Nested Interface (empty) Dependency Registration - c#

I have a parent interface that is empty, and its only purpose is to implement 2 other child interfaces. This way I can reduce the number of constructor parameters to an acceptable count. The problem is I dont know how to register this dependency in the container since there is no implementation of the parent Interface. Entries are present for the child services, but the dependent services are unable to find the required service dependencies for both children at this point.
services.AddScoped<IServiceChild1, IServiceChild1>();
services.AddScoped<IServiceChild2, IServiceChild2>();
// how to register IServiceParent
public interface IServiceParent: IServiceChild1, IServiceChild2
{
}

Make it a class instead:
public class ServiceParentServices
{
public IServiceChild1 Service1 { get; }
public IServiceChild2 Service2 { get; }
public class ServiceParentServices(IServiceChild1 service1, IServiceChild2 service2)
{
Service1 = service1;
Service2 = service2;
}
}
Register this class to the ServiceCollection, and when you want to consume it, just inject ServiceParentServices into the constructor
public class ServiceParent
{
private ServiceParentServices _services;
public ServiceParent(ServiceParentServices services)
{
_services = services;
}
}
As an alternative you could also inject IServiceProvider, but this more like the ServiceLocator anti pattern.

Related

Determining which implementation to inject at runtime using .NET Core dependency injection

I have three types of users in my application, let's say Type1, Type2 and Type3.
Then i want to create one service implementation for each type, let's say i have a service to get photos, i would have three services : Type1PhotosService, Type2PhotosService and Type3PhotosService, each of them implementing IPhotosService.
In the web api, i would inject IPhotosService :
IPhotosService _service;
public PhotosController(IPhotosService service){
_service = service;
}
The web api uses token authentication with claims. So what i want to achieve, is for each user, depending on the claim he has : type1 or type2 or type3, the correct implementation of the service will be automatically injected rather than injecting a single service in the startup file.
What i want to avoid, is having one service, with a bunch of switch and if statements to return the correct data depending on user type and the roles he has.
EDIT:
some comments were wondering what's the point of three implementations, so here are more details to give it a little more sense.
The service is a job finder service, and the application has three different profiles : candidate, employer and administration. Each of these profiles need a proper implementation. So rather than having three methods GetCandidateJobs, GetEmployerJobs and GetAdministrationJobs inside the same service and switch on the user type, i preferred to have one implementation per profile type, then depending on the profile type, use the correct implementation.
Without Using a Separate IoC Container
Here's an approach that's way easier than configuring your app to use another IoC container and then configuring that container. After working through this with Windsor this solution seems a whole lot easier.
This approach is simplest if you can use a singleton instance of each service implementation.
We'll start with an interface, some implementations, and the factory we can inject which will return an implementation selected at runtime based on some input.
public interface ICustomService { }
public class CustomServiceOne : ICustomService { }
public class CustomServiceTwo : ICustomService { }
public class CustomServiceThree : ICustomService { }
public interface ICustomServiceFactory
{
ICustomService Create(string input);
}
Here's a really crude implementation of the factory. (Didn't use string constants, or polish it at all.)
public class CustomServiceFactory : ICustomServiceFactory
{
private readonly Dictionary<string, ICustomService> _services
= new Dictionary<string, ICustomService>(StringComparer.OrdinalIgnoreCase);
public CustomServiceFactory(IServiceProvider serviceProvider)
{
_services.Add("TypeOne", serviceProvider.GetService<CustomServiceOne>());
_services.Add("TypeTwo", serviceProvider.GetService<CustomServiceTwo>());
_services.Add("TypeThree", serviceProvider.GetService<CustomServiceThree>());
}
public ICustomService Create(string input)
{
return _services.ContainsKey(input) ? _services[input] : _services["TypeOne"];
}
}
This assumes that you've already registered CustomServiceOne, CustomServiceTwo, etc. with the IServiceCollection. They would not be registered as interface implementations, since that's not how we're resolving them. This class will simply resolve each one and put them in a dictionary so that you can retrieve them by name.
In this case the factory method takes a string, but you could inspect any type or multiple arguments to determine which implementation to return. Even the use of a string as the dictionary key is arbitrary. And, just as an example, I provided fallback behavior to return some default implementation. It might make more sense to throw an exception instead if you can't determine the right implementation to return.
