Visual Studio 2019 Automatic Event Handlers Generation - c#

Is it at all possible to generate handlers for ALL events object has to offer in a similar way you can do it for a single event simply by pressing tab tab after += ?
if not Visual Studio, any other IDE that can do that ?

I have one way for you. Obviously, this solution will not meet your needs i 100%, but you can try it.
You can create an interface with all methods from a known object and inherit it. Now you can implement this interface. Unfortunately, you need to add an event handler to the constructor.
class myObject:IMyObject {
Public myObject() //this you have to add
{
this.my_Event += onMy_EventHandled();
this.my_Event1 += onMy_EventHandled1();
}
//this section will be create automatically
void onMy_EventHandled()
{
}
void onMy_EventHandled2()
{
}
}
e.g. interface
interface IMyObject {
void onMy_EventHandled();
void onMy_EventHandled();
}

Related

Workaround for generic event handler in Windows Forms

Quite some time ago, I noticed that the Windows Forms editor of Visual Studio does not support events which contain generic type parameters. For example, an event like
public event EventHandler<ListEventArgs<int>> MyStrangeEvent { add { ... } remove { ... } }
where
public class ListEventArgs<T> : EventArgs { List<T> args; }
does not even show up in the event list in the property manager of Visual Studio. Now, this is a somewhat artificial example that could easily be modified to work in Visual Studio by rewriting the classes and their events. However, I am currently working on a project where I cannot change some classes for compatibility reasons. The only thing I can do is to change the events of my user control. The events of this control currently look like this:
public event EventHandler<Plane<GDISurface>.DrawingErrorEventArgs> DrawingError { add { _Plane.DrawingError += value; } remove { _Plane.DrawingError -= value; } }
Note that the underlying Plane class (represented by the _Plane instance which is a protected field) cannot be changed. Its DrawingError event and its EventArgs type are declared in the Plane class like this:
public class Plane<T> where T : ISurface
{
...
public event EventHandler<DrawingErrorEventArgs> DrawingError = null;
...
public class DrawingErrorEventArgs : EventArgs { ... /* Uses T */ ... }
}
Of course, the Windows Forms editor of Visual Studio does not show any of the events of my user control. I have been looking for a number of workarounds to get them shown again, but have not been able to find a workaround that actually works. Here are some things that I tried:
Created a MyPlane class which inherits from Plane and used that instead: public event EventHandler<MyPlane.DrawingErrorEventArgs> DrawingError .... For reasons unknown to me, the events still don't show up in the editor. Perhaps this is due to the parameters of the event, some of which still are generic. Find a minimal working example below.
Created a helper class which defines implicit conversion operators between EventHandler<Plane<GDISurface>.DrawingErrorEventArgs> and EventHandler<GDIPlane.DrawingErrorEventArgs> where GDIPlane is just a dummy class which inherits from Plane<GDISurface>. This does work to some extent, but duplicates event calls since the conversion creates new event handlers which are passed down to _Plane which cannot be removed/unregistered properly.
Tried to inherit from EventHandler<Plane<GDISurface>.DrawingErrorEventArgs>, which obviously does not work since EventHandler<T> is sealed.
Are there any other ways to make my events visible again in the Windows Forms editor?
Best regards
Andreas
EDIT: Minimal working example for 1:
public interface ISurface { }
public class GDISurface : ISurface { }
public class Plane<T> where T : ISurface
{
public event EventHandler<DrawingErrorEventArgs> DrawingError = null;
public class DrawingErrorEventArgs : EventArgs { T stuff; }
}
public class TestControl : UserControl
{
public class GDIPlane : Plane<GDISurface> { }
GDIPlane _Plane = null;
public event EventHandler<GDIPlane.DrawingErrorEventArgs> DrawingError { add { _Plane.DrawingError += value; } remove { _Plane.DrawingError -= value; } }
}
DrawingError does not show up in the list of events in the property manager when clicking on a TestControl instance.
