Core2 has a hook for validating options read from appsettings.json:
services.PostConfigure<MyConfig>(options => {
// do some validation
// maybe throw exception if appsettings.json has invalid data
});
This validation code triggers on first use of MyConfig, and every time after that. So I get multiple runtime errors.
However it is more sensible to run validation during startup - if config validation fails I want the app to fail immediately. The docs imply that is how it works, but that is not what happens.
So am I doing it right? If so and this is by design, then how can I change what I'm doing so it works the way I want?
(Also, what is the difference between PostConfigure and PostConfigureAll? There is no difference in this case, so when should I use either one?)
This has been discussed in this dotnet/runtime issue since 2018.
In .NET 6, a ValidateOnStart extension method has been added to Microsoft.Extensions.Hosting
You can use it this way:
services.AddOptions<MyOptions>()
.ValidateDataAnnotations()
.ValidateOnStart(); // Support eager validation
However, ValidateDataAnnotations still does not validate nested properties and this won't be fixed soon (Microsoft issue).
This NuGet package provides a ConfigureAndValidate<TOptions> extension method which validates options at startup.
It is based on Microsoft.Extensions.Options.DataAnnotations. But unlike Microsoft's package, it can even validate nested properties.
It is compatible with .NET Standard 2.0, .NET Core 3.1, .NET 5, .NET 6 and .NET 7.
Documentation & source code (GitHub)
TL;DR
Create your options class(es)
Decorate your options with data annotations
Call ConfigureAndValidate<T>(Action<T> configureOptions) on your IServiceCollection
ConfigureAndValidate will configure your options (calling the base Configure method), but will also check that the built configuration respects the data annotations, otherwise an OptionsValidationException (with details) is thrown as soon as the application is started. No misconfiguration surprise at runtime!
Use
ServiceCollection extension
services.ConfigureAndValidate<TOptions>(configureOptions)
Is syntactic sugar for
services
.AddOptions<TOptions>()
.Configure(configureOptions) // Microsoft
.ValidateDataAnnotationsRecursively() // based on Microsoft's ValidateDataAnnotations, but supports nested properties
.ValidateOnStart() // or ValidateEagerly() in previous versions
.Services
OptionsBuilder extensions
ValidateDataAnnotationsRecursively
This method register this options instance for validation of its DataAnnotations at the first dependency injection. Nested objects are supported.
ValidateOnStart (or ValidateEagerly in previous versions)
This method validates this options instance at application startup rather than at the first dependency injection.
Custom validation
You can combine with your own option validations:
services
.AddOptions<TOptions>()
.Configure(configureOptions)
//...
.Validate(options => { /* custom */ }, message)
.Validate<TDependency1, TDependency2>((options, dependency1, dependency2) =>
{
// custom validation
},
"Custom error message")
//...
.ValidateDataAnnotationsRecursively()
.ValidateOnStart()
Microsoft options validation documentation
There is no real way to run a configuration validation during startup. As you already noticed, post configure actions run, just like normal configure actions, lazily when the options object is being requested. This completely by design, and allows for many important features, for example reloading configuration during run-time or also options cache invalidation.
What the post configuration action is usually being used for is not a validation in terms of “if there’s something wrong, then throw an exception”, but rather “if there’s something wrong, fall back to sane defaults and make it work”.
For example, there’s a post configuration step in the authentication stack, that makes sure that there’s always a SignInScheme set for remote authentication handlers:
options.SignInScheme = options.SignInScheme ?? _authOptions.DefaultSignInScheme ?? _authOptions.DefaultScheme;
As you can see, this will not fail but rather just provides multiple fallbacks.
In this sense, it’s also important to remember that options and configuration are actually two separate things. It’s just that the configuration is a commonly used source for configuring options. So one might argue that it is not actually the job of the options to validate that the configuration is correct.
As such it might make more sense to actually check the configuration in the Startup, before configuring the options. Something like this:
var myOptionsConfiguration = Configuration.GetSection("MyOptions");
if (string.IsNullOrEmpty(myOptionsConfiguration["Url"]))
throw new Exception("MyOptions:Url is a required configuration");
services.Configure<MyOptions>(myOptionsConfiguration);
Of course this easily becomes very excessive, and will likely force you to bind/parse many properties manually. It will also ignore the configuration chaining that the options pattern supports (i.e. configuring a single options object with multiple sources/actions).
So what you could do here is keep your post configuration action for validation, and simply trigger the validation during startup by actually requesting the options object. For example, you could simply add IOptions<MyOptions> as a dependency to the Startup.Configure method:
public void Configure(IApplicationBuilder app, IOptions<MyOptions> myOptions)
{
// all configuration and post configuration actions automatically run
// …
}
If you have multiple of these options, you could even move this into a separate type:
public class OptionsValidator
{
public OptionsValidator(IOptions<MyOptions> myOptions, IOptions<OtherOptions> otherOptions)
{ }
}
At that time, you could also move the logic from the post configuration action into that OptionsValidator. So you could trigger the validation explicitly as part of the application startup:
public void Configure(IApplicationBuilder app, OptionsValidator optionsValidator)
{
optionsValidator.Validate();
// …
}
As you can see, there’s no single answer for this. You should think about your requirements and see what makes the most sense for your case. And of course, this whole validation only makes sense for certain configurations. In particular, you will have difficulties when working configurations that will change during run-time (you could make this work with a custom options monitor, but it’s probably not worth the hassle). But as most own applications usually just use cached IOptions<T>, you likely don’t need that.
