true;
}
The problem is that this does not scale very well for example if I use four types so [int,bool,string,float]
for my ConsoleCommand<T> are only 4 if statements but for ConsoleCommand<T,T1,T2,T3> are already over 300 if statements and it grows very rapidly.
I know there must be an easier way of doing this, because right now I can use a code generator and generate the if statements in an instant but having a 5000 lines code file does not seam to be the proper way of doing things.
You can put a lot more functionality into your base class:
public abstract class ConsoleCommandBase
{
public string CommandName;
public bool FailsOnBadArgument;
protected abstract Type[] Types { get; }
public int TypeCount => Types.Length;
protected ConsoleCommandBase(string commandName) => CommandName = commandName;
public void Execute(string[] args)
{
if (args.Length != Types.Length)
{
Console.WriteLine($"{CommandName} could not be executed too few arguments were present.");
return;
}
var objects = args.Zip(Types).Select((value, type) => Convert(value, type)).ToArray();
Execute(objects);
}
private object Convert(string value, Type conversionType)
{
//Put your conversion code here to convert the string value into the selected type
}
protected abstract void Execute(object[] objects);
}
This leaves a lot less repetition in your child classes, but it also exposes the number of types in the child class. Executing from your List<ConsoleCommandBase> becomes:
public void Execute(string[] args)
{
List<ConsoleCommandBase> list = GetYourList();
var executer = list.First(c => c.TypeCount == args.Length);
executer.Execute(args);
}
And here is what your child classes might look like:
public class ConsoleCommand<T> : ConsoleCommandBase
{
private readonly Action<T> _action;
public ConsoleCommand(string commandName, Action<T> action) : base(commandName)
{
_action = action;
}
protected override Type[] Types { get; } = new[] { typeof(T) };
protected override void Execute(object[] objects)
{
_action?.Invoke((T)objects[0]);
}
}
public class ConsoleCommand<T1,T2> : ConsoleCommandBase
{
private readonly Action<T1,T2> _action;
public ConsoleCommand(string commandName, Action<T1,T2> action) : base(commandName)
{
_action = action;
}
protected override Type[] Types { get; } = new[] { typeof(T1),typeof(T2) };
protected override void Execute(object[] objects)
{
_action?.Invoke((T1)objects[0],(T2)objects[1]);
}
}
I use FluentValidation and PostSharp in my business layer.
My database has an Admin table, and the UserName column in this table is unique.
I want to check the uniqueness with an "Aspect".
My codes are as follows.
AdminValidator
public class AdminValidator : AbstractValidator<Admin>
{
public AdminValidator(IEnumerable<Admin> admins)
{
RuleFor(x => x.Fullname).MaximumLength(50);
RuleFor(x => x.Username).Matches(#"^\S{3,15}$").IsUnique(admins);
RuleFor(x => x.Password).Matches(#"^\S{5,20}$");
}
}
IsUnique extension method
public static class Extensions
{
public static IRuleBuilderOptions<TItem, TProperty> IsUnique<TItem, TProperty>(
this IRuleBuilder<TItem, TProperty> ruleBuilder, IEnumerable<TItem> items)
where TItem : class
{
return ruleBuilder.SetValidator(new UniqueValidator<TItem>(items));
}
}
public class UniqueValidator<T> : PropertyValidator
where T : class
{
private readonly IEnumerable<T> _items;
public UniqueValidator(IEnumerable<T> items)
: base("{PropertyName} must be unique")
{
_items = items;
}
protected override bool IsValid(PropertyValidatorContext context)
{
var editedItem = context.Instance as T;
var newValue = context.PropertyValue as string;
var property = typeof(T).GetTypeInfo().GetDeclaredProperty(context.PropertyName);
return _items.All(item =>
item.Equals(editedItem) || property.GetValue(item).ToString() != newValue);
}
}
FluentValidation aspect
[Serializable]
public class FluentValidationAspect : OnMethodBoundaryAspect
{
private readonly Type _validatorType;
private readonly object[] _parameters;
public FluentValidationAspect(Type validatorType, params object[] parameters)
{
_validatorType = validatorType;
_parameters = parameters;
}
public override void OnEntry(MethodExecutionArgs args)
{
var validator = (IValidator)Activator.CreateInstance(_validatorType, _parameters);
var entityType = _validatorType.BaseType?.GetGenericArguments()[0];
var entities = args.Arguments.Where(x => x.GetType() == entityType);
foreach (var entity in entities)
ValidatorTool.FluentValidate(validator, entity);
}
}
and AdminManager
public class AdminManager : IAdminService
{
private readonly IAdminDal _adminDal;
public AdminManager(IAdminDal adminDal)
{
_adminDal = adminDal;
}
public Admin GetByUsername(string username)
=> string.IsNullOrEmpty(username) ? null : _adminDal.Get(x => x.Username.Equals(username));
[FluentValidationAspect(typeof(AdminValidator))] // I need to pass IEnumerable<Admin> as a second parameter.
