I apologize if I irritate you as I am still very new to programming programming.
I am currently learning to work with Astar Pathfinding in Unity.
I am also currently referencing code for several Astar algorithms, many of which also introduce map generation code.
This question is about that map generation code, but I would appreciate it if you could answer it in connection with Astar Pathfinding, if possible.
The following code is introduced by a Japanese programmer.
I have a question about "public static Coord operator +(Coord a, Coord b) {return new Coord(a.x +a.y, b.x + b.y); }" in public struct Coord in the following code.
What do the "a and b" in a.x and b.x mean?
using System.Collections.Generic;
using UnityEngine;
[System.Serializable]
public class AStarGrid
{
public enum GroundType
{
NotRoad,
Road,
}
/// <summary>
/// 座標
/// </summary>
[System.Serializable]
public struct Coord
{
public int x;
public int y;
public static Coord zero = new Coord(){ x = 0, y = 0 };
public static Coord one = new Coord(){ x = 1, y = 1 };
public static Coord left = new Coord(){ x = -1, y = 0 };
public static Coord up = new Coord(){ x = 0, y = 1 };
public static Coord right = new Coord(){ x = 1, y = 0 };
public static Coord down = new Coord(){ x = 0, y = -1 };
public static Coord operator +(Coord a, Coord b)
{ return new Coord(a.x + b.x, a.y + b.y); }
public static Coord operator -(Coord a, Coord b)
{ return new Coord(a.x - b.x, a.y - b.y); }
public float SqrMagnitude { get { return x * x + y * y; } }
public float Magnitude { get { return Mathf.Sqrt(SqrMagnitude); } }
public Coord(int x, int y)
{
this.x = x;
this.y = x;
}
}
/// <summary>
/// Cell
/// </summary>
[System.Serializable]
public class Cell
{
public Coord coord;
public GroundType groundType;
}
[SerializeField]
private List<Cell> _cells;
public List<Cell> Cells { get { return _cells; } }
[SerializeField]
private int _columnCount;
public int ColumnCount { get { return _columnCount; } }
[SerializeField]
private int _rowCount;
public int RowCount { get { return _rowCount; } }
[SerializeField]
private Coord _startCellCoord;
public Cell StartCell { get { return GetCell(_startCellCoord); } set { _startCellCoord = value.coord; } }
[SerializeField]
private Coord _goalCellCoord;
public Cell GoalCell { get { return GetCell(_goalCellCoord); } set { _goalCellCoord = value.coord; } }
public AStarGrid(int columnCount, int rowCount)
{
_columnCount = columnCount;
_rowCount = rowCount;
_cells = new List<Cell>();
for (int i = 0; i < columnCount * rowCount; i++) {
var column = Mathf.FloorToInt(i / rowCount);
var row = i % rowCount;
var coord = new Coord(){ x = column, y = row };
_cells.Add(new Cell(){ coord = coord });
}
}
/// <summary>
/// get cell
/// </summary>
public Cell GetCell(Coord coord){
return GetCell(coord.x, coord.y);
}
/// <summary>
/// get cell
/// </summary>
public Cell GetCell(int x, int y)
{
if (IsValidCoord(x, y)) {
var index = x * _rowCount + y;
return _cells[index];
}
else {
return null;
}
}
/// <summary>
/// Does the cell exist?
/// </summary>
public bool IsValidCoord(int x, int y)
{
return x >= 0 && x < _columnCount && y >= 0 && y < _rowCount;
}
/// <summary>
/// get neighbor cells
/// </summary>
public List<Cell> GetAdjacences(int x, int y)
{
var adjacences = new List<Cell>();
var offsets = new Coord[] { Coord.left, Coord.up, Coord.right, Coord.down };
for (int i = 0; i < offsets.Length; i++) {
var cell = GetCell(x + offsets[i].x, y + offsets[i].y);
if (cell != null) {
adjacences.Add(cell);
}
}
return adjacences;
}
}
a and b are references to instances of Cord struct witch contains x and y variables witch you have access to by using . After name of instance of a class/struct also these a and b means if u use - between two cords it will do the math of x of a minus x of b and so on
Related
I need to find largest area with same numbers in 2D array. Example: {{2 2 3}{1 2 3}{1 2 1}}
And mark it in new 2D array with same number for same area.
I will need to color the table with 3 colors, so i use between 1-3 in table[,]
I did test, but it doesn't work properly. ID just stacks too much on the same area.
