Is it possible to use Async when using ForEach? Below is the code I am trying:
using (DataContext db = new DataLayer.DataContext())
{
db.Groups.ToList().ForEach(i => async {
await GetAdminsFromGroup(i.Gid);
});
}
I am getting the error:
The name 'Async' does not exist in the current context
The method the using statement is enclosed in is set to async.
List<T>.ForEach doesn't play particularly well with async (neither does LINQ-to-objects, for the same reasons).
In this case, I recommend projecting each element into an asynchronous operation, and you can then (asynchronously) wait for them all to complete.
using (DataContext db = new DataLayer.DataContext())
{
var tasks = db.Groups.ToList().Select(i => GetAdminsFromGroupAsync(i.Gid));
var results = await Task.WhenAll(tasks);
}
The benefits of this approach over giving an async delegate to ForEach are:
Error handling is more proper. Exceptions from async void cannot be caught with catch; this approach will propagate exceptions at the await Task.WhenAll line, allowing natural exception handling.
You know that the tasks are complete at the end of this method, since it does an await Task.WhenAll. If you use async void, you cannot easily tell when the operations have completed.
This approach has a natural syntax for retrieving the results. GetAdminsFromGroupAsync sounds like it's an operation that produces a result (the admins), and such code is more natural if such operations can return their results rather than setting a value as a side effect.
This little extension method should give you exception-safe async iteration:
public static async Task ForEachAsync<T>(this List<T> list, Func<T, Task> func)
{
foreach (var value in list)
{
await func(value);
}
}
Since we're changing the return type of the lambda from void to Task, exceptions will propagate up correctly. This will allow you to write something like this in practice:
await db.Groups.ToList().ForEachAsync(async i => {
await GetAdminsFromGroup(i.Gid);
});
Starting with C# 8.0, you can create and consume streams asynchronously.
private async void button1_Click(object sender, EventArgs e)
{
IAsyncEnumerable<int> enumerable = GenerateSequence();
await foreach (var i in enumerable)
{
Debug.WriteLine(i);
}
}
public static async IAsyncEnumerable<int> GenerateSequence()
{
for (int i = 0; i < 20; i++)
{
await Task.Delay(100);
yield return i;
}
}
More
The simple answer is to use the foreach keyword instead of the ForEach() method of List().
using (DataContext db = new DataLayer.DataContext())
{
foreach(var i in db.Groups)
{
await GetAdminsFromGroup(i.Gid);
}
}
Here is an actual working version of the above async foreach variants with sequential processing:
public static async Task ForEachAsync<T>(this List<T> enumerable, Action<T> action)
{
foreach (var item in enumerable)
await Task.Run(() => { action(item); }).ConfigureAwait(false);
}
Here is the implementation:
public async void SequentialAsync()
{
var list = new List<Action>();
Action action1 = () => {
//do stuff 1
};
Action action2 = () => {
//do stuff 2
};
list.Add(action1);
list.Add(action2);
await list.ForEachAsync();
}
What's the key difference? .ConfigureAwait(false); which keeps the context of main thread while async sequential processing of each task.
This is not an old question, but .Net 6 introduced Parallel.ForeachAsync:
var collectionToIterate = db.Groups.ToList();
await Parallel.ForEachAsync(collectionToIterate, async (i, token) =>
{
await GetAdminsFromGroup(i);
});
ForeachAsync also accepts a ParallelOptions object, but usually you don't want to mess with the MaxDegreeOfParallelism property:
ParallelOptions parallelOptions = new ParallelOptions { MaxDegreeOfParallelism = 4 };
var collectionToIterate = db.Groups.ToList();
await Parallel.ForEachAsync(collectionToIterate, parallelOptions , async (i, token) =>
{
await GetAdminsFromGroup(i);
});
From Microsoft Docs: https://learn.microsoft.com/en-us/dotnet/api/system.threading.tasks.paralleloptions.maxdegreeofparallelism?view=net-6.0
By default, For and ForEach will utilize however many threads the underlying scheduler provides, so changing MaxDegreeOfParallelism from the default only limits how many concurrent tasks will be used.
Generally, you do not need to modify this setting....