EDIT2: This is the original problem (without any workarounds) where the DrawingError event does of TestControl does not show up either:
public interface ISurface { }
public class GDISurface : ISurface { }
public class Plane<T> where T : ISurface
{
public event EventHandler<DrawingErrorEventArgs> DrawingError = null;
public class DrawingErrorEventArgs : EventArgs { T stuff; }
}
public class TestControl : UserControl
{
Plane<GDISurface> _Plane = null;
public event EventHandler<Plane<GDISurface>.DrawingErrorEventArgs> DrawingError { add { _Plane.DrawingError += value; } remove { _Plane.DrawingError -= value; } }
}
This is behavior specific to Visual Studio, and the cause is rooted in the fact that EventHandler<> does not specify covariance on its 'TEventArgs' (it would impose seemingly silly restrictions) and the tools do not perform enough introspection of your code to suss out an appropriate type (even though you've left a trail of type data in constructing the control.) Thus, it seems as though VS does not support generic event properties. You may consider filing a feature request on Microsoft Connect, I wouldn't suggest filing it as a bug as they may label it "by design" and close it.
As a general rule, if you need generic type parameters on your events and you need design time support for them (which are different implementation concerns), you're looking at wrapping them in a presentation-specific facade (e.g. "extra layer of code to facilitate design-time needs".)
Personally, I would reduce the generic typing you have in play now, it seems a bit excessive and if you don't understand covariance/contravariance in generic types it might put you in a tight spot at some point, such as now.
However, to work around your problem:
Consider using a custom event args class which could transport data in a non-generic property, and also use a non-generic EventHandler event/property. Understanding the 'type' of the event is then shifted away from generic type parameters and made the responsibility of your non-generic event args instead. If the 'class' of the event args is insufficient, you can add a property to convey the event type (or data type) so that receiving code can properly interpret it (assuming, of course, that it does not already know by some other means.):
public class DataEventArgs : EventArgs
{
//public string EventTypeOrPurpose { get; set; }
public object Data { get; set; }
}
This is most often only used to ferry data through an event chain, and it is usually implemented as follows:
public class DataEventArgs<T> : EventArgs
{
public T Data { get; set; }
}
Unfortunately, this also has a covariance problem, to resolve it you would actually want something more like this:
public interface IDataArgs<out T>
{
T Data { get; }
}
public class DataEventArgs<T> : EventArgs, IDataArgs<T>
{
public DataEventArgs<T>(T data)
{
_data = data;
}
private T _data;
public T Data { get { return _data; } }
}
Even so, these generic versions still don't work around Visual Studio's limitations, this is merely more proper alternative forms of what you already have shown us.
UPDATE: As requested, here is what a "purpose built facade" might look like in the most basic sense. Note that the usercontrol functions as a facade layer in this case as the eventhandler it exposes delegates to the underlying object model. There is no direct access to underlying object model from the user control (from consumer/designer perspective.)
Please note the reference tracking for event handlers is not necessary unless you dispose of these user controls throughout the lifetime of the app (it is only done to ensure proper delegate removal based on the delegate provided, which is wrapped in a closure/delegate, as you see below.)
Also worth noting I did not test-run this code beyond verifying that the designer shows DrawingError in the property grid when dropped onto a form.
namespace SampleCase3
{
public interface ISurface { }
public class GDISurface : ISurface { }
public class Plane<T> where T : ISurface
{
public event EventHandler<DrawingErrorEventArgs> DrawingError;
public class DrawingErrorEventArgs : EventArgs { T stuff; }
}
public class TestControl : UserControl
{
private Plane<GDISurface> _Plane = new Plane<GDISurface>(); // requires initialization for my own testing
public TestControl()
{
}
// i am adding this map *only* so that the removal of an event handler can be done properly
private Dictionary<EventHandler, EventHandler<Plane<GDISurface>.DrawingErrorEventArgs>> _cleanupMap = new Dictionary<EventHandler, EventHandler<Plane<GDISurface>.DrawingErrorEventArgs>>();
public event EventHandler DrawingError
{
add
{
var nonGenericHandler = value;
var genericHandler = (EventHandler<Plane<GDISurface>.DrawingErrorEventArgs>)delegate(object sender, Plane<GDISurface>.DrawingErrorEventArgs e)
{
nonGenericHandler(sender, e);
};
_Plane.DrawingError += genericHandler;
_cleanupMap[nonGenericHandler] = genericHandler;
}
remove
{
var nonGenericHandler = value;
var genericHandler = default(EventHandler<Plane<GDISurface>.DrawingErrorEventArgs>);
if (_cleanupMap.TryGetValue(nonGenericHandler, out genericHandler))
{
_Plane.DrawingError -= genericHandler;
_cleanupMap.Remove(nonGenericHandler);
}
}
}
}
}
To complement the above, here is what a non-generic event handler would now look like:
private void testControl1_DrawingError(object sender, EventArgs e)
{
var genericDrawingErrorEventArgs = e as Plane<GDISurface>.DrawingErrorEventArgs;
if (genericDrawingErrorEventArgs != null)
{
// TODO:
}
}
Note that the consumer here has to have knowledge of the type for e to perform conversion. The use of the as operator will bypass ancestry checks under the assumption that the conversion should succeed.