public void Add(Admin admin) => _adminDal.Add(admin);
[FluentValidationAspect(typeof(AdminValidator))] //
public void Update(Admin admin) => _adminDal.Update(admin);
public void DeleteById(int id) => _adminDal.Delete(new Admin { Id = id });
}
As I mentioned in the comment line, I need to pass IEnumerable to the FluentValidationAspect.
But, dynamic parameters can not be passed to attributes.
As a result, I'm blocked here.
What is the best way to check for uniqueness?
Thank you in advance for your help?
Best regards...
You can't pass dynamic values in Attributes, so you will have to do the validation in the method body.
public void Add(Admin admin)
{
var admins = GetAll():
var val = new AdminValidator(admins);
validator.ValidateAndThrow(admin);
_adminDal.Add(admin);
}
I have created an architecture in my C# code which does exactly what I want, but seems it would be very difficult to maintain in the long-run and am hoping there's a design pattern / better architecture I could be pointed towards.
I have created an object Test which, again, does exactly what I need perfectly which has the following structure:
class Test
{
public static Dictionary<string, Func<Test, object>> MethodDictionary;
public double Var1;
public double Var2;
private Lazy<object> _test1;
public object Test1 { get { return _test1.Value; } }
private Lazy<object> _test2;
public object Test2 { get { return _test2.Value; } }
public Test()
{
_test1 = new Lazy<object>(() => MethodDictionary["Test1"](this), true);
_test2 = new Lazy<object>(() => MethodDictionary["Test2"](this), true);
}
}
What this allows me to do is, at run-time to assign a dictionary of functions to my Test object and the 2 properties Test1 & Test2 will use the functions loaded into it to return values.
The implementation looking somewhat as follows:
class Program
{
static void Main(string[] args)
{
Dictionary<string, Func<Test, object>> MethodDictionary = new Dictionary<string,Func<Test,object>>();
MethodDictionary.Add("Test1", TestMethod1);
MethodDictionary.Add("Test2", TestMethod2);
Test.MethodDictionary = MethodDictionary;
var x = new Test() { Var1 = 20, Var2 = 30 };
Console.WriteLine(x.Test1.ToString());
Console.WriteLine(x.Test2.ToString());
Console.ReadKey();
}
private static object TestMethod1(Test t)
{ return t.Var1 + t.Var2; }
private static object TestMethod2(Test t)
{ return t.Var1 - t.Var2; }
}
And it works great and has proven very efficient for large sets of Test objects.
My challenge is that if I ever want to add in a new method to my Test class, I need to add in the:
private Lazy<object> _myNewMethod;
public object MyNewMethod { get { return _myNewMethod.Value; } }
Update the constuctor with the key to look for in the dictionary
And, although that is pretty simple, I'd love to have a 1-line add-in (maybe some form of custom object) or have the properties read directly form the dictionary without any need for defining them at all.
Any ideas? ANY help would be great!!!
Thanks!!!
One of the ways in which you could achieve your desired behavior, is to use something that resembles a miniature IoC framework for field injection, tuned to your specific use case.