As for PostConfigure and PostConfigureAll, they both register an IPostConfigure<TOptions>. The difference is simply that the former will only match a single named option (by default the unnamed option—if you don’t care about option names), while PostConfigureAll will run for all names.
Named options are for example used for the authentication stack, where each authentication method is identified by its scheme name. So you could for example add multiple OAuth handlers and use PostConfigure("oauth-a", …) to configure one and PostConfigure("oauth-b", …) to configure the other, or use PostConfigureAll(…) to configure them both.
On an ASP.NET Core 2.2 project I got this working doing eager validation by following these steps...
Given an Options class like this one:
public class CredCycleOptions
{
[Range(1753, int.MaxValue, ErrorMessage = "Please enter a valid integer Number.")]
public int VerifiedMinYear { get; set; }
[Range(1753, int.MaxValue, ErrorMessage = "Please enter a valid integer Number.")]
public int SignedMinYear { get; set; }
[Range(1753, int.MaxValue, ErrorMessage = "Please enter a valid integer Number.")]
public int SentMinYear { get; set; }
[Range(1753, int.MaxValue, ErrorMessage = "Please enter a valid integer Number.")]
public int ConfirmedMinYear { get; set; }
}
In Startup.cs add these lines to ConfigureServices method:
services.AddOptions();
// This will validate Eagerly...
services.ConfigureAndValidate<CredCycleOptions>("CredCycle", Configuration);
ConfigureAndValidate is an extension method from here.
public static class OptionsExtensions
{
private static void ValidateByDataAnnotation(object instance, string sectionName)
{
var validationResults = new List<ValidationResult>();
var context = new ValidationContext(instance);
var valid = Validator.TryValidateObject(instance, context, validationResults);
if (valid)
return;
var msg = string.Join("\n", validationResults.Select(r => r.ErrorMessage));
throw new Exception($"Invalid configuration for section '{sectionName}':\n{msg}");
}
public static OptionsBuilder<TOptions> ValidateByDataAnnotation<TOptions>(
this OptionsBuilder<TOptions> builder,
string sectionName)
where TOptions : class
{
return builder.PostConfigure(x => ValidateByDataAnnotation(x, sectionName));
}
public static IServiceCollection ConfigureAndValidate<TOptions>(
this IServiceCollection services,
string sectionName,
IConfiguration configuration)
where TOptions : class
{
var section = configuration.GetSection(sectionName);
services
.AddOptions<TOptions>()
.Bind(section)
.ValidateByDataAnnotation(sectionName)
.ValidateEagerly();
return services;
}
public static OptionsBuilder<TOptions> ValidateEagerly<TOptions>(this OptionsBuilder<TOptions> optionsBuilder) where TOptions : class
{
optionsBuilder.Services.AddTransient<IStartupFilter, StartupOptionsValidation<TOptions>>();
return optionsBuilder;
}
}
I plumbed ValidateEargerly extension method right inside ConfigureAndValidate. It makes use of this other class from here:
public class StartupOptionsValidation<T> : IStartupFilter
{
public Action<IApplicationBuilder> Configure(Action<IApplicationBuilder> next)
{
return builder =>
{
var options = builder.ApplicationServices.GetService(typeof(IOptions<>).MakeGenericType(typeof(T)));
if (options != null)
{
// Retrieve the value to trigger validation
var optionsValue = ((IOptions<object>)options).Value;
}
next(builder);
};
}
}
This allows us to add data annotations to the CredCycleOptions and get nice error feedback right at the moment the app starts making it an ideal solution.
If an option is missing or have a wrong value, we don't want users to catch these errors at runtime. That would be a bad experience.
There are easy way to validating with using IStartupFilter and IValidateOptions.
You can just put below code your ASP.NET Core project.
public static class OptionsBuilderExtensions
{
public static OptionsBuilder<TOptions> ValidateOnStartupTime<TOptions>(this OptionsBuilder<TOptions> builder)
where TOptions : class
{
builder.Services.AddTransient<IStartupFilter, OptionsValidateFilter<TOptions>>();
return builder;
}
public class OptionsValidateFilter<TOptions> : IStartupFilter where TOptions : class
{
private readonly IOptions<TOptions> _options;
public OptionsValidateFilter(IOptions<TOptions> options)
{
_options = options;
}
public Action<IApplicationBuilder> Configure(Action<IApplicationBuilder> next)
{
_ = _options.Value; // Trigger for validating options.
return next;
}
}
}
And just chain the ValidateOnStartup method on OptionsBuilder<TOptions>.
services.AddOptions<SampleOption>()
.Bind(Configuration)
.ValidateDataAnnotations()
.ValidateOnStartupTime();
If you want to create custom validator for options class, checkout this article.
This has been implemented in .NET 6. Now you can just write the following:
services.AddOptions<SampleOption>()
.Bind(Configuration)
.ValidateDataAnnotations()
.ValidateOnStart(); // works in .NET 6
No need for external NuGet Packages or extra code.
See OptionsBuilderExtensions.ValidateOnStart<TOptions>
Below is a generic ConfigureAndValidate method to validate immediately and "fail fast".