Add this extension method
public static class ForEachAsyncExtension
{
public static Task ForEachAsync<T>(this IEnumerable<T> source, int dop, Func<T, Task> body)
{
return Task.WhenAll(from partition in Partitioner.Create(source).GetPartitions(dop)
select Task.Run(async delegate
{
using (partition)
while (partition.MoveNext())
await body(partition.Current).ConfigureAwait(false);
}));
}
}
And then use like so:
Task.Run(async () =>
{
var s3 = new AmazonS3Client(Config.Instance.Aws.Credentials, Config.Instance.Aws.RegionEndpoint);
var buckets = await s3.ListBucketsAsync();
foreach (var s3Bucket in buckets.Buckets)
{
if (s3Bucket.BucketName.StartsWith("mybucket-"))
{
log.Information("Bucket => {BucketName}", s3Bucket.BucketName);
ListObjectsResponse objects;
try
{
objects = await s3.ListObjectsAsync(s3Bucket.BucketName);
}
catch
{
log.Error("Error getting objects. Bucket => {BucketName}", s3Bucket.BucketName);
continue;
}
// ForEachAsync (4 is how many tasks you want to run in parallel)
await objects.S3Objects.ForEachAsync(4, async s3Object =>
{
try
{
log.Information("Bucket => {BucketName} => {Key}", s3Bucket.BucketName, s3Object.Key);
await s3.DeleteObjectAsync(s3Bucket.BucketName, s3Object.Key);
}
catch
{
log.Error("Error deleting bucket {BucketName} object {Key}", s3Bucket.BucketName, s3Object.Key);
}
});
try
{
await s3.DeleteBucketAsync(s3Bucket.BucketName);
}
catch
{
log.Error("Error deleting bucket {BucketName}", s3Bucket.BucketName);
}
}
}
}).Wait();
If you are using EntityFramework.Core there is an extension method ForEachAsync.
The example usage looks like this:
using Microsoft.EntityFrameworkCore;
using System.Threading.Tasks;
public class Example
{
private readonly DbContext _dbContext;
public Example(DbContext dbContext)
{
_dbContext = dbContext;
}
public async void LogicMethod()
{
await _dbContext.Set<dbTable>().ForEachAsync(async x =>
{
//logic
await AsyncTask(x);
});
}
public async Task<bool> AsyncTask(object x)
{
//other logic
return await Task.FromResult<bool>(true);
}
}
I would like to add that there is a Parallel class with ForEach function built in that can be used for this purpose.
The problem was that the async keyword needs to appear before the lambda, not before the body:
db.Groups.ToList().ForEach(async (i) => {
await GetAdminsFromGroup(i.Gid);
});
This is method I created to handle async scenarios with ForEach.
If one of tasks fails then other tasks will continue their execution.
You have ability to add function that will be executed on every exception.
Exceptions are being collected as aggregateException at the end and are available for you.
Can handle CancellationToken
public static class ParallelExecutor
{
/// <summary>
/// Executes asynchronously given function on all elements of given enumerable with task count restriction.
/// Executor will continue starting new tasks even if one of the tasks throws. If at least one of the tasks throwed exception then <see cref="AggregateException"/> is throwed at the end of the method run.
/// </summary>
/// <typeparam name="T">Type of elements in enumerable</typeparam>
/// <param name="maxTaskCount">The maximum task count.</param>
/// <param name="enumerable">The enumerable.</param>
/// <param name="asyncFunc">asynchronous function that will be executed on every element of the enumerable. MUST be thread safe.</param>
/// <param name="onException">Acton that will be executed on every exception that would be thrown by asyncFunc. CAN be thread unsafe.</param>
/// <param name="cancellationToken">The cancellation token.</param>
public static async Task ForEachAsync<T>(int maxTaskCount, IEnumerable<T> enumerable, Func<T, Task> asyncFunc, Action<Exception> onException = null, CancellationToken cancellationToken = default)
{
using var semaphore = new SemaphoreSlim(initialCount: maxTaskCount, maxCount: maxTaskCount);
// This `lockObject` is used only in `catch { }` block.
object lockObject = new object();
var exceptions = new List<Exception>();
var tasks = new Task[enumerable.Count()];
int i = 0;
try
{
foreach (var t in enumerable)
{
await semaphore.WaitAsync(cancellationToken);
tasks[i++] = Task.Run(
async () =>
{
try
{
await asyncFunc(t);
}
catch (Exception e)
{
if (onException != null)
{
lock (lockObject)
{
onException.Invoke(e);
}
}
// This exception will be swallowed here but it will be collected at the end of ForEachAsync method in order to generate AggregateException.
throw;
}
finally
{
semaphore.Release();
}
}, cancellationToken);
if (cancellationToken.IsCancellationRequested)
{
break;
}
}
}
catch (OperationCanceledException e)
{
exceptions.Add(e);
}
foreach (var t in tasks)
{
if (cancellationToken.IsCancellationRequested)
{
break;
}
// Exception handling in this case is actually pretty fast.
// https://gist.github.com/shoter/d943500eda37c7d99461ce3dace42141
try
{
await t;
}
#pragma warning disable CA1031 // Do not catch general exception types - we want to throw that exception later as aggregate exception. Nothing wrong here.
catch (Exception e)
#pragma warning restore CA1031 // Do not catch general exception types
{
exceptions.Add(e);
}
}
if (exceptions.Any())
{
throw new AggregateException(exceptions);
}
}
}
Related
I'm wondering if there is a way to create either IAsyncEnumerable<T> or IAsyncEnumerator<T> via a Source object, rather like TaskCompletionSource allows one to do for tasks. In particular, TaskCompletionSource can be passed around like any other parameter.