To make things easier, allow less typing in your concrete classes and make things type-safe, we introduce the LazyField type:
public class LazyField<T>
{
private static readonly Lazy<T> Default = new Lazy<T>();
private readonly Lazy<T> _lazy;
public LazyField() : this(Default) { }
public LazyField(Lazy<T> lazy)
{
_lazy = lazy;
}
public override string ToString()
{
return _lazy.Value.ToString();
}
public static implicit operator T(LazyField<T> instance)
{
return instance._lazy.Value;
}
}
Furthermore, we define an abstract base class, that ensures that these fields will be created at construction time:
public abstract class AbstractLazyFieldHolder
{
protected AbstractLazyFieldHolder()
{
LazyFields.BuildUp(this); // ensures fields are populated.
}
}
Skipping for a moment how this is achieved (explained further below), this allows the following way of defining your Test class:
public class Test : AbstractLazyFieldHolder
{
public double Var1;
public double Var2;
public readonly LazyField<double> Test1;
public readonly LazyField<double> Test2;
}
Note that these fields are immutable, initialized in the constructor. Now, for your usage example, the below snippet shows the "new way" of doing this:
LazyFields.Configure<Test>()
// We can use a type-safe lambda
.SetProvider(x => x.Test1, inst => inst.Var1 + inst.Var2)
// Or the field name.
.SetProvider("Test2", TestMethod2);
var x = new Test() { Var1 = 20, Var2 = 30 };
Console.WriteLine(x.Test1);
double test2Val = x.Test2; // type-safe conversion
Console.WriteLine(test2Val);
// Output:
// 50
// -10
The class below provides the services that support the configuration and injection of these field value.
public static class LazyFields
{
private static readonly ConcurrentDictionary<Type, IBuildUp> _registry = new ConcurrentDictionary<Type,IBuildUp>();
public interface IConfigureType<T> where T : class
{
IConfigureType<T> SetProvider<FT>(string fieldName, Func<T, FT> provider);
IConfigureType<T> SetProvider<F, FT>(Expression<Func<T, F>> fieldExpression, Func<T, FT> provider) where F : LazyField<FT>;
}
public static void BuildUp(object instance)
{
System.Diagnostics.Debug.Assert(instance != null);
var builder = _registry.GetOrAdd(instance.GetType(), BuildInitializer);
builder.BuildUp(instance);
}
public static IConfigureType<T> Configure<T>() where T : class
{
return (IConfigureType<T>)_registry.GetOrAdd(typeof(T), BuildInitializer);
}
private interface IBuildUp
{
void BuildUp(object instance);
}
private class TypeCfg<T> : IBuildUp, IConfigureType<T> where T : class
{
private readonly List<FieldInfo> _fields;
private readonly Dictionary<string, Action<T>> _initializers;
public TypeCfg()
{
_fields = typeof(T)
.GetFields(BindingFlags.Instance | BindingFlags.Public)
.Where(IsLazyField)
.ToList();
_initializers = _fields.ToDictionary(x => x.Name, BuildDefaultSetter);
}
public IConfigureType<T> SetProvider<FT>(string fieldName, Func<T,FT> provider)
{
var pi = _fields.First(x => x.Name == fieldName);
_initializers[fieldName] = BuildSetter<FT>(pi, provider);
return this;
}
public IConfigureType<T> SetProvider<F,FT>(Expression<Func<T,F>> fieldExpression, Func<T,FT> provider)
where F : LazyField<FT>
{
return SetProvider((fieldExpression.Body as MemberExpression).Member.Name, provider);
}
public void BuildUp(object instance)
{
var typedInstance = (T)instance;
foreach (var initializer in _initializers.Values)
initializer(typedInstance);
}
private bool IsLazyField(FieldInfo fi)
{
return fi.FieldType.IsGenericType && fi.FieldType.GetGenericTypeDefinition() == typeof(LazyField<>);
}
private Action<T> BuildDefaultSetter(FieldInfo fi)
{
var itemType = fi.FieldType.GetGenericArguments()[0];
var defValue = Activator.CreateInstance(typeof(LazyField<>).MakeGenericType(itemType));
return (inst) => fi.SetValue(inst, defValue);
}
private Action<T> BuildSetter<FT>(FieldInfo fi, Func<T, FT> provider)
{
return (inst) => fi.SetValue(inst, new LazyField<FT>(new Lazy<FT>(() => provider(inst))));
}
}
private static IBuildUp BuildInitializer(Type targetType)
{
return (IBuildUp)Activator.CreateInstance(typeof(TypeCfg<>).MakeGenericType(targetType));
}
}
Look at library https://github.com/ekonbenefits/impromptu-interface.