Another alternative, depending on your needs, would be to resolve the implementation within the factory when it's requested. To the extent possible I try to keep most classes stateless so that I can resolve and reuse a single instance.
To register the factory with the IServiceCollection at startup we would do this:
services.AddSingleton<ICustomServiceFactory>(provider =>
new CustomServiceFactory(provider));
The IServiceProvider will be injected into the factory when the factory is resolved, and then the factory will use it to resolve the service.
Here's the corresponding unit tests. The test method is the identical to the one used in the Windsor answer, which "proves" that we can transparently replace one factory implementation with another and change other stuff in the composition root without breaking stuff.
public class Tests
{
private IServiceProvider _serviceProvider;
[SetUp]
public void Setup()
{
var services = new ServiceCollection();
services.AddSingleton<CustomServiceOne>();
services.AddSingleton<CustomServiceTwo>();
services.AddSingleton<CustomServiceThree>();
services.AddSingleton<ICustomServiceFactory>(provider =>
new CustomServiceFactory(provider));
_serviceProvider = services.BuildServiceProvider();
}
[TestCase("TypeOne", typeof(CustomServiceOne))]
[TestCase("TypeTwo", typeof(CustomServiceTwo))]
[TestCase("TYPEThree", typeof(CustomServiceThree))]
[TestCase("unknown", typeof(CustomServiceOne))]
public void FactoryReturnsExpectedService(string input, Type expectedType)
{
var factory = _serviceProvider.GetService<ICustomServiceFactory>();
var service = factory.Create(input);
Assert.IsInstanceOf(expectedType, service);
}
}
As in the Windsor example, this is written to avoid any reference to the container outside of the composition root. If a class depends on ICustomServiceFactory and ICustomService you could switch between this implementation, the Windsor implementation, or any other implementation of the factory.
Using Windsor
I'm going to sidestep the questions about whether or not this makes sense in this case and just attempt to answer the question as asked:
.NET Core's IoC container isn't built particularly well for this sort of scenario. (They acknowledge this in their documentation.) You can work around it by adding another IoC container like Windsor.
The implementation ended up looking way more complicated than I would have liked, but once you get past the setup it's not bad and you get access to Windsor's features. I'm going to provide another answer that doesn't include Windsor. I had to do all of this work to see that I probably like the other approach better.
In your project, add the Castle.Windsor.MsDependencyInjection NuGet package.
Interfaces and Implementations for Testing
For testing, I added some interfaces and implementations:
public interface ICustomService { }
public interface IRegisteredWithServiceCollection { }
public class CustomServiceOne : ICustomService { }
public class CustomServiceTwo : ICustomService { }
public class CustomServiceThree : ICustomService { }
public class RegisteredWithServiceCollection : IRegisteredWithServiceCollection { }
The intent is to create a factory that will select and return an implementation of ICustomService using some runtime input.
Here's an interface which will serve as a factory. This is what we can inject into a class and call at runtime to get an implementation of ICustomService:
public interface ICustomServiceFactory
{
ICustomService Create(string input);
}
Configure the Windsor Container
Next is a class which will configure an IWindsorContainer to resolve dependencies:
public class WindsorConfiguration : IWindsorInstaller
{
public void Install(IWindsorContainer container, IConfigurationStore store)
{
container.AddFacility<TypedFactoryFacility>();
container.Register(
Component.For<ICustomService, CustomServiceOne>().Named("TypeOne"),
Component.For<ICustomService, CustomServiceTwo>().Named("TypeTwo"),
Component.For<ICustomService, CustomServiceThree>().Named("TypeThree"),
Component.For<ICustomService, CustomServiceOne>().IsDefault(),
Component.For<ICustomServiceFactory>().AsFactory(new CustomServiceSelector())
);
}
}
public class CustomServiceSelector : DefaultTypedFactoryComponentSelector
{
public CustomServiceSelector()
: base(fallbackToResolveByTypeIfNameNotFound: true) { }
protected override string GetComponentName(MethodInfo method, object[] arguments)
{
return (string) arguments[0];
}
}
Here's what's going on in here:
The TypedFactoryFacility will enable us to use Windsor's typed factories. It will create an implementation of our factory interface for us.