Maybe something like this:
public class AsyncEnumerables {
public Task HandlerTask { get; set; }
public async Task<string> ParentMethod() {
var source = new AsyncEnumerableSource<int>();
IAsyncEnumerable asyncEnumerable = source.GetAsyncEnumerable();
HandlerTask = Task.Run(() => handleAsyncResultsAsTheyHappen(asyncEnumerable));
int n = await someOtherTask();
source.YieldReturn(n);
var r = await ChildMethod(source);
source.Complete(); // this call would cause the HandlerTask to complete.
return r;
}
private async Task<string> ChildMethod(AsyncEnumerableSource<int> source) {
source.YieldReturn(5);
await SomeOtherCall();
source.YieldReturn(10);
return "hello";
}
}
With the above code, the handleAsyncResultsAsTheyHappen task would see whatever values got passed into YieldReturn. So it would see the n from the above code, as well as the 5 and the 10 from ChildMethod.
Here is another implementation of the AsyncEnumerableSource class, that doesn't depend on the Rx library. This one depends instead on the Channel<T>, class, which is natively available in the .NET standard libraries. It has identical behavior to the Rx-based implementation.
The class AsyncEnumerableSource can propagate notifications to multiple subscribers. Each subscriber can enumerate these notifications at its own pace. This is possible because each subscription has its own dedicated Channel<T> as underlying storage. The lifetime of a subscription is practically tied to the lifetime of a single await foreach loop. Breaking early from a loop for any reason (including thrown exceptions), ends immediately the subscription.
In technical terms a new subscription is created the first time that the MoveNextAsync method of an IAsyncEnumerator<T> is invoked. Calling the method GetAsyncEnumerable alone doesn't create a subscription, nor calling the GetAsyncEnumerator method does. The subscription ends when the associated IAsyncEnumerator<T> is disposed.
public class AsyncEnumerableSource<T>
{
private readonly List<Channel<T>> _channels = new();
private bool _completed;
private Exception _exception;
public async IAsyncEnumerable<T> GetAsyncEnumerable(
[EnumeratorCancellation] CancellationToken cancellationToken = default)
{
Channel<T> channel;
lock (_channels)
{
if (_exception != null) throw _exception;
if (_completed) yield break;
channel = Channel.CreateUnbounded<T>(
new() { SingleWriter = true, SingleReader = true });
_channels.Add(channel);
}
try
{
await foreach (var item in channel.Reader.ReadAllAsync()
.WithCancellation(cancellationToken).ConfigureAwait(false))
{
yield return item;
cancellationToken.ThrowIfCancellationRequested();
}
}
finally { lock (_channels) _channels.Remove(channel); }
}
public void YieldReturn(T value)
{
lock (_channels)
{
if (_completed) return;
foreach (var channel in _channels) channel.Writer.TryWrite(value);
}
}
public void Complete()
{
lock (_channels)
{
if (_completed) return;
foreach (var channel in _channels) channel.Writer.TryComplete();
_completed = true;
}
}
public void Fault(Exception error)
{
lock (_channels)
{
if (_completed) return;
foreach (var channel in _channels) channel.Writer.TryComplete(error);
_completed = true;
_exception = error;
}
}
}
The reason for the cancellationToken.ThrowIfCancellationRequested(); is because of this issue: ChannelReader.ReadAllAsync(CancellationToken) not actually cancelled mid-iteration.
Caution: in case you start propagating values with YieldReturn before any consumer has subscribed to the AsyncEnumerableSource, these values are going to be lost. No subscriber is going to observe them. To prevent this scenario you should make sure that all consumers have subscribed before starting the producers. The easiest way to do it is for the consumers to be async methods, with the await foreach being the first await inside the async method:
// Correct, synchronous subscription
async Task Consume()
{
await foreach (var item in source.GetAsyncEnumerable())
{
//...
}
}
Task consumer = Consume();
Avoid the temptation to use the Task.Run method, because in this case the subscription will occur asynchronously on a ThreadPool thread, and not synchronously with the creation of the consumer:
// Wrong, delayed subscription (possibility for unobserved values)
Task consumer = Task.Run(async () =>
{
await foreach (var item in source.GetAsyncEnumerable())
{
//...
}
});
In case that you don't want to do the subscriptions synchronously, it is possible to offload them to the ThreadPool, and await them to be established before starting the producers:
// Correct, awaited subscription
Task consumer = await Task.Factory.StartNew(async () =>
{
HeavySynchronousComputation();
await foreach (var item in source.GetAsyncEnumerable())
{
//...
}
}, default, TaskCreationOptions.DenyChildAttach, TaskScheduler.Default);
The Task.Factory.StartNew(async method creates a nested Task<Task>. The outer task represents the subscription, and the inner task represents the consuming loop.