Something like this is as close as you're going to get. Yes it is ugly by most of our standards, but if you absolutely 'need' design-time support on top of these components and you cannot change Plane<T> (which would be more appropriate) then this, or something close to this, is the only viable workaround.
HTH

Embedded Mono: How do you raise an event in C++?

I'm working on an application that's embedding Mono, and I'd like to raise an event from the C++ layer into the C# layer. Here's what I have:
void* itr(NULL);
MonoEvent* monoEvent;
while(monoEvent= mono_class_get_events(klass, &itr))
{
if(0 == strcmp(eventName, mono_event_get_name(monoEvent)))
raiseMethod = mono_event_get_raise_method(monoEvent);
}
However, raiseMethod always comes back as NULL. Looking at the structure of the MonoEvent, it looks like the add and remove methods were populated, but not the raise? Is there something special I have to do to get this to work?
EDIT: If it matters, here's the (basic) form of the delegate, class, and events I'm using in the C# layer.
public delegate void MyHandler(uint id);
public class SimpleComponent : NativeComponent
{
public event MyHandler OnEnter;
public event MyHandler OnExit;
}
May the event be defined in parent class? If so you need to traverse up the class hierarchy with something like the following:
MonoEvent* monoEvent;
while (klass)
{
void* itr = NULL;
while(monoEvent= mono_class_get_events(klass, &itr))
{
if(0 == strcmp(eventName, mono_event_get_name(monoEvent)))
raiseMethod = mono_event_get_raise_method(monoEvent);
}
klass = mono_class_get_parent(klass);
}
EDIT after comment and re-reading question:
It is normal that the raise method for event is NULL.
This method usually returns null for events declared with the C# event keyword or the Visual Basic Event keyword. This is because the C# and Visual Basic compilers do not generate such a method by default.
(source)
I am afraid it may be hard to fire an event of a class. Because it is actually breaking the concept of events in .NET - which says that the class itself can only fire its own Event. Actually, even from C# it is hard to raise the event of other class.
Conceptually, events are pair of add_handler and remove_handler methods where you specify delegates to be called when event's circumstances occur. It is up to class how it implements events. Technically, it is just a private delegate field, AFAIK.
You may try to locate it.
I am not sure if it is a proper approach, but one of the answers in How do I raise an event via reflection in .NET/C#? describes how to raise event using reflection. You might attempt to convert it into mono_class / mono_field calls, etc.
Krizz's answer is the most complete. This is how I fixed my code to work how I would "expect".
I changed the C# side to:
public delegate void MyHandler(uint aEntityId);
public class SimpleComponent: NativeComponent
{
public event MyHandler OnEnter;
public event MyHandler OnExit;
protected void CallOnEnter(uint aEntityId)
{
if (OnEnter != null)
OnEnter(aEntityId);
}
protected void CallOnExit(uint aEntityId)
{
if (OnExit!= null)
OnExit(aEntityId);
}
}
Then grabbed the mono method with
raiseMethod = mono_class_get_method_from_name(klass, "CallOnEnter", 1);

Postsharp 3rd party components events interception

I have a question about events interception with c# and Postsharp.
I would like to cancel the execution of events like BeforeDropDown, RowSelected MouseClick with EventInterceptionAspect in postsharp.
But i can not find a proper place where i can write the code.
example:
i tried something like this:
[Serializable]
class EventInter : EventInterceptionAspect
{
public override bool CompileTimeValidate(System.Reflection.EventInfo targetEvent)
{
return "FormClosed".Equals(targetEvent.Name);
}
public override void OnInvokeHandler(EventInterceptionArgs args)
{
if condition executes method otherwise no
}
}
in the form:
[EventInter]
public partial class Frm_RomperMesa : KryptonForm
But it didn´t work. So i want to know if it is possible to achieve what i want.