We're registering three implementations of ICustomService. Because we're registering more than one implementation, each must have a name. When we resolve ICustomService we can specify a name, and it will resolve the type according to that string.
For illustration I registered another implementation of ICustomService without a name. That will enable us to resolve a default implementation if we try to resolve using an unrecognized name. (Some alternatives are just throwing an exception, or returning a "null" instance of ICustomService or creating a class like UnknownCustomService that throws an exception.)
Component.For<ICustomServiceFactory>().AsFactory(new CustomServiceSelector()) tells the container to create a proxy class to implement ICustomServiceFactory. (More on that in their documentation.)
CustomServiceSelector is what takes the argument passed to the factory's Create method and returns the component name (TypeOne, TypeTwo, etc.) that will be used to select a component. In this case we're expecting that the argument passed to the factory will be the same as the registration name we've used. But we could replace this with other logic. Our factory could even take arguments of other types which we could inspect and determine which string to return.
Configure Your App To Use the Windsor Container
Now, in StartUp, modify ConfigureServices to return IServiceProvider instead of void and create an IServiceProvider that combines services registered directly with the IServiceCollection with those registered with the Windsor container:
public IServiceProvider ConfigureServices(IServiceCollection services)
{
services.AddMvc();
var container = new WindsorContainer();
container.Install(new WindsorConfiguration());
return WindsorRegistrationHelper.CreateServiceProvider(container, services);
}
container.Install(new WindsorConfiguration()) allows WindsorConfiguration to configure our container. We could just configure the container right in this method, but this is a nice way to keep our container configurations organized. We can create numerous IWindsorInstaller implementations or our own custom classes to configure the Windsor container.
WindsorRegistrationHelper.CreateServiceProvider(container, services) creates the IServiceProvider that uses container and services.
Does It Work?
I wouldn't post all this without finding out first. Here's some NUnit tests. (I usually write some basic tests for DI configuration.)
The setup creates an IServiceProvider similar to what would happen in the application startup. It creates a container and applies the WindsorConfiguration. I'm also registering a service directly with the ServiceCollection to make sure that the two play well together. Then I'm combining the two into an IServiceProvider.
Then I'm resolving an ICustomerServiceFactory from the IServiceProvider and verifying that it returns the correct implementation of ICustomService for each input string, including the fallback when the string isn't a recognized dependency name.
I'm also verifying that the service registered directly with ServiceCollection is resolved.
public class Tests
{
private IServiceProvider _serviceProvider;
[SetUp]
public void Setup()
{
var services = new ServiceCollection();
services.AddSingleton<IRegisteredWithServiceCollection, RegisteredWithServiceCollection>();
var container = new WindsorContainer();
container.Install(new WindsorConfiguration());
_serviceProvider = WindsorRegistrationHelper.CreateServiceProvider(container, services);
}
[TestCase("TypeOne", typeof(CustomServiceOne))]
[TestCase("TypeTwo", typeof(CustomServiceTwo))]
[TestCase("TYPEThree", typeof(CustomServiceThree))]
[TestCase("unknown", typeof(CustomServiceOne))]
public void FactoryReturnsExpectedService(string input, Type expectedType)
{
var factory = _serviceProvider.GetService<ICustomServiceFactory>();
var service = factory.Create(input);
Assert.IsInstanceOf(expectedType, service);
}
[Test]
public void ServiceProviderReturnsServiceRegisteredWithServiceCollection()
{
var service = _serviceProvider.GetService<IRegisteredWithServiceCollection>();
Assert.IsInstanceOf<RegisteredWithServiceCollection>(service);
}
}
Is All of This Worth It?
Now that I've figured it out, I'd probably use it if I really needed this sort of functionality. It looks worse if you're trying to assimilate both using Windsor with .NET Core and seeing it's abstract factory implementation for the first time. Here's another article with some more information on Windsor's abstract factory without all the noise about .NET Core.