Second edit: updated the code
public class Matrix
{
public int Height { get; set; }
public int Witdh { get; set; }
public int[,] Table { get; set; }
public int[,] Area { get; set; }
public int ID { get; set; }
public int tempBiggestArea = 0;
public int biggestArea { get; set; }
public Matrix(int height, int witdh)
{
Table = GenerateTable(height, witdh);
Height = height;
Witdh = witdh;
ID = 2;
Area = new int[height,witdh];
}
public int[,] GenerateTable(int height, int witdh)
{
int[,] table = new int[height, witdh];
Random rnd = new Random();
for (int i = 0; i < table.GetLength(0); i++)
{
for (int j = 0; j < table.GetLength(1); j++)
{
table[i, j] = rnd.Next(3) + 1;
}
}
return table;
}
public void Find(int x, int y, int color)
{
if (y < 0)
y = Height - 1;
if (x < 0)
x = Witdh - 1;
if (IsChanged(x, y))
return;
if (Area[x, y] == 0)
{
if (color > 3)
color = 1;
if (Table[x, y] == color)
{
Area[x, y] = ID;
tempBiggestArea++;
Find(x, y - 1, color);
Find(x - 1, y, color);
ID++;
}
}
if (tempBiggestArea > biggestArea)
biggestArea = tempBiggestArea;
tempBiggestArea = 0;
Find(x, y, color + 1);
}
public bool IsChanged(int i, int j)
{
return Area[i, j] != 0;
}
I'm trying to build a class to create Aroon series. But it seems I don't understand the steps well. I'm not sure about for what purpose I have to use the period parameter.
Here is my first attempt:
/// <summary>
/// Aroon
/// </summary>
public class Aroon : IndicatorCalculatorBase
{
public override List<Ohlc> OhlcList { get; set; }
public int Period { get; set; }
public Aroon(int period)
{
this.Period = period;
}
/// <summary>
/// Aroon up: {((number of periods) - (number of periods since highest high)) / (number of periods)} x 100
/// Aroon down: {((number of periods) - (number of periods since lowest low)) / (number of periods)} x 100
/// </summary>
/// <see cref="http://www.investopedia.com/ask/answers/112814/what-aroon-indicator-formula-and-how-indicator-calculated.asp"/>
/// <returns></returns>
public override IIndicatorSerie Calculate()
{
AroonSerie aroonSerie = new AroonSerie();
int indexToProcess = 0;
while (indexToProcess < this.OhlcList.Count)
{
List<Ohlc> tempOhlc = this.OhlcList.Skip(indexToProcess).Take(Period).ToList();
indexToProcess += tempOhlc.Count;
for (int i = 0; i < tempOhlc.Count; i++)
{
int highestHighIndex = 0, lowestLowIndex = 0;
double highestHigh = tempOhlc.Min(x => x.High), lowestLow = tempOhlc.Max(x => x.Low);
for (int j = 0; j < i; j++)
{
if (tempOhlc[j].High > highestHigh)
{
highestHighIndex = j;
highestHigh = tempOhlc[j].High;
}
if (tempOhlc[j].Low < lowestLow)
{
lowestLowIndex = j;
lowestLow = tempOhlc[j].Low;
}
}
int up = ((this.Period - (i - highestHighIndex)) / this.Period) * 100;
aroonSerie.Up.Add(up);
int down = ((this.Period - (i - lowestLowIndex)) / this.Period) * 100;
aroonSerie.Down.Add(down);
}
}
return aroonSerie;
}
}
Is there anyone else tried to do that before?
Here is the csv file I use:
https://drive.google.com/file/d/0Bwv_-8Q17wGaRDVCa2FhMWlyRUk/view
But the result sets for Aroon up and down don't match with the results of aroon function in TTR package for R.
table <- read.csv("table.csv", header = TRUE, sep = ",")
trend <- aroon(table[,c("High", "Low")], n=5)
View(trend)
Screenshot of R result:
Thanks in advance,
#anilca,
for full Disclosure, I learned alot of things to answer your question(i knew nothing in the Finetec...). Thank you! it was an interesting experience!
There are several problems in your implementation:
In the statements:
i - highestHighIndex
and
i - lowestLowIndex
the variable "i" is less or equal to highestHighIndex, lowestLowIndex
so statements:
this.Period - (i - highestHighIndex)
and
this.Period - (i - lowestLowIndex)
will returns the wrong values (most of the time...)
Aroon up and down both of them are percentage, therefore "int" is a wrong data structure.
Because all variables in:
(this.Period - (i - highestHighIndex)) / this.Period)
and
((this.Period - (i - lowestLowIndex)) / this.Period)
are integers you won't recieve the right value.
one more thing the numbers in your excel are sorted from the newest to the oldest.(it effects on the R package)
I've implemented the algorithm based on your code(and your data order...)