Thanks in advace. I hope be clear.
yes, it is possible. The problem is, you're trying to apply an event interception aspect to an event defined in another assembly which you can't do within your code. You can't even override the event because it's setup to be handled using the base Form type in the designer code behind
this.FormClosing += new System.Windows.Forms.FormClosingEventHandler(this.Form1_FormClosing);
you will have to modify the assembly to do this. Use the following aspect and the links to modify your
public class EventAspectProvider : TypeLevelAspect , IAspectProvider
{
public IEnumerable<AspectInstance> ProvideAspects(object targetElement)
{
Type t = (Type)targetElement;
EventInfo e = t.GetEvents().First(c => c.Name.Equals("FormClosing"));
return new List<AspectInstance>() { new AspectInstance(e, new EventInter()) };
}
}
[Serializable]
public class EventInter : EventInterceptionAspect
{
public override void OnInvokeHandler(EventInterceptionArgs args)
{
int x = 0;
if (x > 0) //Do you logic here
{
args.ProceedInvokeHandler();
}
}
}
http://programmersunlimited.wordpress.com/2011/07/27/applying-aspects-to-3rd-party-assemblies-using-postsharp/
http://programmersunlimited.wordpress.com/2011/08/16/exposing-internal-methods-in-3rd-party-assemblies-for-external-use/
Basically it boils down to modifying the System.Windows.Forms.dll which I don't recommend. But if it's some other 3rd party vendor library, then go for it.
A workaround is to do it the other way around: Use an aspect on the method that is hooked to the event and cancel the normal execution of the method if the condition is met. This does not prevent the event form being raised but it prevents your event handling code from being executed.
[EventInter]
private void someForm_FormClosed(object sender, EventArg arg) {}
We use this approach a lot in our project. We have several aspects that apply to event handling methods (exception handling, cursors handling, etc...).
We go a little further, we apply the aspects at the assembly level and we use CompileTimeValide to recognize the signature of an event handling method. In theory, it's not 100% reliable, but we have not found any problems with this approach so far.

c# Plugin Event Handling

I have written a plugin system that uses an interface and for any plugins that meet this contract are loaded at runtime into the main system.
The plugin effectively returns a TabPage that is slotted into the main app, and is controlled fromwithin the plugin dll.
If an error occurs within the plugin, the standard Windows error message shows. What I want to do it create an event that returns the error message so I can display it in the area I have reserved for text.
Do I need to keep a track of all attached plugin/interface instances to be able to set up an event to monitor each one?
At present, my system loops through the dll's within the app folder and those that meet the interface contract are loaded up, the actual instance of the interface is discarded each time as control is then handed over to the dll via button events that are loaded with the TabPage and handled within the plugin.
I hope this all makes sense.
You don't need to keep a reference to the plugin class, just add a delegate to the event when you start it up, after that you don't need the reference anymore.
You could add an event to your plugin contract:
public interface IPlugin
{
event EventHandler<ErrorEventArgs> Error;
void Initialise();
}
That way, any host can subscribe to that event when errors occur within the plugin:
public class MyPlugin : IPlugin
{
public event EventHandler<ErrorEventArgs> Error;
public void Initialise()
{
try
{
}
catch (Exception e)
{
OnError(new ErrorEventArgs(e));
}
}
protected void OnError(ErrorEventArgs e)
{
var ev = Error;
if (ev != null)
ev(this, e);
}
}
If I have followed you post correctly, this is how I would go about doing it.
In the plugin interface (Lets say IPlugin) you will need to declare an event.
public delegate void ShowErrorEventHandler(string errorMessage);
public interface IPlugin
{
event ShowErrorEventHandler ShowError;
}
Then when you load your plugins, for each one just subscribe to it's ShowError event, for example:
...
foreach(var plugin in plugins)
{
plugin.ShowError += MainForm_ShowError;
}
...
private void MainForm_ShowError(string errorMessage)
{
// Do something with the error... stick it in your reserved area
txtReservedArea.Text = errorMessage;
}
Hope this helps

Event vs Delegates [duplicate]

What are the differences between delegates and an events? Don't both hold references to functions that can be executed?
An Event declaration adds a layer of abstraction and protection on the delegate instance. This protection prevents clients of the delegate from resetting the delegate and its invocation list and only allows adding or removing targets from the invocation list.