With it and using DynamicObject i wrote sample code that shows how to simplify adding new methods:
public class Methods
{
public Methods()
{
MethodDictionary = new Dictionary<string, Func<ITest, object>>();
LazyObjects = new Dictionary<string, Lazy<object>>();
}
public Dictionary<string, Func<ITest, object>> MethodDictionary { get; private set; }
public Dictionary<string, Lazy<object>> LazyObjects { get; private set; }
}
public class Proxy : DynamicObject
{
Methods _methods;
public Proxy()
{
_methods = new Methods();
}
public override bool TryGetMember(GetMemberBinder binder, out object result)
{
result = _methods.LazyObjects[binder.Name].Value;
return true;
}
public override bool TrySetMember(SetMemberBinder binder, object value)
{
_methods.MethodDictionary[binder.Name] = (Func<ITest, object>)value;
_methods.LazyObjects[binder.Name] = new Lazy<object>(() => _methods.MethodDictionary[binder.Name](this.ActLike<ITest>()), true);
return true;
}
}
//now you can add new methods by add single method to interface
public interface ITest
{
object Test1 { get; set; }
object Test2 { get; set; }
}
class Program
{
static void Main(string[] args)
{
var x = new Proxy().ActLike<ITest>();
x.Test1 = new Func<ITest, object>((y) => "Test1");
x.Test2 = new Func<ITest, object>((y) => "Test2");
Console.WriteLine(x.Test1);
Console.WriteLine(x.Test2);
}
}
I don't know what you are trying to do, but I think you can use a simpler approach like this:
class Test
{
public static Dictionary<string, Func<Test, object>> MethodDictionary;
public double Var1;
public double Var2;
}
Calling the function is simple:
static void Main(string[] args)
{
Dictionary<string, Func<Test, object>> MethodDictionary = new Dictionary<string,Func<Test,object>>();
MethodDictionary.Add("Test1", TestMethod1);
MethodDictionary.Add("Test2", TestMethod2);
Test.MethodDictionary = MethodDictionary;
var x = new Test() { Var1 = 20, Var2 = 30 };
Console.WriteLine(Test.MethodDictionary["Test1"](x).ToString());
Console.WriteLine(Test.MethodDictionary["Test2"](x).ToString());
Console.ReadKey();
}
I've just started to use AutoFixture.AutoMoq in my unit tests and I'm finding it very helpful for creating objects where I don't care about the specific value. After all, anonymous object creation is what it is all about.
What I'm struggling with is when I care about one or more of the constructor parameters. Take ExampleComponent below:
public class ExampleComponent
{
public ExampleComponent(IService service, string someValue)
{
}
}
I want to write a test where I supply a specific value for someValue but leave IService to be created automatically by AutoFixture.AutoMoq.
I know how to use Freeze on my IFixture to keep hold of a known value that will be injected into a component but I can't quite see how to supply a known value of my own.
Here is what I would ideally like to do:
[TestMethod]
public void Create_ExampleComponent_With_Known_SomeValue()
{
// create a fixture that supports automocking
IFixture fixture = new Fixture().Customize(new AutoMoqCustomization());
// supply a known value for someValue (this method doesn't exist)
string knownValue = fixture.Freeze<string>("My known value");
// create an ExampleComponent with my known value injected
// but without bothering about the IService parameter
ExampleComponent component = this.fixture.Create<ExampleComponent>();
// exercise component knowning it has my known value injected
...