You're much better off if you can structure your code to take advantage of yield return and await foreach. E.g., this code does almost the same thing:
public async Task Consume()
{
var source = ParentMethod();
HandlerTask = Task.Run(async () => { await foreach (var item in source) { Console.WriteLine(item); } });
}
public async IAsyncEnumerable<int> ParentMethod()
{
await Task.Yield();
yield return 13;
await foreach (var item in ChildMethod())
yield return item;
}
private async IAsyncEnumerable<int> ChildMethod()
{
yield return 5;
await Task.Yield();
yield return 10;
}
However, if you really need an "async enumerable source", you need to first recognize one thing. TaskCompletionSource<T> holds the results, i.e., the T (or exception). It's acting as a container. The result can be set before the task is awaited. It's the same thing with the "async enumerable source" - you'd need it to be able to hold results before any items are taken from it. The "async enumerable source" would need to hold multiple results - in this case, a collection.
So what you're actually asking for is "a collection that can be consumed as an asynchronous enumerable". There are a few possibilities here, but the one I'd recommend is a Channel:
public async Task<string> ParentMethod()
{
var source = Channel.CreateUnbounded<int>();
var sourceWriter = source.Writer;
IAsyncEnumerable<int> asyncEnumerable = source.Reader.ReadAllAsync();
HandlerTask = Task.Run(async () => { await foreach (var item in asyncEnumerable) Console.WriteLine(item); });
await Task.Yield();
await sourceWriter.WriteAsync(13);
var r = await ChildMethod(sourceWriter);
sourceWriter.Complete();
return r;
}
private async Task<string> ChildMethod(ChannelWriter<int> sourceWriter)
{
await sourceWriter.WriteAsync(5);
await Task.Yield();
await sourceWriter.WriteAsync(10);
return "hello";
}
AFAIK the .NET platform has no built-in AsyncEnumerableSource class, but it is easy to implement one by using the System.Reactive and System.Linq.Async libraries. The System.Reactive library contains the class Subject which is a combination of an IObservable and IObserver. This is a convenient class, because you can send notifications to the IObserver interface, and subscribe independently any number of times to the IObservable interface to receive these notifications back. Actually it's not required to subscribe manually, because the System.Linq.Async library contains the handy extension method ToAsyncEnumerable, that converts an IObservable to IAsyncEnumerable automatically.
using System;
using System.Collections.Generic;
using System.Linq;
using System.Reactive.Subjects;
public class AsyncEnumerableSource<T>
{
private readonly Subject<T> _subject = new Subject<T>();
public IAsyncEnumerable<T> GetAsyncEnumerable() => _subject.ToAsyncEnumerable();
public void YieldReturn(T value) => _subject.OnNext(value);
public void Complete() => _subject.OnCompleted();
public void Fault(Exception ex) => _subject.OnError(ex);
}
This implementation will send to the subscribers only the notifications that occurred after their subscription. If you want to ensure that late joiners will get the early messages, you could replace the Subject with a ReplaySubject. This one buffers the notifications it receives, so it comes with memory usage considerations: it accepts an int bufferSize argument in its constructor.
Note: The above implementation is thread-safe, although the Subject<T> class is not synchronized, and in general calling OnNext from multiple threads in parallel breaks the Rx contract. That's because the ToAsyncEnumerable operator does not depend on the Rx contract for its correctness, and synchronizes the incoming notifications. It's not a particularly efficient implementation though. Channel<T>-based implementations are significantly more efficient under heavy load.
I've made a queue, which contains tasks to do. After creating some tasks manually with new Task() in Returns method, my whole application hangs - await current;. The body of the task is not even triggered.
ConfigureAwait(false) didn't help.
The first task in the queue, which is not created by me, but other framework is executing successfully and returning a value. Mine - doesn't. I've tried add Task.CompletedTask and then it has worked. I don't understand why I can't even reach the body of the task containing _output assignment.
IDE debugger code screenshot
---UPDATE---
The code works when I use code below. With await it doesn't. Any ideas?
current.Start();
current.Wait();
Original code
private readonly Queue<Task> _pipe;
public IPipeBuilder<TOutput> Returns(Func<IEnumerable<IExecutionResult>, TOutput> outputBuilder)
{
_pipe.Enqueue(new Task(() => // this task causes a problem and breakpoint isn't hit inside
{
_output = outputBuilder(_results);
}));
return this;
}
public async Task<TOutput> Execute()
{
Task current;
while (_pipe.TryDequeue(out current))
{
if (current.IsCommandExecution())
{
IExecutionResult result = await (Task<IExecutionResult>)current; // this awaits successfully
_results.Add(result);
}
else
{
await current; // hangs here
}
}
return await Task.FromResult(_output);
}
Usage
[HttpGet("eventflow/pipe/issue/add/{title}")]
public async Task<IActionResult> PipeAction(string title)
=> Ok(
await Pipe<IExecutionResult>()
.Validate(title)
.Handle<AddIssueCommand>(IssueId.New, title)
.Returns(results => results.First())
.Execute());
You should never use the Task constructor. This goes double on ASP.NET, since constructed tasks are always Delegate Tasks, which interfere with the ASP.NET usage of the thread pool. The actual reason that the await hangs is because manually-created tasks need to be started.