I am going to go out on a limb here and say that the attempt to utilize dependency injection for this purpose is sub-optimal. Normally this would be handled by a Factory pattern that produces service implementations using the dreaded if and switch statements. A simple example is:
public interface IPhotoService {
Photo CreatePhoto(params);
}
public class PhotoServiceFactory {
private readonly IPhotoService _type1;
private readonly IPhotoService _type2;
private readonly IPhotoService _type3;
public PhotoServiceFactory(IDependency1 d1, IDependency2 d2, ...etc) {
_type1 = new ConcreteServiceA(d1);
_type2 = new ConcreteServiceB(d2);
_type3 = new ConcreteServiceC(etc);
}
public IPhotoService Create(User user) {
switch(user.Claim) {
case ClaimEnum.Type1:
return _type1;
case ClaimEnum.Type2:
return _type2;
case ClaimEnum.Type3:
return _type3;
default:
throw new NotImplementedException
}
}
}
Then in your controller:
public class PhotosController {
IPhotoServiceFactory _factory;
public PhotosController(IPhotoServiceFactory factory){
_factory = factory;
}
public IHttpActionResult GetPhoto() {
var photoServiceToUse = _factory.Create(User);
var photo = photoServiceToUse.CreatePhoto(params);
return Ok(photo);
}
}
Alternately just use the concrete classes as arguments in the constructor and follow a similar logic as to the above.
Here is one solution, i have created inside asp.net core console application.
using System;
using System.Collections.Generic;
using Microsoft.Extensions.DependencyInjection;
namespace CreationalPattern
{
class Program
{
static void Main(string[] args)
{
// Add dependency into service collection
var services = new ServiceCollection()
.AddTransient<FordFigoFactory>()
.AddTransient<AudiQ7Factory>();
/* Create CarServiceFactory as singleton because it can be used across the application more frequently*/
services.AddSingleton<ICarServiceFactory>(provider => new CarServiceFactory(provider));
// create a service provider from the service collection
var serviceProvider = services.BuildServiceProvider();
/* instantiate car*/
var factory = serviceProvider.GetService<ICarServiceFactory>();
var audiCar = factory.Create("audi").CreateACar("Blue");
Console.Read();
}
}
public interface ICarServiceFactory
{
ICreateCars Create(string input);
}
public class CarServiceFactory : ICarServiceFactory
{
private readonly Dictionary<string, ICreateCars> _services
= new Dictionary<string, ICreateCars>(StringComparer.OrdinalIgnoreCase);
public CarServiceFactory(IServiceProvider serviceProvider)
{
_services.Add("ford", serviceProvider.GetService<FordFigoFactory>());
_services.Add("audi", serviceProvider.GetService<AudiQ7Factory>());
}
public ICreateCars Create(string input)
{
Console.WriteLine(input + " car is created.");
return _services.ContainsKey(input) ? _services[input] : _services["ford"];
}
}
public interface ICreateCars
{
Car CreateACar(string color);
}
public class FordFigoFactory : ICreateCars
{
public Car CreateACar(string color)
{
Console.WriteLine("FordFigo car is created with color:" + color);
return new Fordigo { Color = color};
}
}
public class AudiQ7Factory : ICreateCars
{
public Car CreateACar(string color)
{
Console.WriteLine("AudiQ7 car is created with color:" + color);
return new AudiQ7 { Color = color };
}
}
public abstract class Car
{
public string Model { get; set; }
public string Color { get; set; }
public string Company { get; set; }
}
public class Fordigo : Car
{
public Fordigo()
{
Model = "Figo";
Company = "Ford";
}
}
public class AudiQ7 : Car
{
public AudiQ7()
{
Model = "Audi";
Company = "Q7";
}
}
}
Explanation:
To understand better try to read the program from bottom to top. We have 3 sections:
Car (Car, Fordigo, AudiQ7)
CarFactory (ICreateCars, FordFigoFactory, AudiQ7Factory)
CarService (ICarServiceFactory, CarServiceFactory)
In this Dependency injection is registered as transient for Factory classes FordFigoFactory and AudiQ7Factory. And Singleton for CarServiceFactory.

.Net Core Dependency Injection Get different instance generated by Two Factory Methods

I have two static classes with single static factory method for each.
public static class First
{
public IMyService Factory()
{
return IMyService()
{
//configure with Configs
};
}
}
public static class Second
{
public IMyService Factory()
{
return IMyService()
{
// configure with different Configs
};
}
}
The following would make provider return an instance when asked for:
services.AddSingleton(mb =>
{
var myService= First.Factory();
return myService;
});
How do I call different factories when need to get an instance with different configs?