}
I know I could do this by calling the constructor directly but this would no longer be anonymous object creation. Is there a way to use AutoFixture.AutoMock like this or do I need to incorporate a DI container into my tests to be able to do what I want?
EDIT:
I probably should have been less absract in my original question so here is my specific scenario.
I have an ICache interface which has generic TryRead<T> and Write<T> methods:
public interface ICache
{
bool TryRead<T>(string key, out T value);
void Write<T>(string key, T value);
// other methods not shown...
}
I'm implementing a CookieCache where ITypeConverter handles converting objects to and from strings and lifespan is used to set the expiry date of a cookie.
public class CookieCache : ICache
{
public CookieCache(ITypeConverter converter, TimeSpan lifespan)
{
// usual storing of parameters
}
public bool TryRead<T>(string key, out T result)
{
// read the cookie value as string and convert it to the target type
}
public void Write<T>(string key, T value)
{
// write the value to a cookie, converted to a string
// set the expiry date of the cookie using the lifespan
}
// other methods not shown...
}
So when writing a test for the expiry date of a cookie, I care about the lifespan but not so much about the converter.
So I'm sure people could work out the generalized implementation of Mark's suggestion but I thought I'd post it for comments.
I've created a generic ParameterNameSpecimenBuilder based on Mark's LifeSpanArg:
public class ParameterNameSpecimenBuilder<T> : ISpecimenBuilder
{
private readonly string name;
private readonly T value;
public ParameterNameSpecimenBuilder(string name, T value)
{
// we don't want a null name but we might want a null value
if (string.IsNullOrWhiteSpace(name))
{
throw new ArgumentNullException("name");
}
this.name = name;
this.value = value;
}
public object Create(object request, ISpecimenContext context)
{
var pi = request as ParameterInfo;
if (pi == null)
{
return new NoSpecimen(request);
}
if (pi.ParameterType != typeof(T) ||
!string.Equals(
pi.Name,
this.name,
StringComparison.CurrentCultureIgnoreCase))
{
return new NoSpecimen(request);
}
return this.value;
}
}
I've then defined a generic FreezeByName extension method on IFixture which sets the customization:
public static class FreezeByNameExtension
{
public static void FreezeByName<T>(this IFixture fixture, string name, T value)
{
fixture.Customizations.Add(new ParameterNameSpecimenBuilder<T>(name, value));
}
}
The following test will now pass:
[TestMethod]
public void FreezeByName_Sets_Value1_And_Value2_Independently()
{
//// Arrange
IFixture arrangeFixture = new Fixture();
string myValue1 = arrangeFixture.Create<string>();
string myValue2 = arrangeFixture.Create<string>();
IFixture sutFixture = new Fixture();
sutFixture.FreezeByName("value1", myValue1);
sutFixture.FreezeByName("value2", myValue2);
//// Act
TestClass<string> result = sutFixture.Create<TestClass<string>>();
//// Assert
Assert.AreEqual(myValue1, result.Value1);
Assert.AreEqual(myValue2, result.Value2);
}
public class TestClass<T>
{
public TestClass(T value1, T value2)
{
this.Value1 = value1;
this.Value2 = value2;
}
public T Value1 { get; private set; }
public T Value2 { get; private set; }
}
You have to replace:
string knownValue = fixture.Freeze<string>("My known value");
with:
fixture.Inject("My known value");
You can read more about Inject here.
Actually the Freeze extension method does:
var value = fixture.Create<T>();
fixture.Inject(value);
return value;
Which means that the overload you used in the test actually called Create<T> with a seed: My known value resulting in "My known value4d41f94f-1fc9-4115-9f29-e50bc2b4ba5e".