To summarize the steps:
Call serviceCollection.Configure for your options
Do serviceCollection.BuildServiceProvider().CreateScope()
Get the options instance with scope.ServiceProvider.GetRequiredService<IOptions<T>> (remember to take the .Value)
Validate it using Validator.TryValidateObject
public static class ConfigExtensions
{
public static void ConfigureAndValidate<T>(this IServiceCollection serviceCollection, Action<T> configureOptions) where T : class, new()
{
// Inspired by https://blog.bredvid.no/validating-configuration-in-asp-net-core-e9825bd15f10
serviceCollection.Configure(configureOptions);
using (var scope = serviceCollection.BuildServiceProvider().CreateScope())
{
var options = scope.ServiceProvider.GetRequiredService<IOptions<T>>();
var optionsValue = options.Value;
var configErrors = ValidationErrors(optionsValue).ToArray();
if (!configErrors.Any())
{
return;
}
var aggregatedErrors = string.Join(",", configErrors);
var count = configErrors.Length;
var configType = typeof(T).FullName;
throw new ApplicationException($"{configType} configuration has {count} error(s): {aggregatedErrors}");
}
}
private static IEnumerable<string> ValidationErrors(object obj)
{
var context = new ValidationContext(obj, serviceProvider: null, items: null);
var results = new List<ValidationResult>();
Validator.TryValidateObject(obj, context, results, true);
foreach (var validationResult in results)
{
yield return validationResult.ErrorMessage;
}
}
}
Related
I'm using the Options pattern to configure my ASP.net Core 3.1 web app.
There are two options classes:
public class SystemOptions
{
public string RootPath { get; set; }
}
public class ModuleOptions
{
public string SubPath { get; set; }
// this should become something like RootPath + SubPath
public string FullPath { get; }
}
And the associated appsettings.json
{
"SystemOptions": {
"RootPath": "\\webdav"
},
"ModuleOptions": {
"SubPath": "\subdirformodule"
}
}
And in Startup:
public void ConfigureServices(IServiceCollection services)
{
services.Configure<SystemOptions>(configuration.GetSection("SystemOptions"));
services.Configure<ModuleOptions>(configuration.GetSection("ModuleOptions"));
}
Now I would like to initialize the FullPath in ModuleOptions once during app startup.
Therefore I need access to the SystemOptions.RootPath from within the ModuleOptions.
Is this possible?
I tried the following:
I added an InitializeFullPath() method to the ModuleOptions:
public string InitializeFullPath(string basePath)
{
// concat basePath and SubPath and return
... return fullPath;
}
and tried to use this in ConfigureServices:
services.Configure<SystemOptions>(configuration.GetSection("SystemOptions"));
services.AddOptions<ModuleOptions>()
.Configure<SystemOptions>((s, m) => m.FullPath = m.InitializeFullPath(s.RootPath));
But all I get is:
"No service for type '...SystemOptions' has been registered."
later on when Startup.Configure() is executed.
(And by the time this error occured, the InitializeFullPath method has not been executed at all - a breakpoint set there was not hit.)
So I have two questions:
how can I use the content of one option object during initialization of the second option object?
When will the delegate that you can specify in Configure() be executed?
I am going to answer your second question first. The configuration delegate is invoked the first time the Value property of the IOptions<YourOptions> is invoked. This interface is registered as a singleton so it's a one-time only thing. For IOptionsMonitor/IOptionsSnapshot they are similarly invoked on every new instance of the options.
Now to your first question... You were close! This should work:
services.AddOptions<ModuleOptions>()
.Configure<IOptions<SystemOptions>>(
(mod, sys) => mod.FullPath = mod.InitializeFullPath(sys.Value.RootPath)
);
Note that we are using IOptions<SystemOptions> and .Value. The Configure method that is chained to AddOptions is not the same as the one directly on the service collection; the generic arguments are the dependent service types and the first parameter is the options type from AddOptions. So that means that you reversed the arguments to the delegate (the option being configured is the first parameter).
Another...option is to use the IConfigureOptions interface. I typically go this route and don't use the form you have shown, even for "simple" dependent configuration:
public ModuleOptionsConfigurator : IConfigureOptions<ModuleOptions>
{
private readonly SystemOptions _sys;
public ModuleOptionsConfigurator(IOptions<SystemOptions> opts)
=> _sys = opts.Value;
public void Configure(ModuleOptions mod)
{
mod.FullPath = mod.InitializeFullPath(_sys.RootPath);
}
}
Which you then register with DI like so:
services.Configure<SystemOptions>(configuration.GetSection("SystemOptions"));
services.Configure<ModuleOptions>(configuration.GetSection("ModuleOptions"))
// register the configurator
services.ConfigureOptions<ModuleOptionsConfigurator>();
This allows you to encapsulate any sort of configurarion logic into a class. You can take zero dependencies up to however many you need.
The IPostConfigureOptions<> interface works similarly, but will run after all other Configure callbacks and IConfigureOptions<> implementations (and allows you to act differently for named options). Based on your description, this may be the better interface:
public ModuleOptionsPostConfigurator : IPostConfigureOptions<ModuleOptions>
{
private readonly SystemOptions _sys;
public ModuleOptionsPostConfigurator(IOptions<SystemOptions> opts)
=> _sys = opts.Value;
public void PostConfigure(string name, ModuleOptions mod)
{
mod.FullPath = mod.InitializeFullPath(_sys.RootPath);
}
}
IPostConfigureOptions is registered the same way as IConfigureOptions:
// register the configurator
services.ConfigureOptions<ModuleOptionsPostConfigurator>();
You can also combine the two interfaces in one implementing class, which I have often found a case for.
See the official documentation for more information on the options patterns.
I have a legacy Asp.net Core 3.1 application which uses Kestrel server and all our GET and POST calls works fine. We have bunch of middlewares already on my legacy application and we use each of those middlewares for different purpose depending on what is the endpoint.
This is how our legacy application is setup as shown below. I have tried to keep things simple by keeping only important things.