To understand the differences you can look at this 2 examples
Example with Delegates (in this case, an Action - that is a kind of delegate that doesn't return a value)
public class Animal
{
public Action Run {get; set;}
public void RaiseEvent()
{
if (Run != null)
{
Run();
}
}
}
To use the delegate, you should do something like this:
Animal animal= new Animal();
animal.Run += () => Console.WriteLine("I'm running");
animal.Run += () => Console.WriteLine("I'm still running") ;
animal.RaiseEvent();
This code works well but you could have some weak spots.
For example, if I write this:
animal.Run += () => Console.WriteLine("I'm running");
animal.Run += () => Console.WriteLine("I'm still running");
animal.Run = () => Console.WriteLine("I'm sleeping") ;
with the last line of code, I have overridden the previous behaviors just with one missing + (I have used = instead of +=)
Another weak spot is that every class which uses your Animal class can invoke the delegate directly. For example, animal.Run() or animal.Run.Invoke() are valid outside the Animal class.
To avoid these weak spots you can use events in c#.
Your Animal class will change in this way:
public class ArgsSpecial : EventArgs
{
public ArgsSpecial (string val)
{
Operation=val;
}
public string Operation {get; set;}
}
public class Animal
{
// Empty delegate. In this way you are sure that value is always != null
// because no one outside of the class can change it.
public event EventHandler<ArgsSpecial> Run = delegate{}
public void RaiseEvent()
{
Run(this, new ArgsSpecial("Run faster"));
}
}
to call events
Animal animal= new Animal();
animal.Run += (sender, e) => Console.WriteLine("I'm running. My value is {0}", e.Operation);
animal.RaiseEvent();
Differences:
You aren't using a public property but a public field (using events, the compiler protects your fields from unwanted access)
Events can't be assigned directly. In this case, it won't give rise to the previous error that I have showed with overriding the behavior.
No one outside of your class can raise or invoke the event. For example, animal.Run() or animal.Run.Invoke() are invalid outside the Animal class and will produce compiler errors.
Events can be included in an interface declaration, whereas a field cannot
Notes:
EventHandler is declared as the following delegate:
public delegate void EventHandler (object sender, EventArgs e)
it takes a sender (of Object type) and event arguments. The sender is null if it comes from static methods.
This example, which uses EventHandler<ArgsSpecial>, can also be written using EventHandler instead.
Refer here for documentation about EventHandler
In addition to the syntactic and operational properties, there's also a semantical difference.
Delegates are, conceptually, function templates; that is, they express a contract a function must adhere to in order to be considered of the "type" of the delegate.
Events represent ... well, events. They are intended to alert someone when something happens and yes, they adhere to a delegate definition but they're not the same thing.
Even if they were exactly the same thing (syntactically and in the IL code) there will still remain the semantical difference. In general I prefer to have two different names for two different concepts, even if they are implemented in the same way (which doesn't mean I like to have the same code twice).
Here is another good link to refer to.
http://csharpindepth.com/Articles/Chapter2/Events.aspx
Briefly, the take away from the article - Events are encapsulation over delegates.
Quote from article:
Suppose events didn't exist as a concept in C#/.NET. How would another class subscribe to an event? Three options:
A public delegate variable
A delegate variable backed by a property
A delegate variable with AddXXXHandler and RemoveXXXHandler methods
Option 1 is clearly horrible, for all the normal reasons we abhor public variables.
Option 2 is slightly better, but allows subscribers to effectively override each other - it would be all too easy to write someInstance.MyEvent = eventHandler; which would replace any existing event handlers rather than adding a new one. In addition, you still need to write the properties.
Option 3 is basically what events give you, but with a guaranteed convention (generated by the compiler and backed by extra flags in the IL) and a "free" implementation if you're happy with the semantics that field-like events give you. Subscribing to and unsubscribing from events is encapsulated without allowing arbitrary access to the list of event handlers, and languages can make things simpler by providing syntax for both declaration and subscription.
What a great misunderstanding between events and delegates!!! A delegate specifies a TYPE (such as a class, or an interface does), whereas an event is just a kind of MEMBER (such as fields, properties, etc). And, just like any other kind of member an event also has a type. Yet, in the case of an event, the type of the event must be specified by a delegate. For instance, you CANNOT declare an event of a type defined by an interface.