public class Aroon : IndicatorCalculatorBase
{
public override List<OhlcSample> OhlcList { get; set; }
private readonly int _period;
public int Period
{
get { return _period; }
}
public Aroon(int period)
{
_period = period;
}
public override IIndicatorSerie Calculate()
{
var aroonSerie = new AroonSerie();
for (var i = _period; i < OhlcList.Count; i++)
{
var aroonUp = CalculateAroonUp(i);
var aroonDown = CalculateAroonDown(i);
aroonSerie.Down.Add(aroonDown);
aroonSerie.Up.Add(aroonUp);
}
return aroonSerie;
}
private double CalculateAroonUp(int i)
{
var maxIndex = FindMax(i - _period, i);
var up = CalcAroon(i - maxIndex);
return up;
}
private double CalculateAroonDown(int i)
{
var minIndex = FindMin(i - _period, i);
var down = CalcAroon(i - minIndex);
return down;
}
private double CalcAroon(int numOfDays)
{
var result = ((_period - numOfDays)) * ((double)100 / _period);
return result;
}
private int FindMin(int startIndex, int endIndex)
{
var min = double.MaxValue;
var index = startIndex;
for (var i = startIndex; i <= endIndex; i++)
{
if (min < OhlcList[i].Low)
continue;
min = OhlcList[i].Low;
index = i;
}
return index;
}
private int FindMax(int startIndex, int endIndex)
{
var max = double.MinValue;
var index = startIndex;
for (var i = startIndex; i <= endIndex; i++)
{
if (max > OhlcList[i].High)
continue;
max = OhlcList[i].High;
index = i;
}
return index;
}
}
public abstract class IndicatorCalculatorBase
{
public abstract List<OhlcSample> OhlcList { get; set; }
public abstract IIndicatorSerie Calculate();
}
public interface IIndicatorSerie
{
List<double> Up { get; }
List<double> Down { get; }
}
internal class AroonSerie : IIndicatorSerie
{
public List<double> Up { get; private set; }
public List<double> Down { get; private set; }
public AroonSerie()
{
Up = new List<double>();
Down = new List<double>();
}
}
public class OhlcSample
{
public double High { get; private set; }
public double Low { get; private set; }
public OhlcSample(double high, double low)
{
High = high;
Low = low;
}
}
Use this test method for debugging:
private Aroon _target;
[TestInitialize]
public void TestInit()
{
_target=new Aroon(5)
{
OhlcList = new List<OhlcSample>
{
new OhlcSample(166.90, 163.65),
new OhlcSample(165.00, 163.12),
new OhlcSample(165.91, 163.21),
new OhlcSample(167.29, 165.11),
new OhlcSample(169.99, 166.84),
new OhlcSample(170.92, 167.90),
new OhlcSample(168.47, 165.90),
new OhlcSample(167.75, 165.75),
new OhlcSample(166.14, 161.89),
new OhlcSample(164.77, 161.44),
new OhlcSample(163.19, 161.49),
new OhlcSample(162.50, 160.95),
new OhlcSample(163.25, 158.84),
new OhlcSample(159.20, 157.00),
new OhlcSample(159.33, 156.14),
new OhlcSample(160.00, 157.00),
new OhlcSample(159.35, 158.07),
new OhlcSample(160.70, 158.55),
new OhlcSample(160.90, 157.66),
new OhlcSample(164.38, 158.45),
new OhlcSample(167.75, 165.70),
new OhlcSample(168.93, 165.60),
new OhlcSample(165.73, 164.00),
new OhlcSample(167.00, 164.66),
new OhlcSample(169.35, 165.01),
new OhlcSample(168.12, 164.65),
new OhlcSample(168.89, 165.79),
new OhlcSample(168.65, 165.57),
new OhlcSample(170.85, 166.00),
new OhlcSample(171.61, 169.10)
}
};
}
[TestMethod]
public void JustToHelpYou()
{
var result = _target.Calculate();
var expectedUp = new List<double>()
{
100,80,60,40,20,0,0,0, 0,0,40,20,0,100,100,100,100,80, 60,100,80,60,40,100,100
};
var expectedDown = new List<double>
{
20,0,0,100,100,80,100,100,100,100,80,60,40,20,0,0,40,20,0,0,40,20,0,40,20
};
Assert.IsTrue( result.Up.SequenceEqual(expectedUp));
Assert.IsTrue( result.Down.SequenceEqual(expectedDown));
}
Just Add implementation of method HighestBarNum and LowestBarnum from your code
public class Aroon
{
public bool AroonDown
{
get;
set;
}
public double Period
{
get;
set;
}
public Aroon()
{
}
public IList<double> Execute(IList<double> src)
{
if (!this.AroonDown)
{
return this.ExecuteUp(src);
}
return this.ExecuteDown(src);
}
public IList<double> ExecuteDown(IList<double> src)
{
double[] period = new double[src.Count];
for (int i = 1; i < src.Count; i++)
{
double num = LowestBarNum(src, i, Period);
period[i] = 100 * (Period - num) / Period;
}
return period;
}
public IList<double> ExecuteUp(IList<double> src)
{
double[] period = new double[src.Count];
for (int i = 1; i < src.Count; i++)
{
double num = HighestBarNum(src, i, Period);
period[i] = 100 * ((Period - num) / Period;
}
return period;
}}
class AroonData
{
public double AroonUp;
public double AroonDown;
}
Calculation Class:
class AroonCalculationData
{
public double PeriodHigh;
public double PeriodLow;
public double SetAroonUp(List<MarketData> period, double lastHigh)
{
/*reverse the set so we can look at it from the current tick
on back, and ticksSinceHigh will set correctly*/
period.Reverse();
int ticksSinceHigh = 0;
double high = 0.0;//Set 0 so anything will be higher
for (int i = 0; i < period.Count; i++)
{
if (period[i].high > high)
{
high = period[i].high;
ticksSinceHigh = i;
}
}
/*This bit if for if the high just ticked out
of List<MarketData>.