If you have synchronous work that you need to wrap into a Task to work alongside asynchronous tasks, then you should use Task.CompletedTask and Task.FromException:
private static Task SynchronousWork(Func<IEnumerable<IExecutionResult>, TOutput> outputBuilder)
{
try { _output = outputBuilder(_results); return Task.CompletedTask; }
catch (Exception ex) { return Task.FromException(ex); }
}
public IPipeBuilder<TOutput> Returns(Func<IEnumerable<IExecutionResult>, TOutput> outputBuilder)
{
_pipe.Enqueue(SynchronousWork(outputBuilder));
return this;
}
However, note that this executes outputBuilder immediately, which may not be desirable due to its side effects on _results and _output. If you want a delayed execution queue, then the type in the queue needs to be changed from Task to Func<Task>. Then you can add to it as such:
public IPipeBuilder<TOutput> Returns(Func<IEnumerable<IExecutionResult>, TOutput> outputBuilder)
{
_pipe.Enqueue(() =>
{
try { _output = outputBuilder(_results); return Task.CompletedTask; }
catch (Exception ex) { return Task.FromException(ex); }
});
return this;
}
and you would consume it by calling each delegate one at a time and inspecting the task it returns:
public async Task<TOutput> Execute()
{
while (_pipe.TryDequeue(out var currentFunc))
{
var currentTask = currentFunc();
if (currentTask.IsCommandExecution())
{
IExecutionResult result = await (Task<IExecutionResult>)currentTask;
_results.Add(result);
}
else
{
await currentTask;
}
}
return _output;
}
Okay, thank you. I've ended up with such class and Queue<Func<Task>> like you said.
public sealed class SyncTaskWrapper
{
private Func<Task> _action;
public SyncTaskWrapper(Action action)
=> _action = CreateFunc(action);
private static Func<Task> CreateFunc(Action action)
=> () =>
{
try
{
action();
return Task.CompletedTask;
}
catch (Exception exception)
{
return Task.FromException(exception);
}
};
public static implicit operator Func<Task>(SyncTaskWrapper #this)
=> #this._action;
}
with usage
_pipe.Enqueue(new SyncTaskWrapper(() =>
_output = outputBuilder(_results)));
I need to execute a kind of LongRunning task after a delay.
Each Task can be cancelled. I prefer TPL with cancellationToken.
Since my task is long running and before starting a task it has to be placed in dictionary I have to use new Task(). But I've faced different behavior - when task is created using new Task() after Cancel() it throws TaskCanceledException whereas a task created with Task.Run doesn't throw an exception.
Generally I need to recognize the difference and not get TaskCanceledException.
It's my code:
internal sealed class Worker : IDisposable
{
private readonly IDictionary<Guid, (Task task, CancellationTokenSource cts)> _tasks =
new Dictionary<Guid, (Task task, CancellationTokenSource cts)>();
public void ExecuteAfter(Action action, TimeSpan waitBeforeExecute, out Guid cancellationId)
{
var cts = new CancellationTokenSource();
var task = new Task(async () =>
{
await Task.Delay(waitBeforeExecute, cts.Token);
action();
}, cts.Token, TaskCreationOptions.LongRunning);
cancellationId = Guid.NewGuid();
_tasks.Add(cancellationId, (task, cts));
task.Start(TaskScheduler.Default);
}
public void ExecuteAfter2(Action action, TimeSpan waitBeforeExecute, out Guid cancellationId)
{
var cts = new CancellationTokenSource();
cancellationId = Guid.NewGuid();
_tasks.Add(cancellationId, (Task.Run(async () =>
{
await Task.Delay(waitBeforeExecute, cts.Token);
action();
}, cts.Token), cts));
}
public void Abort(Guid cancellationId)
{
if (_tasks.TryGetValue(cancellationId, out var value))
{
value.cts.Cancel();
//value.task.Wait();
_tasks.Remove(cancellationId);
Dispose(value.cts);
Dispose(value.task);
}
}
public void Dispose()
{
if (_tasks.Count > 0)
{
foreach (var t in _tasks)
{
Dispose(t.Value.cts);
Dispose(t.Value.task);
}
_tasks.Clear();
}
}
private static void Dispose(IDisposable obj)
{
if (obj == null)
{
return;
}
try
{
obj.Dispose();
}
catch (Exception ex)
{
//Log.Exception(ex);
}
}
}
internal class Program
{
private static void Main(string[] args)
{
Action act = () => Console.WriteLine("......");
Console.WriteLine("Started");
using (var w = new Worker())
{
w.ExecuteAfter(act, TimeSpan.FromMilliseconds(10000), out var id);
//w.ExecuteAfter2(act, TimeSpan.FromMilliseconds(10000), out var id);
Thread.Sleep(3000);
w.Abort(id);
}
Console.WriteLine("Enter to exit");
Console.ReadKey();
}
}
UPD:
This approach also works without exception
public void ExecuteAfter3(Action action, TimeSpan waitBeforeExecute, out Guid cancellationId)
{
var cts = new CancellationTokenSource();
cancellationId = Guid.NewGuid();
_tasks.Add(cancellationId, (Task.Factory.StartNew(async () =>
{
await Task.Delay(waitBeforeExecute, cts.Token);
action();
}, cts.Token, TaskCreationOptions.LongRunning, TaskScheduler.Default), cts)); ;
}
The reason of the inconsistent behavior is fundamentally incorrect usage of an async delegate in the first case. The Task constructors just don't receive Func<Task> and your asynchronous delegate is always interpreted as async void not async Task in case of using with constructor. If an exception is raised in an async Task method it's caught and placed into Task object which isn't true for an async void method, in that case exception just bubbles up out of the method to a synchronization context and goes under category of unhandled exceptions (you can familiarize with details in this Stephen Cleary article). So what happens in case of using constructor: a task which is supposed to initiate asynchronous flow is created and started. Once it reaches point when Task.Delay(...) returns a promise, the task completes and it has no more relationship to anything which happens in Task.Delay continuation (you can easily check in debugger by setting a breakpoint to value.cts.Cancel() that the task object in the _tasks dictionary has status RanToCompletetion while however the task delegate essentially is still running). When a cancellation is requested the exception is raised inside the Task.Delay method and without existence of any promise object is being promoted to app domain.