You could do something like this. Imagine that you want to assign a particular value to the TimeSpan argument called lifespan.
public class LifespanArg : ISpecimenBuilder
{
private readonly TimeSpan lifespan;
public LifespanArg(TimeSpan lifespan)
{
this.lifespan = lifespan;
}
public object Create(object request, ISpecimenContext context)
{
var pi = request as ParameterInfo;
if (pi == null)
return new NoSpecimen(request);
if (pi.ParameterType != typeof(TimeSpan) ||
pi.Name != "lifespan")
return new NoSpecimen(request);
return this.lifespan;
}
}
Imperatively, it could be used like this:
var fixture = new Fixture();
fixture.Customizations.Add(new LifespanArg(mySpecialLifespanValue));
var sut = fixture.Create<CookieCache>();
This approach can be generalized to some degree, but in the end, we're limited by the lack of a strongly typed way to extract a ParameterInfo from a particular constructor or method argument.
I fee like #Nick was almost there. When overriding the constructor argument, it needs to be for the given type and have it limited to that type only.
First we create a new ISpecimenBuilder that looks at the "Member.DeclaringType" to keep the correct scope.
public class ConstructorArgumentRelay<TTarget,TValueType> : ISpecimenBuilder
{
private readonly string _paramName;
private readonly TValueType _value;
public ConstructorArgumentRelay(string ParamName, TValueType value)
{
_paramName = ParamName;
_value = value;
}
public object Create(object request, ISpecimenContext context)
{
if (context == null)
throw new ArgumentNullException("context");
ParameterInfo parameter = request as ParameterInfo;
if (parameter == null)
return (object)new NoSpecimen(request);
if (parameter.Member.DeclaringType != typeof(TTarget) ||
parameter.Member.MemberType != MemberTypes.Constructor ||
parameter.ParameterType != typeof(TValueType) ||
parameter.Name != _paramName)
return (object)new NoSpecimen(request);
return _value;
}
}
Next we create an extension method to allow us to easily wire it up with AutoFixture.
public static class AutoFixtureExtensions
{
public static IFixture ConstructorArgumentFor<TTargetType, TValueType>(
this IFixture fixture,
string paramName,
TValueType value)
{
fixture.Customizations.Add(
new ConstructorArgumentRelay<TTargetType, TValueType>(paramName, value)
);
return fixture;
}
}
Now we create two similar classes to test with.
public class TestClass<T>
{
public TestClass(T value1, T value2)
{
Value1 = value1;
Value2 = value2;
}
public T Value1 { get; private set; }
public T Value2 { get; private set; }
}
public class SimilarClass<T>
{
public SimilarClass(T value1, T value2)
{
Value1 = value1;
Value2 = value2;
}
public T Value1 { get; private set; }
public T Value2 { get; private set; }
}
Finally we test it with an extension of the original test to see that it will not override similarly named and typed constructor arguments.
[TestFixture]
public class AutoFixtureTests
{
[Test]
public void Can_Create_Class_With_Specific_Parameter_Value()
{
string wanted = "This is the first string";
string wanted2 = "This is the second string";
Fixture fixture = new Fixture();
fixture.ConstructorArgumentFor<TestClass<string>, string>("value1", wanted)
.ConstructorArgumentFor<TestClass<string>, string>("value2", wanted2);
TestClass<string> t = fixture.Create<TestClass<string>>();
SimilarClass<string> s = fixture.Create<SimilarClass<string>>();
Assert.AreEqual(wanted,t.Value1);
Assert.AreEqual(wanted2,t.Value2);
Assert.AreNotEqual(wanted,s.Value1);
Assert.AreNotEqual(wanted2,s.Value2);
}
}
This seems to be the most comprehensive solution set here. So I'm going to add mine:
The first thing to create ISpecimenBuilder that can handle multiple constructor parameters
internal sealed class CustomConstructorBuilder<T> : ISpecimenBuilder
{
private readonly Dictionary<string, object> _ctorParameters = new Dictionary<string, object>();
public object Create(object request, ISpecimenContext context)
{
var type = typeof (T);
var sr = request as SeededRequest;
if (sr == null || !sr.Request.Equals(type))
{
return new NoSpecimen(request);
}
var ctor = type.GetConstructors(BindingFlags.Instance | BindingFlags.Public).FirstOrDefault();
if (ctor == null)
{
return new NoSpecimen(request);
}
var values = new List<object>();
foreach (var parameter in ctor.GetParameters())
{
if (_ctorParameters.ContainsKey(parameter.Name))
{
values.Add(_ctorParameters[parameter.Name]);