Including the current tick (i = 0), List<MarketData> period
only looks back (period - 1) days.
This Checks to see if the last high is still in the set. if it's
not, and is still the high for the period, then ticksSinceHigh
is set to (period)*/
PeriodHigh = high;
if (PeriodHigh < lastHigh)
{
ticksSinceHigh = period.Count;
}
/*Aroon-Up Formula*/
return (double)(period.Count - ticksSinceHigh ) / (double)period.Count * 100.0;
}
//ASIDE FROM LOOKING FOR LOWS INSTEAD OF HIGHS, SAME AS AROON-UP
public double SetAroonDown(List<MarketData> period, double lastLow)
{
period.Reverse();
int daysSinceLow = 0;
double low = double.MaxValue;//Set max so anything will be lower
for (int i = 0; i < period.Count; i++)
{
if (period[i].low < low)
{
low = period[i].low;
daysSinceLow = i;
}
}
PeriodLow = low;
if (PeriodLow > lastLow)
{
daysSinceLow = period.Count;
}
return (double)(period.Count - daysSinceLow) / (double)period.Count * 100.0;
}
}
Calling code:
public AroonData[] Aroon(List<MarketData> marketData, int period)
{
AroonCalculationData[] calculationData = new AroonCalculationData[marketData.Count]
AroonData[] aroon= new AroonData[marketData.Count]
for (int i = period; i < marketData.Count; i++)
{
/*GetRange(i - period + 1, period) add 1 so that the current tick is
included in look back.
For example, if (period = 10) the first loop (i = 10) then (i -
period + 1) = 1 the set will be marketData 1 - 10.*/
/*calculationData[i - 1].PeriodHigh and calculationData[i - 1].PeriodLow
are for looking back at the last tick's look back period high and
low*/
data[i].AroonUp = calculationData[i].SetAroonUp(marketData.GetRange(i - period + 1, period), calculationData[i - 1].PeriodHigh);
data[i].AroonDown = calculationData[i].SetAroonDown(marketData.GetRange(i - period + 1, period), calculationData[i - 1].PeriodLow);
}
}
Side note:
One problem I had was comparing my data to TD Ameritrades Aroon, until i figured out their period is really period-1, so if you're comparing to TD keep that in mind.
Update 1/6/2014: I've updated the question so that I'm trying to solve a non-linear equation. As many of you pointed out I didn't need the extra complexity (hidden-layer, sigmoid function, etc) in order to solve a non-linear problem.
Also, I realize I could probably solve even non-linear problems like this using other means besides neural networks. I'm not trying to write the most efficient code or the least amount of code. This is purely for me to better learn neural networks.
I've created my own implementation of back propagated neural network.
It is working fine when trained to solve simple XOR operations.
However now I want to adapt it & train it to solve Y = X * X + B type formulas, but I'm not getting expected results. After training the network does not calculate the correct answers. Are neural networks well-suited for solving algebra equations like this? I realize my example is trivial I'm just trying to learn more about neural networks and their capabilities.
My hidden layer is using a sigmoid activation function and my output layer is using an identity function.
If you could analyze my code and point out any errors I'd be grateful.
Here is my full code (C# .NET):
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
namespace NeuralNetwork
{
class Program
{
static void Main(string[] args)
{
Console.WriteLine("Training Network...");
Random r = new Random();
var network = new NeuralNetwork(1, 5, 1);
for (int i = 0; i < 100000; i++)
{
int x = i % 15;
int y = x * x + 10;
network.Train(x);
network.BackPropagate(y);
}
//Below should output 20, but instead outputs garbage
Console.WriteLine("0 * 0 + 10 = " + network.Compute(0)[0]);
//Below should output 110, but instead outputs garbage
Console.WriteLine("10 * 10 + 10 = " + network.Compute(10)[0]);
//Below should output 410, but instead outputs garbage
Console.WriteLine("20 * 20 + 10 = " + network.Compute(20)[0]);
}
}
public class NeuralNetwork
{
public double LearnRate { get; set; }
public double Momentum { get; set; }
public List<Neuron> InputLayer { get; set; }
public List<Neuron> HiddenLayer { get; set; }
public List<Neuron> OutputLayer { get; set; }
static Random random = new Random();
public NeuralNetwork(int inputSize, int hiddenSize, int outputSize)
{
LearnRate = .9;
Momentum = .04;
InputLayer = new List<Neuron>();
HiddenLayer = new List<Neuron>();
OutputLayer = new List<Neuron>();
for (int i = 0; i < inputSize; i++)
InputLayer.Add(new Neuron());
for (int i = 0; i < hiddenSize; i++)
HiddenLayer.Add(new Neuron(InputLayer));
for (int i = 0; i < outputSize; i++)