Below is our BaseMiddleware class which is extended by bunch of other middlewares we have. Approx we have 10+ middlewares extending BaseMiddleware class -
BaseMiddleware.cs
public abstract class BaseMiddleware {
protected static ICatalogService catalogService;
protected static ICustomerService customerService;
private static IDictionary <string, Object> requiredServices;
private readonly RequestDelegate _next;
public abstract bool IsCorrectEndpoint(HttpContext context);
public abstract string GetEndpoint(HttpContext context);
public abstract Task HandleRequest(HttpContext context);
public BaseMiddleware(RequestDelegate next) {
var builder = new StringBuilder("");
var isMissingService = false;
foreach(var service in requiredServices) {
if (service.Value == null) {
isMissingService = true;
builder.Append(service.Key).Append(", ");
}
}
if (isMissingService) {
var errorMessage = builder.Append("cannot start server.").ToString();
throw new Exception(errorMessage);
}
_next = next;
}
public async Task Invoke(HttpContext context) {
if (IsCorrectEndpoint(context)) {
try {
await HandleRequest(context);
} catch (Exception ex) {
// handle exception here
return;
}
return;
}
await _next.Invoke(context);
}
public static void InitializeDependencies(IServiceProvider provider) {
requiredServices = new Dictionary<string, Object>();
var catalogServiceTask = Task.Run(() => provider.GetService<ICatalogService>());
var customerServiceTask = Task.Run(() => provider.GetService<ICustomerService>());
// .... few other services like above approx 10+ again
Task.WhenAll(catalogServiceTask, landingServiceTask, customerServiceTask).Wait();
requiredServices[nameof(catalogService)] = catalogService = catalogServiceTask.Result;
requiredServices[nameof(customerService)] = customerService = customerServiceTask.Result;
// ....
}
}
ICatalogService and ICustomerService are normal interfaces with some methods in them that their implementation class implements.
Below is one of our middlewares example that extend BaseMiddleware. All other middlewares follow same logic as below one -
FirstServiceMiddleware.cs
public class FirstServiceMiddleware : BaseMiddleware
{
public FirstServiceMiddleware(RequestDelegate next) : base(next) { }
public override bool IsCorrectEndpoint(HttpContext context)
{
return context.Request.Path.StartsWithSegments("/first");
}
public override string GetEndpoint(HttpContext context) => "/first";
public override async Task HandleRequest(HttpContext context)
{
context.Response.StatusCode = 200;
context.Response.ContentType = "application/json";
await context.Response.WriteAsync("Hello World!");
}
}
public static class FirstServiceMiddlewareExtension
{
public static IApplicationBuilder UseFirstService(this IApplicationBuilder builder)
{
return builder.UseMiddleware<FirstServiceMiddleware>();
}
}
Below is how my Startup class is configured -
Startup.cs
private static ILoggingService _loggingService;
public Startup(IHostingEnvironment env) {
var builder = new ConfigurationBuilder()
.SetBasePath(env.ContentRootPath)
.AddJsonFile("appsettings.json", optional: true, reloadOnChange: true)
.AddJsonFile($"appsettings.{env.EnvironmentName}.json", optional: true)
.AddEnvironmentVariables();
Configuration = builder.Build();
}
public IConfigurationRoot Configuration { get; }
public void ConfigureServices(IServiceCollection services) {
services.AddResponseCompression(options =>
{
options.Providers.Add<GzipCompressionProvider>();
});
services.Configure<GzipCompressionProviderOptions>(options =>
{
options.Level = CompressionLevel.Fastest;
});
DependencyBootstrap.WireUpDependencies(services);
var provider = services.BuildServiceProvider();
if (_loggingService == null) _loggingService = provider.GetService<ILoggingService>();
//.. some other code here
BaseMiddleware.InitializeDependencies(provider);
}
public void Configure(IApplicationBuilder app, IHostApplicationLifetime lifetime) {
// old legacy middlewares
app.UseFirstService();
// .. few other middlewares here
}
And below is my DependencyBootstrap class -
DependencyBootstrap.cs
public static class DependencyBootstrap
{
//.. some constants here
public static void WireUpDependencies(IServiceCollection services)
{
ThreadPool.SetMinThreads(100, 100);
var provider = services.BuildServiceProvider();
var loggingService = provider.GetService<ILoggingService>();
// ... some other code here
try
{
WireUp(services, loggingService);
}
catch (Exception ex)
{
Console.WriteLine(ex);
}
}
private static void WireUp(IServiceCollection services, ILoggingService loggingService)
{
// adding services here
services.AddSingleton<....>();
services.AddSingleton<....>();
//....
var localProvider = services.BuildServiceProvider();
if (IS_DEVELOPMENT)
{
processClient = null;
}
else
{
processClient = localProvider.GetService<IProcessClient>();
}
services.AddSingleton<IData, DataImpl>();
services.AddSingleton<ICatalogService, CatalogServiceImpl>();
services.AddSingleton<ICustomerService, CustomerServiceImpl>();
//.. some other services and singleton here
}
}
Problem Statement
I have recently started working with C# and asp.net core framework. I have done my reading and it looks like -
Our legacy application doesn't use Dependency Injection properly as we have lot of places using BuildServiceProvider method which causes that warning. I am not sure why we have to do it.
Also do we really need InitializeDependencies method in BaseMiddleware class? If not then how we can initialize dependencies properly? It looks like we are trying to initialize all the dependencies during server startup so that they all are ready when the call comes for any middleware. I'd like to keep this logic as it is if possible.