In case of Task.Run the situation is different because there are overloads of this method which are able to accept Func<Task> or Func<Task<T>> and unwrap the tasks internally in order to return underlying promise instead of wrapped task which ensures proper task object inside the _tasks dictionary and proper error handling.
The third scenario despite the fact that it doesn't throw an exception it is partially correct. Unlike Task.Run, Task.Factory.StartNew doesn't unwrap underlying task to return promise, so task stored in the _tasks is just wrapper task, like in the case with constructor (again you can check its state with debugger). It however is able to understand Func<Task> parameters, so asynchronous delegate has async Task signature which allows at least to handle and store exception in the underlying task. In order to get this underlying task with Task.Factory.StartNew you need to unwrap the task by yourself with Unwrap() extension method.
The Task.Factory.StartNew isn't considered as a beast practice of creating tasks because of certain dangers related to its application (see there). It however can be used with some caveats if you need to apply specific options like LongRunning which cannot be directly applied with Task.Run.
I don't know why I got down votes here but it's inspired me to update my answer.
UPDATED
My full approach:
using System;
using System.Collections.Generic;
using System.Threading;
using System.Threading.Tasks;
namespace ConsoleApp4
{
internal class Program
{
private static void Main(string[] args)
{
using (var delayedWorker = new DelayedWorker())
{
delayedWorker.ProcessWithDelay(() => { Console.WriteLine("100"); }, TimeSpan.FromSeconds(5), out var cancellationId_1);
delayedWorker.ProcessWithDelay(() => { Console.WriteLine("200"); }, TimeSpan.FromSeconds(10), out var cancellationId_2);
delayedWorker.ProcessWithDelay(() => { Console.WriteLine("300"); }, TimeSpan.FromSeconds(15), out var cancellationId_3);
Cancel_3(delayedWorker, cancellationId_3);
Console.ReadKey();
}
}
private static void Cancel_3(DelayedWorker delayedWorker, Guid cancellationId_3)
{
Task.Run(() => { delayedWorker.Abort(cancellationId_3); }).Wait();
}
internal sealed class DelayedWorker : IDisposable
{
private readonly object _locker = new object();
private readonly object _disposeLocker = new object();
private readonly IDictionary<Guid, (Task task, CancellationTokenSource cts)> _tasks = new Dictionary<Guid, (Task task, CancellationTokenSource cts)>();
private bool _disposing;
public void ProcessWithDelay(Action action, TimeSpan waitBeforeExecute, out Guid cancellationId)
{
Console.WriteLine("Creating delayed action...");
CancellationTokenSource tempCts = null;
CancellationTokenSource cts = null;
try
{
var id = cancellationId = Guid.NewGuid();
tempCts = new CancellationTokenSource();
cts = tempCts;
var task = new Task(() => { Process(action, waitBeforeExecute, cts); }, TaskCreationOptions.LongRunning);
_tasks.Add(cancellationId, (task, cts));
tempCts = null;
task.ContinueWith(t =>
{
lock (_disposeLocker)
{
if (!_disposing)
{
TryRemove(id);
}
}
}, TaskContinuationOptions.ExecuteSynchronously);
Console.WriteLine($"Created(cancellationId: {cancellationId})");
task.Start(TaskScheduler.Default);
}
finally
{
if (tempCts != null)
{
tempCts.Dispose();
}
}
}
private void Process(Action action, TimeSpan waitBeforeExecute, CancellationTokenSource cts)
{
Console.WriteLine("Starting delayed action...");
cts.Token.WaitHandle.WaitOne(waitBeforeExecute);
if (cts.Token.IsCancellationRequested)
{
return;
}
lock (_locker)
{
Console.WriteLine("Performing action...");
action();
}
}
public bool Abort(Guid cancellationId)
{
Console.WriteLine($"Aborting(cancellationId: {cancellationId})...");
lock (_locker)
{
if (_tasks.TryGetValue(cancellationId, out var value))
{
if (value.task.IsCompleted)
{
Console.WriteLine("too late");
return false;
}
value.cts.Cancel();
value.task.Wait();
Console.WriteLine("Aborted");
return true;
}
Console.WriteLine("Either too late or wrong cancellation id");
return true;