OutputLayer.Add(new Neuron(HiddenLayer));
}
public void Train(params double[] inputs)
{
int i = 0;
InputLayer.ForEach(a => a.Value = inputs[i++]);
HiddenLayer.ForEach(a => a.CalculateValue());
OutputLayer.ForEach(a => a.CalculateValue());
}
public double[] Compute(params double[] inputs)
{
Train(inputs);
return OutputLayer.Select(a => a.Value).ToArray();
}
public double CalculateError(params double[] targets)
{
int i = 0;
return OutputLayer.Sum(a => Math.Abs(a.CalculateError(targets[i++])));
}
public void BackPropagate(params double[] targets)
{
int i = 0;
OutputLayer.ForEach(a => a.CalculateGradient(targets[i++]));
HiddenLayer.ForEach(a => a.CalculateGradient());
HiddenLayer.ForEach(a => a.UpdateWeights(LearnRate, Momentum));
OutputLayer.ForEach(a => a.UpdateWeights(LearnRate, Momentum));
}
public static double NextRandom()
{
return 2 * random.NextDouble() - 1;
}
public static double SigmoidFunction(double x)
{
if (x < -45.0) return 0.0;
else if (x > 45.0) return 1.0;
return 1.0 / (1.0 + Math.Exp(-x));
}
public static double SigmoidDerivative(double f)
{
return f * (1 - f);
}
public static double HyperTanFunction(double x)
{
if (x < -10.0) return -1.0;
else if (x > 10.0) return 1.0;
else return Math.Tanh(x);
}
public static double HyperTanDerivative(double f)
{
return (1 - f) * (1 + f);
}
public static double IdentityFunction(double x)
{
return x;
}
public static double IdentityDerivative()
{
return 1;
}
}
public class Neuron
{
public bool IsInput { get { return InputSynapses.Count == 0; } }
public bool IsHidden { get { return InputSynapses.Count != 0 && OutputSynapses.Count != 0; } }
public bool IsOutput { get { return OutputSynapses.Count == 0; } }
public List<Synapse> InputSynapses { get; set; }
public List<Synapse> OutputSynapses { get; set; }
public double Bias { get; set; }
public double BiasDelta { get; set; }
public double Gradient { get; set; }
public double Value { get; set; }
public Neuron()
{
InputSynapses = new List<Synapse>();
OutputSynapses = new List<Synapse>();
Bias = NeuralNetwork.NextRandom();
}
public Neuron(List<Neuron> inputNeurons) : this()
{
foreach (var inputNeuron in inputNeurons)
{
var synapse = new Synapse(inputNeuron, this);
inputNeuron.OutputSynapses.Add(synapse);
InputSynapses.Add(synapse);
}
}
public virtual double CalculateValue()
{
var d = InputSynapses.Sum(a => a.Weight * a.InputNeuron.Value) + Bias;
return Value = IsHidden ? NeuralNetwork.SigmoidFunction(d) : NeuralNetwork.IdentityFunction(d);
}
public virtual double CalculateDerivative()
{
var d = Value;
return IsHidden ? NeuralNetwork.SigmoidDerivative(d) : NeuralNetwork.IdentityDerivative();
}
public double CalculateError(double target)
{
return target - Value;
}
public double CalculateGradient(double target)
{
return Gradient = CalculateError(target) * CalculateDerivative();
}
public double CalculateGradient()
{
return Gradient = OutputSynapses.Sum(a => a.OutputNeuron.Gradient * a.Weight) * CalculateDerivative();
}
public void UpdateWeights(double learnRate, double momentum)
{
var prevDelta = BiasDelta;
BiasDelta = learnRate * Gradient; // * 1
Bias += BiasDelta + momentum * prevDelta;
foreach (var s in InputSynapses)
{
prevDelta = s.WeightDelta;
s.WeightDelta = learnRate * Gradient * s.InputNeuron.Value;
s.Weight += s.WeightDelta + momentum * prevDelta;
}
}
}
public class Synapse
{
public Neuron InputNeuron { get; set; }
public Neuron OutputNeuron { get; set; }
public double Weight { get; set; }
public double WeightDelta { get; set; }
public Synapse(Neuron inputNeuron, Neuron outputNeuron)
{
InputNeuron = inputNeuron;
OutputNeuron = outputNeuron;
Weight = NeuralNetwork.NextRandom();
}
}
}
you use sigmoid as output funnction which in in the range [0-1]
but you target value is double the range is [ 0 - MAX_INT ], i think it is the basic resaon why you are getting NAN。
i update you code , and try to normalize the value in the range in [0-1],
and I can get ouptut like this which is what I expect
I think I am getting close to the truth,I am not sure why this answer is getting vote down
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
namespace NeuralNetwork
{
class Program
{
static void Main(string[] args)
{
Console.WriteLine("Training Network...");
Random r = new Random();
var network = new NeuralNetwork(1, 3, 1);
for (int k = 0; k < 60; k++)
{
for (int i = 0; i < 1000; i++)
{
double x = i / 1000.0;// r.Next();
double y = 3 * x;
network.Train(x);
network.BackPropagate(y);
}
double output = network.Compute(0.2)[0];
Console.WriteLine(output);
}
//Below should output 10, but instead outputs either a very large number or NaN