Currently I am confuse what is the best way to use DI in asp.net core and if my application is doing it wrong then how can I do it the right way? Above code works fine in our application from a very long time but looks like we might be using it totally wrong way of DI.
Calling BuildServiceProvider multiple times can cause serious trouble, because each call to BuildServiceProvider results in a new container instance with its own cache. This means that registrations that are expected to have the Singleton lifestyle, suddenly are created more than once. This is a problem called Ambiguous Lifestyle.
Some Singletons are stateless and for them there is no difference in creating one or a thousand. But other components that are registered as Singleton might have state, and the working of the application might (indirectly) depend on that state not being duplicated.
To make matters worse, while your application might work correctly today, this might change any time in the future when one of the third-party or framework components you depend on makes a change to one of their components in such way that it becomes a problem when that component is created multiple times.
In your example, you are resolving both ILoggingService and IProcessClient from a service provider. If the resolved components are stateless objects without stateful dependencies, there is no real harm done. But this might change when they become stateful. Again, this can happen by a change of one of its indirect dependencies, so this is something you might not be aware of. This can cause you or your team to waste many hours; such problem will likely not be easily found.
This means that the answer "simply" is to prevent calling BuildServiceProvider() to create intermediate container instances. But this might be easier said than done. In your case, however, you seem to require a dependency on ILoggerService before all dependencies are wired. A typical way to achieve this is to split the registration phase into two separate steps:
One step where you manually create those few singletons that you need before hand
Add them to your container builder (IServiceCollection)
Add all other registrations
For instance:
private ILoggingService _loggingService;
public Startup(Confiration config)
{
_loggingService = new MySpecialLoggingService(config.LogPath);
}
public void ConfigureServices(IServiceCollection services)
{
services.AddSingleton(_loggingService);
// More stuf here.
...
}
Advantage of this structure is that when a dependency is added to the constructor of this manually built MySpecialLoggingService, your code stops compiling and you're forced to look at this code. When that constructor depends on some other framework abstraction or application abstraction that isn't yet available, you know you're in trouble and need to rethink your design.
Final note, calling BuildServiceProvider multiple times isn't a bad thing per se. It is okay when you explicitly want to have multiple isolated modules in your application that each have their own state and run independently of one another. For instance when running multiple end points for multiple bounded contexts within the same process.
UPDATE
I think I am starting to understand what it is you are trying to achieve in your BaseMiddleware. It is a 'convenient' helper class that holds all the dependencies that its derivatives might need. This is probably an old design and you might be aware of this, but this base class is quite problematic. Base classes with dependencies are hardly ever a good idea, because they tend to become big, ever changing, and obfuscate the fact that their derivatives become too complex. In your case, even, you are using the Service Locator anti-pattern which is never a good idea.
Besides this, there is a lot going on in that BaseMiddleware class that—to me—makes little sense, such as:
It contains complex logic to verify whether all dependencies exist, while there are more effective ways to do so. The most effective way is to apply Constructor Injection because it will guarantee that its necessary dependencies are always available. On top of that, you can validate the IServiceCollection on build. This gives you even greater guarantees over the correctness of your DI configuration than your BaseMiddleware currently provides.
It resolves all its services in background threads, which implies that construction of those components is either heavy on CPU or I/O, which is a problem. Instead composition should be fast, because injection constructors should be simple, which allows you to compose object graph with confidence.
You do exception handling in the base class, while it is better suited to be applied at a higher level; for instance, using an outer-most piece of middleware. For the sake of simplicity, though, my next example keeps exception handling inside the base class. That's because I have no idea what kind of things you are doing in there, that could influence my answer.
As the base class is resolving from the root container, middleware classes are only able to make use of Singleton dependencies. Connecting to the database through Entity Framework, for instance, will be a problem, because DbContext classes should not be captured in Singleton consumers.
So, with the observations and advice above, I would suggest reducing the BaseMiddleware class to the following:
// Your middleware classes should implement IMiddleware; this allows middleware
// classes to be transient and have scoped dependencies.
public abstract class ImprovedBaseMiddleware : IMiddleware
{
public abstract bool IsCorrectEndpoint(HttpContext context);
public abstract string GetEndpoint(HttpContext context);
public abstract Task HandleRequest(HttpContext context);
public async Task InvokeAsync(HttpContext context, RequestDelegate next)
{
if (IsCorrectEndpoint(context)) {
try {
await HandleRequest(context);
}
catch (Exception ex) {
// handle exception here
return;
}
return;
}
await next(context);
}
}
Now based on this new base class, create your middleware implementations similar to this next example:
public class ImprovedFirstServiceMiddleware : ImprovedBaseMiddleware
{
private readonly ICatalogService _catalogService;
// Add all dependencies required by this middleware in the constructor.
public FirstServiceMiddleware(ICatalogService catalogService)
{
_catalogService = catalogService;
}
public override bool IsCorrectEndpoint(HttpContext context) =>
context.Request.Path.StartsWithSegments("/first");
public override string GetEndpoint(HttpContext context) => "/first";
public override async Task HandleRequest(HttpContext context)
{
context.Response.StatusCode = 200;
context.Response.ContentType = "application/json";
await context.Response.WriteAsync("Hello from "
+ _catalogService.SomeValue());
}
}
In your application, you can register your middleware classes as follows:
public void ConfigureServices(IServiceCollection services) {
// When middleware implements IMiddleware, it must be registered. But
// that's okay, because it allows the middleware with its
// dependencies to be 'verified on build'.
services.AddTransient<ImprovedFirstServiceMiddleware>();
// If you have many middleware classes, you can use
// Auto-Registration instead. e.g.:
var middlewareTypes =
from type in typeof(HomeController).Assembly.GetTypes()
where !type.IsAbstract && !type.IsGenericType
where typeof(IMiddleware).IsAssignableFrom(type)
select type;
foreach (var middlewareType in middlewareTypes)
services.AddTransient(middlewareType);
...