If it's a one-time decision (app startup) than you should extract your config as a dependency:
in appsettings.json:
"mysettings":{"bla":"val1"}
somewhere in project:
public class mysettings { public string bla {get;set; }
in myservice constructor:
public myservice(IOptions<mysettings> settings) { ... }
in startup.cs:
services.Configure<mysettings>(this.Configuration.GetSection("mysettings"));
services.AddSingleton<Imyservice, myservice>();
Like this you inject the settings and your service will be instantiated with those that are specified in the appsettings.json
If you need to deside "live" which settings to use:
public interface IMyServiceFactory{
IMyService Create(MySettings settings);
}
Than you inject IMyServiceFactory to the class where you want to use IMyService and instantate it there with the right settings. Or even:
public interface IMyServiceFactory{
IMyService Create1();
IMyService Create2();
}
In any case you just register the factory in startup:
services.AddSingleton<IMyServiceFactory, MyServiceFactory>();
Somehow your client code or the bootstrapping code needs to express what kind of implementation is needed. You could implement it the following way:
public Interface IReqeust
{
// Some code
}
public class HttpRequest : IRequest
{
// Implementation
}
public class TcpRequest : IRequest
{
// Implementation
}
One way could be to offer multiple methods. You can still hide the configuration but some implementation details leak into your client code.
public Interface IRequestFactory
{
IRequest CreateHttpRequest();
IRequest CreateTcpRequest();
}
public class RequestFactory : IRequestFactory
{
// Implementation
}
Another solution would be to determine whats needed while constructing your factory.
public Interface IRequestFactory
{
IRequest CreateRequest();
}
public class RequestFactory : IRequestFactory
{
private IConfigReader configReader;
public RequestFactory(IConfigReader configReader)
{
this.configReader = configReader;
}
public IRequest CreateRequest()
{
var currentProtocoll = configReader.GetCurrentProtocoll();
if(currentProtocoll is HTTP)
return new HttpRequest();
else
return new TcpRequest();
}
}
I would not recommend your solution with more factories. At least not with what you wrote so far.

Resolving dependencies dynamically using Autofac

Is it good to resolve the dependencies dynamically like the way i'm doing. Everywhere, it is suggested to use Constructor injection. I really don't understand the drawbacks of doing it the way i'm doing it. Code snippets as below..
Employee.cs
public class Employee
{
public int Id { get; set; }
public string Name { get; set; }
public int Age { get; set; }
public Department Department { get; set; }
}
IRepository.cs
public interface IRepository<TModel> where TModel : class
{
void Add();
IEnumerable<TModel> GetAll();
IEnumerable<TModel> GetByID();
}
Repository.cs
public class Repository<TModel> : IRepository<TModel> where TModel : class
{
public void Add()
{
throw new NotImplementedException();
}
public IEnumerable<TModel> GetAll()
{
throw new NotImplementedException();
}
public IEnumerable<TModel> GetByID()
{
throw new NotImplementedException();
}
}
EmployeeController.cs
public class HomeController : ApiController
{
IComponentContext _container;
public HomeController(IComponentContext container)
{
this._container = container;
}
public Repository<TModel> Using<TModel>() where TModel :class
{
var repository = _container.Resolve(typeof(IRepository<TModel>));
return repository as Repository<TModel>;
}
[HttpGet]
public IEnumerable<Employee> GetEmployees()
{
return Using<Employee>().GetAll();
}
}
Global.asax
protected void Application_Start()
{
GlobalConfiguration.Configure(WebApiConfig.Register);
var builder = new ContainerBuilder();
builder.RegisterApiControllers(Assembly.GetExecutingAssembly());
builder.RegisterGeneric(typeof(Repository<>)).As(typeof(IRepository<>));
var container = builder.Build(Autofac.Builder.ContainerBuildOptions.None);
var webApiResolver = new AutofacWebApiDependencyResolver(container);
GlobalConfiguration.Configuration.DependencyResolver = webApiResolver;
}
Say i've 5 repositories, Constructor injection will resolve all the 5 dependencies for a request i make. I might not use 5 repositories for each and every request. SO i thought of resolving dependencies dynamically by passing the type like i'm doing it in Using<TModel>(). Any suggestions would be appreciated..!! Thank you...!!