/* double output = network.Compute(3)[0];
Console.WriteLine(output);*/
}
}
public class NeuralNetwork
{
public double LearnRate { get; set; }
public double Momentum { get; set; }
public List<Neuron> InputLayer { get; set; }
public List<Neuron> HiddenLayer { get; set; }
public List<Neuron> OutputLayer { get; set; }
static Random random = new Random();
public NeuralNetwork(int inputSize, int hiddenSize, int outputSize)
{
LearnRate = .2;
Momentum = .04;
InputLayer = new List<Neuron>();
HiddenLayer = new List<Neuron>();
OutputLayer = new List<Neuron>();
for (int i = 0; i < inputSize; i++)
InputLayer.Add(new Neuron());
for (int i = 0; i < hiddenSize; i++)
HiddenLayer.Add(new Neuron(InputLayer));
for (int i = 0; i < outputSize; i++)
OutputLayer.Add(new Neuron(HiddenLayer));
}
public void Train(params double[] inputs)
{
int i = 0;
InputLayer.ForEach(a => a.Value = inputs[i++]);
HiddenLayer.ForEach(a => a.CalculateValue());
OutputLayer.ForEach(a => a.CalculateValue());
}
public double[] Compute(params double[] inputs)
{
Train(inputs);
return OutputLayer.Select(a => a.Value).ToArray();
}
public double CalculateError(params double[] targets)
{
int i = 0;
return OutputLayer.Sum(a => Math.Abs(a.CalculateError(targets[i++])));
}
public void BackPropagate(params double[] targets)
{
int i = 0;
OutputLayer.ForEach(a => a.CalculateGradient(targets[i++]));
HiddenLayer.ForEach(a => a.CalculateGradient());
HiddenLayer.ForEach(a => a.UpdateWeights(LearnRate, Momentum));
OutputLayer.ForEach(a => a.UpdateWeights(LearnRate, Momentum));
}
public static double NextRandom()
{
return 2 * random.NextDouble() - 1;
}
public static double SigmoidFunction(double x)
{
if (x < -45.0)
{
return 0.0;
}
else if (x > 45.0)
{
return 1.0;
}
return 1.0 / (1.0 + Math.Exp(-x));
}
public static double SigmoidDerivative(double f)
{
return f * (1 - f);
}
public static double HyperTanFunction(double x)
{
if (x < -10.0) return -1.0;
else if (x > 10.0) return 1.0;
else return Math.Tanh(x);
}
public static double HyperTanDerivative(double f)
{
return (1 - f) * (1 + f);
}
public static double IdentityFunction(double x)
{
return x;
}
public static double IdentityDerivative()
{
return 1;
}
}
public class Neuron
{
public bool IsInput { get { return InputSynapses.Count == 0; } }
public bool IsHidden { get { return InputSynapses.Count != 0 && OutputSynapses.Count != 0; } }
public bool IsOutput { get { return OutputSynapses.Count == 0; } }
public List<Synapse> InputSynapses { get; set; }
public List<Synapse> OutputSynapses { get; set; }
public double Bias { get; set; }
public double BiasDelta { get; set; }
public double Gradient { get; set; }
public double Value { get; set; }
public Neuron()
{
InputSynapses = new List<Synapse>();
OutputSynapses = new List<Synapse>();
Bias = NeuralNetwork.NextRandom();
}
public Neuron(List<Neuron> inputNeurons)
: this()
{
foreach (var inputNeuron in inputNeurons)
{
var synapse = new Synapse(inputNeuron, this);
inputNeuron.OutputSynapses.Add(synapse);
InputSynapses.Add(synapse);
}
}
public virtual double CalculateValue()
{
var d = InputSynapses.Sum(a => a.Weight * a.InputNeuron.Value);// + Bias;
return Value = IsHidden ? NeuralNetwork.SigmoidFunction(d) : NeuralNetwork.IdentityFunction(d);
}
public virtual double CalculateDerivative()
{
var d = Value;
return IsHidden ? NeuralNetwork.SigmoidDerivative(d) : NeuralNetwork.IdentityDerivative();
}
public double CalculateError(double target)
{
return target - Value;
}
public double CalculateGradient(double target)
{
return Gradient = CalculateError(target) * CalculateDerivative();
}
public double CalculateGradient()
{
return Gradient = OutputSynapses.Sum(a => a.OutputNeuron.Gradient * a.Weight) * CalculateDerivative();
}
public void UpdateWeights(double learnRate, double momentum)
{
var prevDelta = BiasDelta;
BiasDelta = learnRate * Gradient; // * 1
Bias += BiasDelta + momentum * prevDelta;
foreach (var s in InputSynapses)
{
prevDelta = s.WeightDelta;
s.WeightDelta = learnRate * Gradient * s.InputNeuron.Value;
s.Weight += s.WeightDelta; //;+ momentum * prevDelta;
}
}
}
public class Synapse
{
public Neuron InputNeuron { get; set; }
public Neuron OutputNeuron { get; set; }
public double Weight { get; set; }
public double WeightDelta { get; set; }
public Synapse(Neuron inputNeuron, Neuron outputNeuron)
{
InputNeuron = inputNeuron;
OutputNeuron = outputNeuron;
Weight = NeuralNetwork.NextRandom();
}
}
}
You really don't need to use a multi-layer network to solve problems of ax + b = y. A single layer perceptron would do the trick.
