Implimenting half angle bisector with single input - c#

I want to implement this function to divide an angle but my math knowledge is very limited so I need help.
In practice and in programming only the lengths of the horizontal or vertical lines are available and easy to calculate.
my question is it possible to make this calculation with only one data
WZ which is horizon line

Short answer: No.
Long answer:
If XY == YZ:
bisected = arcsin(YZ/(YZ^2+WZ^2))
If XY != YZ:
bisected = 1/2*(arcsin(XY/(XY^2+WZ^2))+arcsin(YZ/(YZ^2+WZ^2)))
You'll need to know at least XZ and WZ to calculate the bisected angle.

Thanks for replying.
Yes it's easy to calculate it with the trigonomic function... since WZ is a horizontal line so by selecting any arbitrary point on WX to find the acrtan then divide it by 2
arctan(tangent of any point on WX)/2
I want to solve it with linear algebra and find the equations of the lines

Related

Searching intersection point of two splines in graph

I am stuck at this point. I am trying to find where two lines in graph intersects. I have 10 points for each spline, but they intersects between this points.
I am using c# graph. (System.Windows.Forms.DataVisualization.Charting.Chart chart2;)
Do you have an idea how to solve this?
Here is this situation. Points are measured manually so there is minimum posibility that it will intersetcs on this given points.
Refine the splines to the degree of precision you need and then intersect (straight) line pairs, as Matthew suggested. This can be done quite efficient if you chose the right data structure to store the line segments, so that it supports fast range queries (kd-tree perhaps?).
Doing it analytically is going to be really hard, I guess.
I found the solution, I used least squares theory and polynomial function to represent equation of curve and after that solve the equation. If anybody needs solution just write me.

Quadrangle intersection algorithm

I'm currently writing a game (2D with OpenTK) in which there is a lot of rotation, and with it comes that I sometimes need to get the intersection between these lines/shapes:
Two quadrangles http://files.myopera.com/antonijn/albums/12693002/TwoQuadrangles.png
I know the rotation (in degrees) of both of them, and therefore I know the position of all the vertices in both shapes.
The algorithm needs to give me a bool on whether they intersect, or better yet, the coordinates of the intersections.
I have written my own algorithm, which scrolls through the sides of the first box, gets the formula for each side and compares them to the formulas of the lines of the second box. Now, this doesn't work when the lines are upright (slope of float.Infinity or float.NegativeInfinity), is a pain to debug and is far from fast, so I need a better one!
Any suggestions?
I ended up using the SAT method, as suggested by Nickon, thanks a bunch mate!

Simple way to calculate point of intersection between two polygons in C#

I've got two polygons defined as a list of Vectors, I've managed to write routines to transform and intersect these two polygons (seen below Frame 1). Using line-intersection I can figure out whether these collide, and have written a working Collide() function.
This is to be used in a variable step timed game, and therefore (as shown below) in Frame 1 the right polygon is not colliding, it's perfectly normal for on Frame 2 for the polygons to be right inside each other, with the right polygon having moved to the left.
My question is, what is the best way to figure out the moment of intersection? In the example, let's assume in Frame 1 the right polygon is at X = 300, Frame 2 it moved -100 and is now at 200, and that's all I know by the time Frame 2 comes about, it was at 300, now it's at 200. What I want to know is when did it actually collide, at what X value, here it was probably about 250.
I'm preferably looking for a C# source code solution to this problem.
Maybe there's a better way of approaching this for games?
I would use the separating axis theorem, as outlined here:
Metanet tutorial
Wikipedia
Then I would sweep test or use multisampling if needed.
GMan here on StackOverflow wrote a sample implementation over at gpwiki.org.
This may all be overkill for your use-case, but it handles polygons of any order. Of course, for simple bounding boxes it can be done much more efficiently through other means.
I'm no mathematician either, but one possible though crude solution would be to run a mini simulation.
Let us call the moving polygon M and the stationary polygon S (though there is no requirement for S to actually be stationary, the approach should work just the same regardless). Let us also call the two frames you have F1 for the earlier and F2 for the later, as per your diagram.
If you were to translate polygon M back towards its position in F1 in very small increments until such time that they are no longer intersecting, then you would have a location for M at which it 'just' intersects, i.e. the previous location before they stop intersecting in this simulation. The intersection in this 'just' intersecting location should be very small — small enough that you could treat it as a point. Let us call this polygon of intersection I.
To treat I as a point you could choose the vertex of it that is nearest the centre point of M in F1: that vertex has the best chance of being outside of S at time of collision. (There are lots of other possibilities for interpreting I as a point that you could experiment with too that may have better results.)
Obviously this approach has some drawbacks:
The simulation will be slower for greater speeds of M as the distance between its locations in F1 and F2 will be greater, more simulation steps will need to be run. (You could address this by having a fixed number of simulation cycles irrespective of speed of M but that would mean the accuracy of the result would be different for faster and slower moving bodies.)
The 'step' size in the simulation will have to be sufficiently small to get the accuracy you require but smaller step sizes will obviously have a larger calculation cost.
Personally, without the necessary mathematical intuition, I would go with this simple approach first and try to find a mathematical solution as an optimization later.
If you have the ability to determine whether the two polygons overlap, one idea might be to use a modified binary search to detect where the two hit. Start by subdividing the time interval in half and seeing if the two polygons intersected at the midpoint. If so, recursively search the first half of the range; if not, search the second half. If you specify some tolerance level at which you no longer care about small distances (for example, at the level of a pixel), then the runtime of this approach is O(log D / K), where D is the distance between the polygons and K is the cutoff threshold. If you know what point is going to ultimately enter the second polygon, you should be able to detect the collision very quickly this way.
Hope this helps!
For a rather generic solution, and assuming ...
no polygons are intersecting at time = 0
at least one polygon is intersecting another polygon at time = t
and you're happy to use a C# clipping library (eg Clipper)
then use a binary approach to deriving the time of intersection by...
double tInterval = t;
double tCurrent = 0;
int direction = +1;
while (tInterval > MinInterval)
{
tInterval = tInterval/2;
tCurrent += (tInterval * direction);
MovePolygons(tCurrent);
if (PolygonsIntersect)
direction = +1;
else
direction = -1;
}
Well - you may see that it's allways a point of one of the polygons that hits the side of the other first (or another point - but thats after all almost the same) - a possible solution would be to calculate the distance of the points from the other lines in the move-direction. But I think this would end beeing rather slow.
I guess normaly the distances between frames are so small that it's not importand to really know excactly where it hit first - some small intersections will not be visible and after all the things will rebound or explode anyway - don't they? :)