}
}
private void TryRemove(Guid id)
{
if (_tasks.TryGetValue(id, out var value))
{
Remove(id, value.task, value.cts);
}
}
private void Remove(Guid id, Task task, CancellationTokenSource cts)
{
_tasks.Remove(id);
Dispose(cts);
Dispose(task);
}
public void Dispose()
{
lock (_disposeLocker)
{
_disposing = true;
}
if (_tasks.Count > 0)
{
foreach (var t in _tasks)
{
t.Value.cts.Cancel();
t.Value.task.Wait();
Dispose(t.Value.cts);
Dispose(t.Value.task);
}
_tasks.Clear();
}
}
private static void Dispose(IDisposable obj)
{
if (obj == null)
{
return;
}
try
{
obj.Dispose();
}
catch (Exception ex)
{
//log ex
}
}
}
}
}
I got an async method working like an enhanced Task.WhenAll. It takes a bunch of tasks and returns when all are completed.
public async Task MyWhenAll(Task[] tasks) {
...
await Something();
...
// all tasks are completed
if (someTasksFailed)
throw ??
}
My question is how do I get the method to return a Task looking like the one returned from Task.WhenAll when one or more tasks has failed?
If I collect the exceptions and throw an AggregateException it will be wrapped in another AggregateException.
Edit: Full Example
async Task Main() {
try {
Task.WhenAll(Throw(1), Throw(2)).Wait();
}
catch (Exception ex) {
ex.Dump();
}
try {
MyWhenAll(Throw(1), Throw(2)).Wait();
}
catch (Exception ex) {
ex.Dump();
}
}
public async Task MyWhenAll(Task t1, Task t2) {
await Task.Delay(TimeSpan.FromMilliseconds(100));
try {
await Task.WhenAll(t1, t2);
}
catch {
throw new AggregateException(new[] { t1.Exception, t2.Exception });
}
}
public async Task Throw(int id) {
await Task.Delay(TimeSpan.FromMilliseconds(100));
throw new InvalidOperationException("Inner" + id);
}
For Task.WhenAll the exception is AggregateException with 2 inner exceptions.
For MyWhenAll the exception is AggregateException with one inner AggregateException with 2 inner exceptions.
Edit: Why I am doing this
I often need to call paging API:s and want to limit number of simultaneous connections.
The actual method signatures are
public static async Task<TResult[]> AsParallelAsync<TResult>(this IEnumerable<Task<TResult>> source, int maxParallel)
public static async Task<TResult[]> AsParallelUntilAsync<TResult>(this IEnumerable<Task<TResult>> source, int maxParallel, Func<Task<TResult>, bool> predicate)
It means I can do paging like this
var pagedRecords = await Enumerable.Range(1, int.MaxValue)
.Select(x => GetRecordsAsync(pageSize: 1000, pageNumber: x)
.AsParallelUntilAsync(maxParallel: 5, x => x.Result.Count < 1000);
var records = pagedRecords.SelectMany(x => x).ToList();
It all works fine, the aggregate within aggregate is just a minor inconvenience.
async methods are designed to only every set at most a single exception on the returned task, not multiple.
This leaves you with two options, you can either not use an async method to start with, instead relying on other means of performing your method:
public Task MyWhenAll(Task t1, Task t2)
{
return Task.Delay(TimeSpan.FromMilliseconds(100))
.ContinueWith(_ => Task.WhenAll(t1, t2))
.Unwrap();
}
If you have a more complex method that would be harder to write without using await, then you'll need to unwrap the nested aggregate exceptions, which is tedious, although not overly complex, to do:
public static Task UnwrapAggregateException(this Task taskToUnwrap)
{
var tcs = new TaskCompletionSource<bool>();
taskToUnwrap.ContinueWith(task =>
{
if (task.IsCanceled)
tcs.SetCanceled();
else if (task.IsFaulted)
{
if (task.Exception is AggregateException aggregateException)
tcs.SetException(Flatten(aggregateException));
else
tcs.SetException(task.Exception);
}
else //successful
tcs.SetResult(true);
});
IEnumerable<Exception> Flatten(AggregateException exception)
{
var stack = new Stack<AggregateException>();
stack.Push(exception);
while (stack.Any())
{
var next = stack.Pop();
foreach (Exception inner in next.InnerExceptions)
{
if (inner is AggregateException innerAggregate)
stack.Push(innerAggregate);
else
yield return inner;
}
}
}
return tcs.Task;
}
Use a TaskCompletionSource.