In fact, for a problem this simple you don't even need to break out the complexity of a real neural network. Check out this blog post:
http://dynamicnotions.blogspot.co.uk/2009/05/linear-regression-in-c.html
I did not analyze your code, it is far too long. But I can give you the answer for the basic question:
Yes, neural networks are well suited for such problems.
In fact, for a f : R -> R in the form of ax+b=y you should use one neuron with linear activation function. No three-layered structure is required, just one neuron is enough. If your code fails in such case, then you have an implementation error, as it is a simple linear regression task solved using gradient descent.
Im trying to make a tile based world screen for my game , here are the three classes i have
namespace WindowsGame1
{
public enum Tiletype
{Grass,
Water,
Foothill,
Mountain
}
public struct Tile
{
public Tiletype TerrainType { get; set; }
public Texture2D TileGFX { get; set; }
public Rectangle SrcRect { get; set; }
public Vector2 Location { get; set; }
public int AniFrame { get; set; }
// TILE ACTIONS
public bool IsActivated { get; set; }
public bool IsBlocked { get; set; }
public bool IsTouchTrigger { get; set; }
public bool IsStepTrigger { get; set; }
}
}
MapBase class
public class MapBase
{
public Tile[,] TileList = new Tile[1, 1];
public MapBase(int width, int height, Vector2 start)
{
TileList = new Tile[width + 1, height + 1];
// TEMPORARY MAP
for (int X = 0; X <= width; X++)
{
for (int Y = 0; Y <= height; Y++)
{
TileList[X, Y] = new Tile();
var _with1 = TileList[X, Y];
_with1.TerrainType = Tiletype.Water;
_with1.TileGFX = Textures.World;
_with1.AniFrame = 0;
_with1.IsBlocked = true;
}
}
// SIMPLE ISLAND
for (int z = 22; z <= 33; z++)
{
for (int c = 22; c <= 31; c++)
{
TileList[z, c].TerrainType = Tiletype.Grass;
}
}
TileList[27, 25].TerrainType = Tiletype.Foothill;
TileList[28, 25].TerrainType = Tiletype.Foothill;
TileList[27, 24].TerrainType = Tiletype.Foothill;
TileList[28, 26].TerrainType = Tiletype.Mountain;
for (int x = 0; x <= width; x++)
{
for (int y = 0; y <= height; y++)
{
TileList[x, y].SrcRect = GetTileSource(TileList[x, y].TerrainType);
}
}
}
GetTitleSource function
private Rectangle GetTileSource(Tiletype TType)
{
Rectangle sRect = default(Rectangle);
switch (TType)
{
case Tiletype.Grass:
sRect = new Rectangle(0, 0, 16, 16);
break;
case Tiletype.Water:
sRect = new Rectangle(0, 80, 16, 16);
break;
case Tiletype.Foothill:
sRect = new Rectangle(48, 0, 16, 16);
break;
case Tiletype.Mountain:
sRect = new Rectangle(32, 0, 16, 16);
break;
}
return sRect;
}
}
Class WorldScreen
class Worldscreen : BaseScreen
{
public int MapWidth = 100;
public int MapHeight = 100;
public int TileSize = 32;
public int MapX = 20;
public int MapY = 19;
public MapBase Map = new MapBase(100, 100, new Vector2(0, 0));
public Worldscreen(GraphicsDevice device)
: base(device, "WorldScreen")
{
Map = new MapBase(MapWidth, MapHeight, new Vector2(0, 0));
}
Draw function
public override void Draw(GameTime gameTime)
{
base.Draw(gameTime);
Globals.spriteBatch.Begin(SpriteSortMode.Immediate, BlendState.AlphaBlend, SamplerState.PointClamp, DepthStencilState.Default, RasterizerState.CullNone);
//DRAW TILE LAYER
for (int DrawX = -1; DrawX <= 16; DrawX++)
{
for (int DrawY = -1; DrawY <= 15; DrawY++)
{
int x = DrawX + MapX;
int y = DrawY + MapY;
if (x > 0 & x <= MapWidth & y >= 0 & y <= MapHeight)
{
Globals.spriteBatch.Draw(Map.TileList[x,y].TileGFX, new Rectangle(DrawX * TileSize, DrawY * TileSize, TileSize, TileSize), Map.TileList[x, y].SrcRect, Color.White);
// VIEW COORDINATES ON TILE
//Globals.SpriteBatch.DrawString(Fonts.Arial_8, "X:" & x & vbCrLf & "Y:" & y, New Vector2(DrawX * TileSize, DrawY * TileSize), Color.Black)
}
}
}
Globals.spriteBatch.End();
}
}
When I try to run the draw void it comes up with this error on the world screen class
This method does not accept null for this parameter.