Refrain from using the container directly inside your application components; this leads to all kinds of troubles such as maintainability and testability issues. Directly resolving instances from within application code is a well-known anti-pattern known as Service Locator.
As a first refactoring, you can instead apply the Unit of Work pattern. A Unit of Work allows access to underlying repositories. For instance:
public interface IUnitOfWork
{
IRepository<TModel> Repository<TModel>();
}
public sealed class HomeController : ApiController
{
private readonly IUnitOfWork _unitOfWork;
public HomeController(IUnitOfWork unitOfWork)
{
this._unitOfWork = unitOfWork;
}
[HttpGet]
public IEnumerable<Employee> GetEmployees()
{
return this._unitOfWork.Repository<Employee>().GetAll();
}
}
Within the Composition Root (where it is allowed to access the container), we can now create an IUnitOfWork implementation that resolves repositories dynamically:
private sealed class AutofacUnitOfWork : IUnitOfWork
{
private readonly IComponentContext _container;
public AutofacUnitOfWork(IComponentContext container)
{
this._container = container;
}
public IRepository<TModel> Repository<TModel>()
{
return _container.Resolve<IRepository<TModel>>();
}
}
This pattern simplifies your application components considerably and prevents downsides that the Service Locator anti-pattern typically causes.
Although applying the Unit of Work pattern might be a useful step into the right direction, an even better approach is to skip the Unit of Work directly and simply inject a required repository directly into application components:
public sealed class HomeController : ApiController
{
private readonly IRepository<Employee> _employeeRepository;
public HomeController(IRepository<Employee> employeeRepository)
{
this._employeeRepository = employeeRepository;
}
[HttpGet]
public IEnumerable<Employee> GetEmployees()
{
return this._employeeRepository.GetAll();
}
}
Say i've 5 repositories, Constructor injection will resolve all the 5 dependencies for a request i make. I might not use 5 repositories for each and every request.
Note that from a performance perspective, you should typically not be concerned whether dependencies are used or not. Autofac is in most cases fast enough and it is unlikely that this will actually cause any performance problems in your production systems.
From a design perspective however you should be more worried if a class has many dependencies, while methods just use a few of them. This means that the methods in the class have little cohesion. This is an indication that the class should be split up into multiple smaller classes; it has multiple responsibilities.

Castle Windsor injecting controller with two instances of same interface

I have my controller like this
public class MyController : Controller
{
private IEntityRepository accountsRepo;
private IEntityRepository dataRepo;
public MyController(IEntityRepository accs, IEntityRepository data)
{
accountsRepo = accs;
dataRepo = data;
}
.....
}
And I installed container this way:
public class RepositoriesInstaller : IWindsorInstaller
{
public void Install(IWindsorContainer container, IConfigurationStore store)
{
container.Register(
Component.For<IEntityRepository>()
.ImplementedBy<AccountsRepository>()
.Named("accs")
.LifestyleTransient(),
Component.For<IEntityRepository>()
.ImplementedBy<DataRepository>()
.Named("data")
.LifestyleTransient());
}
}
Also I have facilities setted up:
public class PersistenceFacility : AbstractFacility
{
protected override void Init()
{
Kernel.Register(
Component.For<DbContext>()
.ImplementedBy<AccountsContext>()
.LifestylePerWebRequest(),
Component.For<DbContext>()
.ImplementedBy<DataContext>()
.LifestylePerWebRequest());
}
}
}
...and installed:
public class PersistenceInstaller : IWindsorInstaller
{
public void Install(IWindsorContainer container, IConfigurationStore store)
{
container.AddFacility<PersistenceFacility>();
}
}
So when I'm using my controller both parameters are injected with AccountsRepository instance (which was registered first). Of course I wanna see "data" being DataRepository respectively. Please, explain me proper way to deal with this kind of injection.