Concluding, we can make the following Observation: the type of an event MUST be defined by a delegate. This is the main relation between an event and a delegate and is described in the section II.18 Defining events of ECMA-335 (CLI) Partitions I to VI:
In typical usage, the TypeSpec (if present) identifies a delegate whose signature matches the arguments passed to the event’s fire method.
However, this fact does NOT imply that an event uses a backing delegate field. In truth, an event may use a backing field of any different data structure type of your choice. If you implement an event explicitly in C#, you are free to choose the way you store the event handlers (note that event handlers are instances of the type of the event, which in turn is mandatorily a delegate type---from the previous Observation). But, you can store those event handlers (which are delegate instances) in a data structure such as a List or a Dictionary or any other else, or even in a backing delegate field. But don’t forget that it is NOT mandatory that you use a delegate field.
NOTE: If you have access to C# 5.0 Unleashed, read the "Limitations on Plain Use of Delegates" in Chapter 18 titled "Events" to understand better the differences between the two.
It always helps me to have a simple, concrete example. So here's one for the community. First I show how you can use delegates alone to do what Events do for us. Then I show how the same solution would work with an instance of EventHandler. And then I explain why we DON'T want to do what I explain in the first example. This post was inspired by an article by John Skeet.
Example 1: Using public delegate
Suppose I have a WinForms app with a single drop-down box. The drop-down is bound to an List<Person>. Where Person has properties of Id, Name, NickName, HairColor. On the main form is a custom user control that shows the properties of that person. When someone selects a person in the drop-down the labels in the user control update to show the properties of the person selected.
Here is how that works. We have three files that help us put this together:
Mediator.cs -- static class holds the delegates
Form1.cs -- main form
DetailView.cs -- user control shows all details
Here is the relevant code for each of the classes:
class Mediator
{
public delegate void PersonChangedDelegate(Person p); //delegate type definition
public static PersonChangedDelegate PersonChangedDel; //delegate instance. Detail view will "subscribe" to this.
public static void OnPersonChanged(Person p) //Form1 will call this when the drop-down changes.
{
if (PersonChangedDel != null)
{
PersonChangedDel(p);
}
}
}
Here is our user control:
public partial class DetailView : UserControl
{
public DetailView()
{
InitializeComponent();
Mediator.PersonChangedDel += DetailView_PersonChanged;
}
void DetailView_PersonChanged(Person p)
{
BindData(p);
}
public void BindData(Person p)
{
lblPersonHairColor.Text = p.HairColor;
lblPersonId.Text = p.IdPerson.ToString();
lblPersonName.Text = p.Name;
lblPersonNickName.Text = p.NickName;
}
}
Finally we have the following code in our Form1.cs. Here we are Calling OnPersonChanged, which calls any code subscribed to the delegate.
private void comboBox1_SelectedIndexChanged(object sender, EventArgs e)
{
Mediator.OnPersonChanged((Person)comboBox1.SelectedItem); //Call the mediator's OnPersonChanged method. This will in turn call all the methods assigned (i.e. subscribed to) to the delegate -- in this case `DetailView_PersonChanged`.
}
Ok. So that's how you would get this working without using events and just using delegates. We just put a public delegate into a class -- you can make it static or a singleton, or whatever. Great.
BUT, BUT, BUT, we do not want to do what I just described above. Because public fields are bad for many, many reason. So what are our options? As John Skeet describes, here are our options:
A public delegate variable (this is what we just did above. don't do this. i just told you above why it's bad)
Put the delegate into a property with a get/set (problem here is that subscribers could override each other -- so we could subscribe a bunch of methods to the delegate and then we could accidentally say PersonChangedDel = null, wiping out all of the other subscriptions. The other problem that remains here is that since the users have access to the delegate, they can invoke the targets in the invocation list -- we don't want external users having access to when to raise our events.
A delegate variable with AddXXXHandler and RemoveXXXHandler methods
This third option is essentially what an event gives us. When we declare an EventHandler, it gives us access to a delegate -- not publicly, not as a property, but as this thing we call an event that has just add/remove accessors.