Parameter name: texture
is there any way to solve this or do i have to rework these classes.
you got all the info you need to debug this yourself :
theres a method on the world screen class who have a texture = null.
Go step-by-step debug and find out which one, unless its a simple error we can find looking at your code, but its often not that easy. ( ex : do you have a list which isnt instanciate ? )
but since its a method paramaters ... the only method that accept a texture as a parameter is GetTileSource.
So quickly what could explain it ... I'd check 2 things :
A- are you sure your loop have correct bound ? You might simply be asking for a tile in that array that doesn't exist since its out of bound. (array are 0 base, and you loop up to <= height instead of < height)
B- 2nd thing i'd check would be (since this is a texture ) that you didn't load one of those texture you use ...
I have a List<CustomPoint> points; which contains close to million objects.
From this list I would like to get the List of objects that are occuring exactly twice. What would be the fastest way to do this? I would also be interested in a non-Linq option also since I might have to do this in C++ also.
public class CustomPoint
{
public double X { get; set; }
public double Y { get; set; }
public CustomPoint(double x, double y)
{
this.X = x;
this.Y = y;
}
}
public class PointComparer : IEqualityComparer<CustomPoint>
{
public bool Equals(CustomPoint x, CustomPoint y)
{
return ((x.X == y.X) && (y.Y == x.Y));
}
public int GetHashCode(CustomPoint obj)
{
int hash = 0;
hash ^= obj.X.GetHashCode();
hash ^= obj.Y.GetHashCode();
return hash;
}
}
based on this answer, i tried,
list.GroupBy(x => x).Where(x => x.Count() = 2).Select(x => x.Key).ToList();
but this is giving zero objects in the new list.
Can someone guide me on this?
You should implement Equals and GetHashCode in the class itself and not in the PointComparer
To get your code working, you need to pass an instance of your PointComparer as a second argument to GroupBy.
This method works for me:
public class PointCount
{
public CustomPoint Point { get; set; }
public int Count { get; set; }
}
private static IEnumerable<CustomPoint> GetPointsByCount(Dictionary<int, PointCount> pointcount, int count)
{
return pointcount
.Where(p => p.Value.Count == count)
.Select(p => p.Value.Point);
}
private static Dictionary<int, PointCount> GetPointCount(List<CustomPoint> pointList)
{
var allPoints = new Dictionary<int, PointCount>();
foreach (var point in pointList)
{
int hash = point.GetHashCode();
if (allPoints.ContainsKey(hash))
{
allPoints[hash].Count++;
}
else
{
allPoints.Add(hash, new PointCount { Point = point, Count = 1 });
}
}
return allPoints;
}
Called like this:
static void Main(string[] args)
{
List<CustomPoint> list1 = CreateCustomPointList();
var doubles = GetPointsByCount(GetPointCount(list1), 2);
Console.WriteLine("Doubles:");
foreach (var point in doubles)
{
Console.WriteLine("X: {0}, Y: {1}", point.X, point.Y);
}
}
private static List<CustomPoint> CreateCustomPointList()
{
var result = new List<CustomPoint>();
for (int i = 0; i < 5; i++)
{
for (int j = 0; j < 5; j++)
{
result.Add(new CustomPoint(i, j));
}
}
result.Add(new CustomPoint(1, 3));
result.Add(new CustomPoint(3, 3));
result.Add(new CustomPoint(0, 2));
return result;
}
CustomPoint implementation:
public class CustomPoint
{
public double X { get; set; }
public double Y { get; set; }
public CustomPoint(double x, double y)
{
this.X = x;
this.Y = y;
}
public override bool Equals(object obj)
{
var other = obj as CustomPoint;
if (other == null)
{
return base.Equals(obj);
}
return ((this.X == other.X) && (this.Y == other.Y));
}
public override int GetHashCode()
{
int hash = 23;
hash = hash * 31 + this.X.GetHashCode();
hash = hash * 31 + this.Y.GetHashCode();
return hash;
}
}
It prints:
Doubles:
X: 0, Y: 2
X: 1, Y: 3
X: 3, Y: 3
As you see in GetPointCount(), I create a dictionary per unique CustomPoint (by hash). Then I insert a PointCount object containing a reference to the CustomPoint which starts at a Count of 1, and every time the same point is encountered, the Count is increased.
Finally in GetPointsByCount I return the CustomPoints in the dictionary where PointCount.Count == count, in your case 2.
Please also note I updated the GetHashCode() method, since your one returns the same for point (1,2) and (2,1). If you do want that, feel free to restore your own hashing method. You will have to test the hashing function though, because it's hard to uniquely hash two numbers into one. That depends on the range of numbers used though, so you should implement a hash function that fits your own needs.