EDIT
As #roman suggested I have implemented generic repositories:
public interface IRepository : IDisposable
{
void SaveChanges();
void ExecuteProcedure(String procedureCommand, params SqlParameter[] sqlParams);
}
public interface IEntityRepository<T> : IRepository
{
T Context { get; set; }
DbSet<TEntity> Set<TEntity>() where TEntity : class;
}
public class AccountsRepository : IEntityRepository<AccountsContext>
{
public AccountsContext Context { get; set; }
public AccountsRepository(AccountsContext c)
{
Context = c;
}
public DbSet<TEntity> Set<TEntity>() where TEntity : class
{
return Context.Set<TEntity>();
}
public virtual void ExecuteProcedure(String procedureCommand, params SqlParameter[] sqlParams)
{
Context.Database.ExecuteSqlCommand(procedureCommand, sqlParams);
}
public virtual void SaveChanges()
{
Context.SaveChanges();
}
public void Dispose()
{
if (Context != null)
Context.Dispose();
}
}
DataRepository looks the same way, my be at some point I will decide to have just one concrete class EntityRepository, but it not relevant to exceptions I receiving.
So after cosmetic interfaces changes my contreller become:
public class HomeController : Controller
{
private IEntityRepository<AccountsContext> accountsRepo;
private IEntityRepository<DataContext> dataRepo;
public HomeController(IEntityRepository<AccountsContext> accs, IEntityRepository<DataContext> data)
{
accountsRepo = accs;
dataRepo = data;
}
....
}
Also I have changed installer code:
container.Register(
Component.For<IEntityRepository<AccountsContext>>()
.ImplementedBy<AccountsRepository>()
.LifestyleTransient(),
Component.For<IEntityRepository<DataContext>>()
.ImplementedBy<DataRepository>()
.LifestyleTransient());
And now during controller resolving proccess
return (IController) kernel.Resolve(controllerType);
I catching
Can't create component 'MyMVCProj.DAL.AccountsRepository' as it has dependencies to be satisfied.
'MyMVCProj.DAL.AccountsRepository' is waiting for the following dependencies:
- Service 'MyMVCProj.DAL.AccountsContext' which was not registered.
Castle.MicroKernel.Handlers.HandlerException: Can't create component 'MyMVCProj.DAL.AccountsRepository' as it has dependencies to be satisfied.
'MyMVCProj.DAL.AccountsRepository' is waiting for the following dependencies:
- Service 'MyMVCProj.DAL.AccountsContext' which was not registered.
But I have installed AccountsContext in facility logic.
EDIT++
According to #Roman suggestion I have tweaked my facility this way:
public class PersistenceFacility : AbstractFacility
{
protected override void Init()
{
Kernel.Register(
Component.For<DbContext>()
.ImplementedBy<AccountsContext>()
.Named("accctx")
.LifestylePerWebRequest(),
Component.For<DbContext>()
.ImplementedBy<DataContext>()
.Named("datactx")
.LifestylePerWebRequest());
}
}
and also repositories installler:
public class RepositoriesInstaller : IWindsorInstaller
{
public void Install(IWindsorContainer container, IConfigurationStore store)
{
container.Register(
Component.For<IEntityRepository<AccountsContext>>()
.ImplementedBy<AccountsRepository>()
.Named("accs‌​")
.LifestyleTransient()
.DependsOn(Dependency.OnComponent(typeof (DbContext), "accctx")),
Component.For<IEntityRepository<DataContext>>()
.ImplementedBy<DataRepository>()
.Named("data")
.LifestyleTransient()
.DependsOn(Dependency.OnComponent(typeof (DbContext), "datactx")));
}
}
This is the exception I get now:
Can't create component 'accs‌​' as it has dependencies to be satisfied.
'accs‌​' is waiting for the following dependencies:
- Service 'MyMVCProj.DAL.AccountsContext' which was not registered.
But trying to solve this brute forcing the code I ended with working solution, just installing concrete implementations of DBContext:
public class PersistenceFacility : AbstractFacility
{
protected override void Init()
{
Kernel.Register(
Component.For<AccountsContext>().LifestylePerWebRequest(),
Component.For<DataContext>().LifestylePerWebRequest());
}
}
And kernel's components now are:
AccountsContext PerWebRequest
AccountsRepository / IEntityRepository<AccountsContext> Transient
DataContext PerWebRequest
DataRepository / IEntityRepository<DataContext> Transient
And before they were:
AccountsContext / DbContext PerWebRequest
AccountsRepository / IEntityRepository<AccountsContext> Transient
DataContext / DbContext PerWebRequest
DataRepository / IEntityRepository<DataContext> Transient
So the new questions are:
Have I did all stuff idiomatically?