}
else
{
values.Add(context.Resolve(parameter.ParameterType));
}
}
return ctor.Invoke(BindingFlags.CreateInstance, null, values.ToArray(), CultureInfo.InvariantCulture);
}
public void Addparameter(string paramName, object val)
{
_ctorParameters.Add(paramName, val);
}
}
Then create extension method that simplifies usage of created builder
public static class AutoFixtureExtensions
{
public static void FreezeActivator<T>(this IFixture fixture, object parameters)
{
var builder = new CustomConstructorBuilder<T>();
foreach (var prop in parameters.GetType().GetProperties())
{
builder.Addparameter(prop.Name, prop.GetValue(parameters));
}
fixture.Customize<T>(x => builder);
}
}
And usage:
var f = new Fixture();
f.FreezeActivator<UserInfo>(new { privateId = 15, parentId = (long?)33 });
Good thread, I added another twist based on many of the aswers already posted:
Usage
Example:
var sut = new Fixture()
.For<AClass>()
.Set("value1").To(aInterface)
.Set("value2").ToEnumerableOf(22, 33)
.Create();
Test classes:
public class AClass
{
public AInterface Value1 { get; private set; }
public IEnumerable<int> Value2 { get; private set; }
public AClass(AInterface value1, IEnumerable<int> value2)
{
Value1 = value1;
Value2 = value2;
}
}
public interface AInterface
{
}
Full test
public class ATest
{
[Theory, AutoNSubstituteData]
public void ATestMethod(AInterface aInterface)
{
var sut = new Fixture()
.For<AClass>()
.Set("value1").To(aInterface)
.Set("value2").ToEnumerableOf(22, 33)
.Create();
Assert.True(ReferenceEquals(aInterface, sut.Value1));
Assert.Equal(2, sut.Value2.Count());
Assert.Equal(22, sut.Value2.ElementAt(0));
Assert.Equal(33, sut.Value2.ElementAt(1));
}
}
Infrastructure
Extension method:
public static class AutoFixtureExtensions
{
public static SetCreateProvider<TTypeToConstruct> For<TTypeToConstruct>(this IFixture fixture)
{
return new SetCreateProvider<TTypeToConstruct>(fixture);
}
}
Classes participating in the fluent style:
public class SetCreateProvider<TTypeToConstruct>
{
private readonly IFixture _fixture;
public SetCreateProvider(IFixture fixture)
{
_fixture = fixture;
}
public SetProvider<TTypeToConstruct> Set(string parameterName)
{
return new SetProvider<TTypeToConstruct>(this, parameterName);
}
public TTypeToConstruct Create()
{
var instance = _fixture.Create<TTypeToConstruct>();
return instance;
}
internal void AddConstructorParameter<TTypeOfParam>(ConstructorParameterRelay<TTypeToConstruct, TTypeOfParam> constructorParameter)
{
_fixture.Customizations.Add(constructorParameter);
}
}
public class SetProvider<TTypeToConstruct>
{
private readonly string _parameterName;
private readonly SetCreateProvider<TTypeToConstruct> _father;
public SetProvider(SetCreateProvider<TTypeToConstruct> father, string parameterName)
{
_parameterName = parameterName;
_father = father;
}
public SetCreateProvider<TTypeToConstruct> To<TTypeOfParam>(TTypeOfParam parameterValue)
{
var constructorParameter = new ConstructorParameterRelay<TTypeToConstruct, TTypeOfParam>(_parameterName, parameterValue);
_father.AddConstructorParameter(constructorParameter);
return _father;
}
public SetCreateProvider<TTypeToConstruct> ToEnumerableOf<TTypeOfParam>(params TTypeOfParam[] parametersValues)
{
IEnumerable<TTypeOfParam> actualParamValue = parametersValues;
var constructorParameter = new ConstructorParameterRelay<TTypeToConstruct, IEnumerable<TTypeOfParam>>(_parameterName, actualParamValue);
_father.AddConstructorParameter(constructorParameter);
return _father;
}
}
Constructor parameter relay from other answers:
public class ConstructorParameterRelay<TTypeToConstruct, TValueType> : ISpecimenBuilder
{
private readonly string _paramName;
private readonly TValueType _paramValue;
public ConstructorParameterRelay(string paramName, TValueType paramValue)
{
_paramName = paramName;
_paramValue = paramValue;
}
public object Create(object request, ISpecimenContext context)
{
if (context == null)
throw new ArgumentNullException(nameof(context));
ParameterInfo parameter = request as ParameterInfo;
if (parameter == null)
return new NoSpecimen();
if (parameter.Member.DeclaringType != typeof(TTypeToConstruct) ||
parameter.Member.MemberType != MemberTypes.Constructor ||
parameter.ParameterType != typeof(TValueType) ||
parameter.Name != _paramName)
return new NoSpecimen();
return _paramValue;
}
}
I have a C# Converter method which convers generic lists with the use of reflection.