}
public void Configure(
IApplicationBuilder app, IHostApplicationLifetime lifetime)
{
// Add your middleware in the correct order as you did previously.
builder.UseMiddleware<ImprovedFirstServiceMiddleware>();
}
TIP: If you start to notice that a middleware classes get big constructors, that's likely because such class does too much and gets too complex. This means it should be refactored into multiple smaller classes. In that case, your class is exhibiting the Constructor Over-Injection code smell. There are many possible refactoring patterns and design patterns available that can get you out of this situation.
I would like to wire the services in the configuration file, something like
builder.Services.AddTransient<MyService>(s => s.GetServiceFromSetting<MyAppSetting>("MyServiceA"));
I could instead use reflection to get the type (although I am not sure if the configuration is available in Startup already, at least with Azure functions there is an issue: https://github.com/Azure/azure-webjobs-sdk/issues/2406).
I was wondering, if there is a better way to get this done.
Presumably your configuration won't change while the application is running. Your configuration is loaded at startup. Dependencies are registered at startup. So startup is an ideal place to decide which implementation you'll use based on configuration.
Assume you've read some value from configuration. You could use a string, a boolean, whatever. An enum might be a good choice if there are numerous possibilities.
You've got your value, whatever it is, read from startup. In this case I'll use a boolean.
if(someFlag)
{
builder.Services.AddTransient<ISomeService, SomeImplementation>();
}
else
{
builder.Services.AddTransient<ISomeService, SomeOtherImplementation>();
}
Now instead of having code that reads from configuration at runtime (as opposed to startup) the decision is made once. After all, why keep checking a value over and over at runtime if it's determined by a configuration value that doesn't change at runtime?
You could use the actual type name as a setting:
var serviceTypeName = Configuration.GetValue<string>("serviceType");
var serviceType = Type.GetType(serviceTypeName);
if (typeof(IMyService).IsAssignableFrom(serviceType))
{
services.AddTransient<IMyService>(provider => (IMyService)provider.GetRequiredService(serviceType));
}
else
{
throw new Exception("The type name specified in settings doesn't implement IMyService.");
}
which in turn can be packaged as a reusable exension:
public static class RegisterServiceFromConfigurationExtension
{
public static IServiceCollection RegisterTransientFromConfiguration<TService>(
this IServiceCollection serviceCollection,
IConfiguration configuration,
string typeSettingName)
{
var serviceTypeName = configuration.GetValue<string>(typeSettingName);
var serviceType = Type.GetType(serviceTypeName);
if (typeof(IMyService).IsAssignableFrom(serviceType))
{
serviceCollection.AddTransient<IMyService>(provider =>
(IMyService)provider.GetRequiredService(serviceType));
}
else
{
throw new Exception($"The type name {serviceTypeName} does not implement {typeof(TService)}.");
}
return serviceCollection;
}
}
so now the whole thing would be boiled down to
services.RegisterTransientFromConfiguration<ISomeService>(configuration, "settingName");
where "settingName" is the key for the settings value.
I was struggling with this the other day, and couldn't find a reference. But it turned out it's just because it's actually incredibly simple.
You just use the Services.AddXXX method that takes a Func<IServiceProvider,TTargetService> which will run whenever the service is resolved. EG
services.AddScoped<ISomeService>(sp =>
{
var config = sp.GetService<IConfiguration>();
var serviceType = config.GetValue<string>("SomeServiceType");
if (serviceType=="typeA")
{
return sp.GetService<SomeTypeAService>();
}
else if (serviceType=="typeB")
{
return sp.GetService<SomeTypeAService>();
}
else
{
throw new InvalidOperationException($"SomeServiceType {serviceType} unknown.");
}
});
Recently i was using IOptions interface to read configuration in Asp.net core project and i found that my code doesn't show exception page until i call "validate" method explicitly with required property as you can see in below code.
appsettings.json
"DashboardSettings": {
"Header": {
"Title": "Seguro De Coche"//,
//"SearchBoxEnabled": true
}
},
DashboardSetting.cs
public class DashboardSettings
{
public HeaderSettings Header { get; set; }
}
public class HeaderSettings
{
public string Title { get; set; }
[Required]
public bool SearchEnabled { get; set; }
}
Startup.cs
services.AddOptions<DashboardSettings>().
Bind(configuration.GetSection("DashboardSettings")).
ValidateDataAnnotations();
In above case, "SearchEnabled" property required validation doesn't fire. and when i call validate methods explicitly with property, it fires. (see code below with validation method)
services.AddOptions<DashboardSettings>().
Bind(configuration.GetSection("DashboardSettings")).
ValidateDataAnnotations().
Validate(v =>
{
return v.Header.SearchEnabled;
});
so my question is, if my strongly type would have multiple configuration properties, then would i use all properties of class for validating them? If it is, it doesn't seem a good idea to me. Any suggestion on this please?
I don't know if this was an option back in .net core 3 but in .net core 6 you have to call
.ValidateOnStart()
on the optionsbuilder returned from AddOptions<>()
Otherwise, validation is called when the object is retrieved for the first time.