Why this behaviour - there already was AccountContext with little mention of it dependencies.
The fact that you expect two instances of same interface, yet you require different behavior for them (by injecting them to two different parameters), implies - in my opinion - that they shouldn't be the same interface, because they have different roles, or responsibilities. It would make sense to me more, if IEntityRepository was a generic class and then you would require in MyController two different generic interface types:
public class MyController(IEntityRepository<Account> acc, IEntityRepository<Data> data)
Nevertheless, If you still want to do that kind of thing, I suggest you use a CollectionResolver that will allow MyController class to get an IEnumerable. That way you'll get both instances, but it'll be up to you to select the appropriate one to use depending on your needs, which I'll stress again, I think is the wrong approach for this.
To use CollectionResolver you need to register it with the Windsor container like this:
var container = new WindsorContainer();
container.Kernel.Resolver.AddSubResolver(new CollectionResolver(container.Kernel));
And then, MyController will look like this:
public class MyController(IEnumerable<IEntityRepository> repositories)
{
accountsRepo = repositories.Where(...);
dataRepo = repositories.Where(...);
}

Windsor Ioc Service Overrides: There is a component already registered for the given key

I have been trying to configure Windsor to provide a different implementation for a service depending on which class is being constrcuted:
I have read this
http://docs.castleproject.org/Windsor.Registering-components-one-by-one.ashx#Supplying_the_component_for_a_dependency_to_use_Service_override_9
and asked this yesterday
Windsor Ioc container: How to register that certain constructors take different implementation of an interface
The answer to that question works correctly when I resolve the class directly, but not when it is in an object graph a few levels deep, and the class I want to override is used as a default implementation of another interface in a different registration
e.g.
I have 2 MVC controllers. One for logging and one for cardpayments. The logging one takes a logging provider which in turn takes an IService. The CardPaymentController takes a card payment provider which in turn takes an IService. The CardPaymentProvider should get a secure service and the logging provider a normal service
code is below:
Registrations:
Component.For<ILoggingProvider>().ImplementedBy<LoggingProvider>(),
Component.For<ICardPaymentProvider>().ImplementedBy<CardPaymentProvider>(),
Component.For<IService>().ImplementedBy<WebService>().Named("default"),
Component.For<IService>().ImplementedBy<SecureWebService>().Named("secure"),
Component.For<CardPaymentProvider>().ServiceOverrides(ServiceOverride.ForKey("service").Eq("secure")),
Component.For<LoggingProvider>().ServiceOverrides(ServiceOverride.ForKey("service").Eq("default"))
Class hierarchy:
public LoggingController(ILoggingProvider loggingProvider)
{
this.loggingProvider = loggingProvider;
}
public CardPaymentController(ICardPaymentProvider cardPaymentProvider)
{
this.cardPaymentProvider = cardPaymentProvider;
}
public interface IService
{
void Doit();
}
public class WebService : IService
{
public void Doit()
{
throw new NotImplementedException();
}
}
public class SecureWebService : IService
{
public void Doit()
{
throw new NotImplementedException();
}
}
public class CardPaymentProvider : ICardPaymentProvider
{
private readonly IService service;
public CardPaymentProvider(IService service)
{
this.service = service;
}
}
public interface ICardPaymentProvider
{
}
public class LoggingProvider : ILoggingProvider
{
private readonly IService service;
public LoggingProvider(IService service)
{
this.service = service;
}
}
public interface ILoggingProvider
{
}
This produces an error on start up:
"There is a component already registered for the given key Spike.CardPaymentProvider"
If I add Named("somename") to either the CardPaymentProvider registration or the ICardPaymentProvider registration, then it starts OK, but doesn't provide a secure implementation of the service to the CardPaymentProvider - just a normal version.
What am I doing wrong?
You have to define the service overrides in the same registration. Instead of:
Component.For<ICardPaymentProvider>().ImplementedBy<CardPaymentProvider>(),
Component.For<CardPaymentProvider>().ServiceOverrides(ServiceOverride.ForKey("service").Eq("secure")),
do:
Component.For<ICardPaymentProvider>()
.ImplementedBy<CardPaymentProvider>()
.ServiceOverrides(ServiceOverride.ForKey("service").Eq("secure")),

Categories