Let's see what the same program looks like, but now using an Event instead of the public delegate (I've also changed our Mediator to a singleton):
Example 2: With EventHandler instead of a public delegate
Mediator:
class Mediator
{
private static readonly Mediator _Instance = new Mediator();
private Mediator() { }
public static Mediator GetInstance()
{
return _Instance;
}
public event EventHandler<PersonChangedEventArgs> PersonChanged; //this is just a property we expose to add items to the delegate.
public void OnPersonChanged(object sender, Person p)
{
var personChangedDelegate = PersonChanged as EventHandler<PersonChangedEventArgs>;
if (personChangedDelegate != null)
{
personChangedDelegate(sender, new PersonChangedEventArgs() { Person = p });
}
}
}
Notice that if you F12 on the EventHandler, it will show you the definition is just a generic-ified delegate with the extra "sender" object:
public delegate void EventHandler<TEventArgs>(object sender, TEventArgs e);
The User Control:
public partial class DetailView : UserControl
{
public DetailView()
{
InitializeComponent();
Mediator.GetInstance().PersonChanged += DetailView_PersonChanged;
}
void DetailView_PersonChanged(object sender, PersonChangedEventArgs e)
{
BindData(e.Person);
}
public void BindData(Person p)
{
lblPersonHairColor.Text = p.HairColor;
lblPersonId.Text = p.IdPerson.ToString();
lblPersonName.Text = p.Name;
lblPersonNickName.Text = p.NickName;
}
}
Finally, here's the Form1.cs code:
private void comboBox1_SelectedIndexChanged(object sender, EventArgs e)
{
Mediator.GetInstance().OnPersonChanged(this, (Person)comboBox1.SelectedItem);
}
Because the EventHandler wants and EventArgs as a parameter, I created this class with just a single property in it:
class PersonChangedEventArgs
{
public Person Person { get; set; }
}
Hopefully that shows you a bit about why we have events and how they are different -- but functionally the same -- as delegates.
You can also use events in interface declarations, not so for delegates.
Delegate is a type-safe function pointer. Event is an implementation of publisher-subscriber design pattern using delegate.
An event in .net is a designated combination of an Add method and a Remove method, both of which expect some particular type of delegate. Both C# and vb.net can auto-generate code for the add and remove methods which will define a delegate to hold the event subscriptions, and add/remove the passed in delegagte to/from that subscription delegate. VB.net will also auto-generate code (with the RaiseEvent statement) to invoke the subscription list if and only if it is non-empty; for some reason, C# doesn't generate the latter.
Note that while it is common to manage event subscriptions using a multicast delegate, that is not the only means of doing so. From a public perspective, a would-be event subscriber needs to know how to let an object know it wants to receive events, but it does not need to know what mechanism the publisher will use to raise the events. Note also that while whoever defined the event data structure in .net apparently thought there should be a public means of raising them, neither C# nor vb.net makes use of that feature.
To define about event in simple way:
Event is a REFERENCE to a delegate with two restrictions
Cannot be invoked directly
Cannot be assigned values directly (e.g eventObj = delegateMethod)
Above two are the weak points for delegates and it is addressed in event. Complete code sample to show the difference in fiddler is here https://dotnetfiddle.net/5iR3fB .
Toggle the comment between Event and Delegate and client code that invokes/assign values to delegate to understand the difference
Here is the inline code.
/*
This is working program in Visual Studio. It is not running in fiddler because of infinite loop in code.