ValidateDataAnnotations method are not called until the IOptions is actually resolved, meaning you request the Value property of it. It is not enough even for DI to resolve the IOption for you. This validation is simply 'very lazy'
If you want this validation to happen earlier and you use ASP.NET Core 6, you can now add ValidateOnStart method.
If you need to use one of the previous version or want more control over the error handling, you can simply ensure that your IOptions are resolved earlier in the process, e.g. during Service Configuration.
To do that create a class, that depends on those options, and make it request their values. Add its instance in Startup.cs:
public class ConfigurationValidator ( IOptions<MyConfig> MyConfig )
{
//no validation trigger yet
MyConfig = myConfig;
}
public IOptions<MyConfig> MyConfig { get; }
internal void Validate()
{
//validation happens in this line:
_ = MyConfig?.Value;
}
And now in Startup.cs
public void Configure(IApplicationBuilder app, ConfigurationValidator configValidator)
{
try
{
configValidator.Validate();
}
catch (Exception ex)
{
//log your errors
}
//process continues here, or not...
}
This approach leaves full control to you so you can decide how to handle your error. But in fact you don't need the Validate method, as the whole logic can happen already in constructor and then Configure method will immediately stop the process and rethrow exception
Ahh, and of course you need to register your ConfigurationValidator as a service. Singleton or whatever.
In ASP.NET Core, one of the things you can do with Microsoft's dependency injection framework is bind "open generics" (generic types unbound to a concrete type) like so:
public void ConfigureServices(IServiceCollection services) {
services.AddSingleton(typeof(IRepository<>), typeof(Repository<>))
}
You can also employ the factory pattern to hydrate dependencies. Here's a contrived example:
public interface IFactory<out T> {
T Provide();
}
public void ConfigureServices(IServiceCollection services) {
services.AddTransient(typeof(IFactory<>), typeof(Factory<>));
services.AddSingleton(
typeof(IRepository<Foo>),
p => p.GetRequiredService<IFactory<IRepository<Foo>>().Provide()
);
}
However, I have not been able to figure out how to combine the two concepts together. It seems like it would start with something like this, but I need the concrete type that is being used to hydrate an instance of IRepository<>.
public void ConfigureServices(IServiceCollection services) {
services.AddTransient(typeof(IFactory<>), typeof(Factory<>));
services.AddSingleton(
typeof(IRepository<>),
provider => {
// Say the IServiceProvider is trying to hydrate
// IRepository<Foo> when this lambda is invoked.
// In that case, I need access to a System.Type
// object which is IRepository<Foo>.
// i.e.: repositoryType = typeof(IRepository<Foo>);
// If I had that, I could snag the generic argument
// from IRepository<Foo> and hydrate the factory, like so:
var modelType = repositoryType.GetGenericArguments()[0];
var factoryType = typeof(IFactory<IRepository<>>).MakeGenericType(modelType);
var factory = (IFactory<object>)p.GetRequiredService(factoryType);
return factory.Provide();
}
);
}
If I try to use the Func<IServiceProvider, object> functor with an open generic, I get this ArgumentException with the message Open generic service type 'IRepository<T>' requires registering an open generic implementation type. from the dotnet CLI. It doesn't even get to the lambda.
Is this type of binding possible with Microsoft's dependency injection framework?
The net.core dependency does not allow you to provide a factory method when registering an open generic type, but you can work around this by providing a type that will implement the requested interface, but internally it will act as a factory. A factory in disguise:
services.AddSingleton(typeof(IMongoCollection<>), typeof(MongoCollectionFactory<>)); //this is the important part
services.AddSingleton(typeof(IRepository<>), typeof(Repository<>))
public class Repository : IRepository {
private readonly IMongoCollection _collection;
public Repository(IMongoCollection collection)
{
_collection = collection;
}
// .. rest of the implementation
}
//and this is important as well
public class MongoCollectionFactory<T> : IMongoCollection<T> {
private readonly _collection;
public RepositoryFactoryAdapter(IMongoDatabase database) {
// do the factory work here
_collection = database.GetCollection<T>(typeof(T).Name.ToLowerInvariant())
}
public T Find(string id)
{
return collection.Find(id);
}
// ... etc. all the remaining members of the IMongoCollection<T>,
// you can generate this easily with ReSharper, by running
// delegate implementation to a new field refactoring
}
When the container resolves the MongoCollectionFactory it will know what type T is and will create the collection correctly. Then we take that created collection save it internally, and delegate all calls to it. ( We are mimicking this=factory.Create() which is not allowed in csharp. :))
Update:
As pointed out by Kristian Hellang the same pattern is used by ASP.NET Logging
public class Logger<T> : ILogger<T>
{
private readonly ILogger _logger;
public Logger(ILoggerFactory factory)
{
_logger = factory.CreateLogger(TypeNameHelper.GetTypeDisplayName(typeof(T)));
}
void ILogger.Log<TState>(...)
{
_logger.Log(logLevel, eventId, state, exception, formatter);
}
}
original discussion here:
https://twitter.com/khellang/status/839120286222012416
See this issue on the dotnet (5) runtime git.
This will add support to register open generics via a factory.
I was dissatisfied with the existing solutions as well.
Here is a full solution, using the built-in container, that supports everything we need:
Simple dependencies.
Complex dependencies (requiring the IServiceProvider to be resolved).
Configuration data (such as connection strings).
We will register a proxy of the type that we really want to use. The proxy simply inherits from the intended type, but gets the "difficult" parts (complex dependencies and configuration) through a separately registered Options type.
Since the Options type is non-generic, it is easy to customize as usual.
public static class RepositoryExtensions
{
/// <summary>
/// A proxy that injects data based on a registered Options type.