Getting curve details from points

I have a List of 2D points. What's an efficient way of iterating through the points in order to determine whether the list of points are in a straight line, or curved (and to what degree). I'd like to avoid simply getting slopes between smaller subsets. How would I go about doing this?
Thanks for any help
Edit: Thanks for the response. To clarify, I don't need it to be numerically accurate, but I'd like to determine if the user has created a curved shape with their mouse and, if so, how sharp the curve is. The values are not too important, as long as it's possible to determine the difference between a sharp curve and a slightly softer one.
If you simply want to know if all your points fit more or less on a curve of degree d, simply apply Lagrange interpolation on the endpoints and d-2 equally spaced points from inside your array. This will give you a polynomial of degree d.
Once you have your curve, simply iterate over the array and see how far away from the curve each point is. If they're farther than a threshold, your data doesn't fit your degree d polynomial.
Edit: I should mention that iterating through values of d is a finite process. Once d reaches the number of points you have, you'll get a perfect fit because of how Lagrange interpolation works.
To test if it's a straight line, compute the correlation coefficient. I'm sure that's covered on wikipedia.
To test if it's curved is more involved. You need to know what kind of curves you expect, and fit against those.
Here is a method to calculate angle: Calculate Angle between 2 points using C#
Simply calculate angle between each and every point in your list and create list of angles, then compare if angles list values are different. If they are not different then it means it's straight line, otherwise it's curve...
If it's a straight line then angle between all points has to be a same.
The question is really hazy here: "I'd like to avoid simply getting slopes between smaller substes"
You probably want interpolation a-la B-splines. They use two points and two extra control points if memory serves me. Implementations are ubiquitous since way back (at least 1980's). This should get you underway
Remember that you'll probably need to add control points to make the curve meet the endpoints. One trick to make sure those are reached is to simply duplicate the endpoints as extra controlpoints.
Cheers
Update Added link to codeproject
it would appear that what I remember from back in the 80's could have been Bezier curves - a predecessor of sorts.

help with GPS position

if i have this position: 32.226743,34.747009
and i need to know that i in the range of 10 meter from this position
how to know this ?
(i work on C# Windows-mobile 2005)
thank's in advance
Once you get the current position you could calculate the distance between those two points and test if it is less than 10 meters.
I will take the question literally, without trying to guess what you really meant:
you have to get a second position (where you are)
calculate the distance between the 2 locations
check if it is less than 10 meters
here is a link that might help
Latitude, Longitude, Bearing, Cardinal Direction, Distance, and C#
Then use the great-circle distance formula. THough in reality, when looking at such short distances with respect to the planet's radius, a simple 2D euclidean distance between two points is going to be close enough.
most laguage support fancutions to calculate it .. and i used it before in java and c#
This code in c#:
GeoCoordinate sCoord = new GeoCoordinate(88, 88);
var eCoord = new GeoCoordinate(90, 90);
return sCoord.GetDistanceTo(eCoord);

Categories