The problem occurs when I try to call the SetValue method of the Item's property, it throws the following inner exception (ArgumentOutOfRangeException):
Index was out of range. Must be
non-negative and less than the size of the collection. Parameter name:
index.
Here is my code:
internal class Program
{
private static void Main()
{
List<ClassA> classA = new List<ClassA>();
classA.Add(new ClassA { Data = "value1" });
classA.Add(new ClassA { Data = "value2" });
List<ClassB> classB = Converter<List<ClassA>, List<ClassB>>(classA);
}
public static TOut Converter<TIn, TOut>(TIn request)
{
var response = Activator.CreateInstance<TOut>();
PropertyInfo propertyA = typeof(TIn).GetProperty("Item");
PropertyInfo propertyB = typeof(TOut).GetProperty("Item");
int count = (int)typeof(TIn).GetProperty("Count").GetValue(request);
for (int i = 0; i < count; i++)
{
var value = propertyA.GetValue(request, new object[] { i });
var b = CreateBFromA(propertyB, propertyA, value);
propertyB.SetValue(response, b, new object[] { i });
}
return response;
}
private static object CreateBFromA(PropertyInfo propertyB, PropertyInfo propertyA, object value)
{
var b = Activator.CreateInstance(propertyB.PropertyType);
object o = propertyA.PropertyType.GetProperty("Data").GetValue(value);
propertyB.PropertyType.GetProperty("Data").SetValue(b, o);
return b;
}
}
internal class ClassA
{
public string Data { get; set; }
}
internal class ClassB
{
public string Data { get; set; }
public object Other { get; set; }
}
This is a small example code of a bigger generic method (where I need to use reflection), so you can try and run it to regenerate the exception.
How to use the SetValue method to avoid this exception?
Here is my aproach to it:
public static TCollectionOut ConvertCollection<TCollectionIn, TCollectionOut, TIn, TOut>(TCollectionIn input)
where TCollectionIn : IEnumerable<TIn>
where TCollectionOut : ICollection<TOut>, new()
where TOut : new()
{
var res = new TCollectionOut();
foreach (dynamic item in input)
{
dynamic o = new TOut();
ConvertItem(item, o);
res.Add(o);
}
return res;
}
public static TCollectionOut ConvertCollectionMoreDynamic<TCollectionIn, TCollectionOut>(TCollectionIn input)
where TCollectionIn : IEnumerable
{
dynamic res = Activator.CreateInstance(typeof (TCollectionOut));
var oType = typeof (TCollectionOut).GetMethod("Add").GetParameters().Last().ParameterType;
foreach (dynamic item in input)
{
dynamic o = Activator.CreateInstance(oType);
ConvertItem(item, o);
res.Add(o);
}
return res;
}
public static void ConvertItem(ClassA input, ClassB output)
{
output.Data = input.Data;
}
If you wich to support more types just create ConvertItem method with correct overload.
This is because you are trying to pass an index to a not indexed property (Data).
If you post the ClassA code I can try yo help. Anyway you can use LINQ to perform this kind of conversions. It's faster (to write and to execute) and type safe.