/// As long as we register the Options with exactly what we need, we are good to go.
/// That's easy, since the Options are non-generic!
/// </summary>
private class ProxyRepository<T> : Repository<T>
{
public ProxyRepository(Options options, ISubdependency simpleDependency)
: base(
// A simple dependency is injected to us automatically - we only need to register it
simpleDependency,
// A complex dependency comes through the non-generic, carefully registered Options type
options?.ComplexSubdependency ?? throw new ArgumentNullException(nameof(options)),
// Configuration data comes through the Options type as well
options.ConnectionString)
{
}
}
public static IServiceCollection AddRepositories(this ServiceCollection services, string connectionString)
{
// Register simple subdependencies (to be automatically resolved)
services.AddSingleton<ISubdependency, Subdependency>();
// Put all regular configuration on the Options instance
var optionObject = new Options(services)
{
ConnectionString = connectionString ?? throw new ArgumentNullException(nameof(connectionString))
};
// Register the Options instance
// On resolution, last-minute, add the complex subdependency to the options as well (with access to the service provider)
services.AddSingleton(serviceProvider => optionObject.WithSubdependency(ResolveSubdependency(serviceProvider)));
// Register the open generic type
// All dependencies will be resolved automatically: the simple dependency, and the Options (holding everything else)
services.AddSingleton(typeof(IRepository<>), typeof(ProxyRepository<>));
return services;
// Local function that resolves the subdependency according to complex logic ;-)
ISubdependency ResolveSubdependency(IServiceProvider serviceProvider)
{
return new Subdependency();
}
}
internal sealed class Options
{
internal IServiceCollection Services { get; }
internal ISubdependency ComplexSubdependency { get; set; }
internal string ConnectionString { get; set; }
internal Options(IServiceCollection services)
{
this.Services = services ?? throw new ArgumentNullException(nameof(services));
}
/// <summary>
/// Fluently sets the given subdependency, allowing to options object to be mutated and returned as a single expression.
/// </summary>
internal Options WithSubdependency(ISubdependency subdependency)
{
this.ComplexSubdependency = subdependency ?? throw new ArgumentNullException(nameof(subdependency));
return this;
}
}
}
I also don't understand the point of your lambda expression so I'll explain to you my way of doing it.
I suppose what you wish is to reach what is explained in the article you shared
This allowed me to inspect the incoming request before supplying a dependency into the ASP.NET Core dependency injection system
My need was to inspect a custom header in the HTTP request to determine which customer is requesting my API. I could then a bit later in the pipeline decide which implementation of my IDatabaseRepository (File System or Entity Framework linked to a SQL Database) to provide for this unique request.
So I start by writing a middleware
public class ContextSettingsMiddleware
{
private readonly RequestDelegate _next;
public ContextSettingsMiddleware(RequestDelegate next, IServiceProvider serviceProvider)
{
_next = next;
}
public async Task Invoke(HttpContext context, IServiceProvider serviceProvider, IHostingEnvironment env, IContextSettings contextSettings)
{
var customerName = context.Request.Headers["customer"];
var customer = SettingsProvider.Instance.Settings.Customers.FirstOrDefault(c => c.Name == customerName);
contextSettings.SetCurrentCustomer(customer);
await _next.Invoke(context);
}
}
My SettingsProvider is just a singleton that provides me the corresponding customer object.
To let our middleware access this ContextSettings we first need to register it in ConfigureServices in Startup.cs
var contextSettings = new ContextSettings();
services.AddSingleton<IContextSettings>(contextSettings);
And in the Configure method we register our middleware
app.UseMiddleware<ContextSettingsMiddleware>();
Now that our customer is accessible from elsewhere let's write our Factory.
public class DatabaseRepositoryFactory
{
private IHostingEnvironment _env { get; set; }
public Func<IServiceProvider, IDatabaseRepository> DatabaseRepository { get; private set; }
public DatabaseRepositoryFactory(IHostingEnvironment env)
{
_env = env;
DatabaseRepository = GetDatabaseRepository;
}
private IDatabaseRepository GetDatabaseRepository(IServiceProvider serviceProvider)
{
var contextSettings = serviceProvider.GetService<IContextSettings>();
var currentCustomer = contextSettings.GetCurrentCustomer();
if(SOME CHECK)
{
var currentDatabase = currentCustomer.CurrentDatabase as FileSystemDatabase;
var databaseRepository = new FileSystemDatabaseRepository(currentDatabase.Path);
return databaseRepository;
}
else
{
var currentDatabase = currentCustomer.CurrentDatabase as EntityDatabase;
var dbContext = new CustomDbContext(currentDatabase.ConnectionString, _env.EnvironmentName);
var databaseRepository = new EntityFrameworkDatabaseRepository(dbContext);
return databaseRepository;
}
}
}
In order to use serviceProvider.GetService<>() method you will need to include the following using in your CS file
using Microsoft.Extensions.DependencyInjection;
Finally we can use our Factory in ConfigureServices method
var databaseRepositoryFactory = new DatabaseRepositoryFactory(_env);
services.AddScoped<IDatabaseRepository>(databaseRepositoryFactory.DatabaseRepository);
So every single HTTP request my DatabaseRepository will may be different depending of several parameters. I could use a file system or a SQL Database and I can get the proper database corresponding to my customer. (Yes I have multiple databases per customer, don't try to understand why)
I simplified it as possible, my code is in reality more complex but you get the idea (I hope). Now you can modify this to fit your needs.