This code demonstrates the difference between event and delegate
Event is an delegate reference with two restrictions for increased protection
1. Cannot be invoked directly
2. Cannot assign value to delegate reference directly
Toggle between Event vs Delegate in the code by commenting/un commenting the relevant lines
*/
public class RoomTemperatureController
{
private int _roomTemperature = 25;//Default/Starting room Temperature
private bool _isAirConditionTurnedOn = false;//Default AC is Off
private bool _isHeatTurnedOn = false;//Default Heat is Off
private bool _tempSimulator = false;
public delegate void OnRoomTemperatureChange(int roomTemperature); //OnRoomTemperatureChange is a type of Delegate (Check next line for proof)
// public OnRoomTemperatureChange WhenRoomTemperatureChange;// { get; set; }//Exposing the delegate to outside world, cannot directly expose the delegate (line above),
public event OnRoomTemperatureChange WhenRoomTemperatureChange;// { get; set; }//Exposing the delegate to outside world, cannot directly expose the delegate (line above),
public RoomTemperatureController()
{
WhenRoomTemperatureChange += InternalRoomTemperatuerHandler;
}
private void InternalRoomTemperatuerHandler(int roomTemp)
{
System.Console.WriteLine("Internal Room Temperature Handler - Mandatory to handle/ Should not be removed by external consumer of ths class: Note, if it is delegate this can be removed, if event cannot be removed");
}
//User cannot directly asign values to delegate (e.g. roomTempControllerObj.OnRoomTemperatureChange = delegateMethod (System will throw error)
public bool TurnRoomTeperatureSimulator
{
set
{
_tempSimulator = value;
if (value)
{
SimulateRoomTemperature(); //Turn on Simulator
}
}
get { return _tempSimulator; }
}
public void TurnAirCondition(bool val)
{
_isAirConditionTurnedOn = val;
_isHeatTurnedOn = !val;//Binary switch If Heat is ON - AC will turned off automatically (binary)
System.Console.WriteLine("Aircondition :" + _isAirConditionTurnedOn);
System.Console.WriteLine("Heat :" + _isHeatTurnedOn);
}
public void TurnHeat(bool val)
{
_isHeatTurnedOn = val;
_isAirConditionTurnedOn = !val;//Binary switch If Heat is ON - AC will turned off automatically (binary)
System.Console.WriteLine("Aircondition :" + _isAirConditionTurnedOn);
System.Console.WriteLine("Heat :" + _isHeatTurnedOn);
}
public async void SimulateRoomTemperature()
{
while (_tempSimulator)
{
if (_isAirConditionTurnedOn)
_roomTemperature--;//Decrease Room Temperature if AC is turned On
if (_isHeatTurnedOn)
_roomTemperature++;//Decrease Room Temperature if AC is turned On
System.Console.WriteLine("Temperature :" + _roomTemperature);
if (WhenRoomTemperatureChange != null)
WhenRoomTemperatureChange(_roomTemperature);
System.Threading.Thread.Sleep(500);//Every second Temperature changes based on AC/Heat Status
}
}
}
public class MySweetHome
{
RoomTemperatureController roomController = null;
public MySweetHome()
{
roomController = new RoomTemperatureController();
roomController.WhenRoomTemperatureChange += TurnHeatOrACBasedOnTemp;
//roomController.WhenRoomTemperatureChange = null; //Setting NULL to delegate reference is possible where as for Event it is not possible.
//roomController.WhenRoomTemperatureChange.DynamicInvoke();//Dynamic Invoke is possible for Delgate and not possible with Event
roomController.SimulateRoomTemperature();
System.Threading.Thread.Sleep(5000);
roomController.TurnAirCondition (true);
roomController.TurnRoomTeperatureSimulator = true;
}
public void TurnHeatOrACBasedOnTemp(int temp)
{
if (temp >= 30)
roomController.TurnAirCondition(true);
if (temp <= 15)
roomController.TurnHeat(true);
}
public static void Main(string []args)
{
MySweetHome home = new MySweetHome();
}
}
For people live in 2020, and want a clean answer...
Definitions:
delegate: defines a function pointer.
event: defines
(1) protected interfaces, and
(2) operations(+=, -=), and
(3) advantage: you don't need to use new keyword anymore.
Regarding the adjective protected:
// eventTest.SomeoneSay = null; // Compile Error.
// eventTest.SomeoneSay = new Say(SayHello); // Compile Error.
Also notice this section from Microsoft: https://learn.microsoft.com/en-us/dotnet/standard/events/#raising-multiple-events
Code Example:
with delegate:
public class DelegateTest
{
public delegate void Say(); // Define a pointer type "void <- ()" named "Say".
private Say say;
public DelegateTest() {
say = new Say(SayHello); // Setup the field, Say say, first.
say += new Say(SayGoodBye);
say.Invoke();
}
public void SayHello() { /* display "Hello World!" to your GUI. */ }
public void SayGoodBye() { /* display "Good bye!" to your GUI. */ }
}
with event:
public class EventTest
{
public delegate void Say();
public event Say SomeoneSay; // Use the type "Say" to define event, an
// auto-setup-everything-good field for you.
public EventTest() {
SomeoneSay += SayHello;
SomeoneSay += SayGoodBye;
SomeoneSay();
}
public void SayHello() { /* display "Hello World!" to your GUI. */ }
public void SayGoodBye() { /* display "Good bye!" to your GUI. */ }
}
Reference:
Event vs. Delegate - Explaining the important differences between the Event and Delegate patterns in C# and why they're useful.: https://dzone.com/articles/event-vs-delegate

Categories