The outermost exception is created by .Wait() or .Result - this is documented as wrapping the exception stored inside the Task inside an AggregateException (to preserve its stack trace - this was introduced before ExceptionDispatchInfo was created).
However, Task can actually contain many exceptions. When this is the case, .Wait() and .Result will throw an AggregateException which contains multiple InnerExceptions. You can access this functionality through TaskCompletionSource.SetException(IEnumerable<Exception> exceptions).
So you do not want to create your own AggregateException. Set multiple exceptions on the Task, and let .Wait() and .Result create that AggregateException for you.
So:
var tcs = new TaskCompletionSource<object>();
tcs.SetException(new[] { t1.Exception, t2.Exception });
return tcs.Task;
Of course, if you then call await MyWhenAll(..) or MyWhenAll(..).GetAwaiter().GetResult(), then it will only throw the first exception. This matches the behaviour of Task.WhenAll.
This means you need to pass tcs.Task up as your method's return value, which means your method can't be async. You end up doing ugly things like this (adjusting the sample code from your question):
public static Task MyWhenAll(Task t1, Task t2)
{
var tcs = new TaskCompletionSource<object>();
var _ = Impl();
return tcs.Task;
async Task Impl()
{
await Task.Delay(10);
try
{
await Task.WhenAll(t1, t2);
tcs.SetResult(null);
}
catch
{
tcs.SetException(new[] { t1.Exception, t2.Exception });
}
}
}
At this point, though, I'd start to query why you're trying to do this, and why you can't use the Task returned from Task.WhenAll directly.
I deleted my previous answer, because I found a simpler solution. This solution does not involve the pesky ContinueWith method or the TaskCompletionSource type. The idea is to return a nested Task<Task> from a local function, and Unwrap() it from the outer container function. Here is a basic outline of this idea:
public Task<T[]> GetAllAsync<T>()
{
return LocalAsyncFunction().Unwrap();
async Task<Task<T[]>> LocalAsyncFunction()
{
var tasks = new List<Task<T>>();
// ...
await SomethingAsync();
// ...
Task<T[]> whenAll = Task.WhenAll(tasks);
return whenAll;
}
}
The GetAllAsync method is not async. It delegates all the work to the LocalAsyncFunction, which is async, and then Unwraps the resulting nested task and returns it. The unwrapped task contains in its .Exception.InnerExceptions property all the exceptions of the tasks, because it is just a facade of the internal Task.WhenAll task.
Let's demonstrate a more practical realization of this idea. The AsParallelUntilAsync method below enumerates lazily the source sequence and projects the items it contains to Task<TResult>s, until an item satisfies the predicate. It also limits the concurrency of the asynchronous operations. The difficulty is that enumerating the IEnumerable<TSource> could throw an exception too. The correct behavior in this case is to await all the running tasks before propagating the enumeration error, and return an AggregateException that contains both the enumeration error, and all the task errors that may have occurred in the meantime. Here is how it can be done:
public static Task<TResult[]> AsParallelUntilAsync<TSource, TResult>(
this IEnumerable<TSource> source, Func<TSource, Task<TResult>> action,
Func<TSource, bool> predicate, int maxConcurrency)
{
return Implementation().Unwrap();
async Task<Task<TResult[]>> Implementation()
{
var tasks = new List<Task<TResult>>();
async Task<TResult> EnumerateAsync()
{
var semaphore = new SemaphoreSlim(maxConcurrency, maxConcurrency);
using var enumerator = source.GetEnumerator();
while (true)
{
await semaphore.WaitAsync();
if (!enumerator.MoveNext()) break;
var item = enumerator.Current;
if (predicate(item)) break;
async Task<TResult> RunAndRelease(TSource item)
{
try { return await action(item); }
finally { semaphore.Release(); }
}
tasks.Add(RunAndRelease(item));
}
return default; // A dummy value that will never be returned
}
Task<TResult> enumerateTask = EnumerateAsync();
try
{
await enumerateTask; // Make sure that the enumeration succeeded
Task<TResult[]> whenAll = Task.WhenAll(tasks);
await whenAll; // Make sure that all the tasks succeeded
return whenAll;
}
catch
{
// Return a faulted task that contains ALL the errors!
return Task.WhenAll(tasks.Prepend(enumerateTask));
}
}
}
I have an async method, say:
public async Task<T> GetAsync()
{
}
and would be called from:
public async Task<IEnumerable<T>> GetAllAsync()
{
foreach (var item in something)
{
var result = await GetAsync();
yield return result;
}
}
The above syntax is not valid but basically I am after asynchronous generators. I know it can be handled via Observables. I did experiment with Rx.NET and it worked to some extent. But I am trying to avoid the complexity it brings to codebase, and more importantly the above requirement is still essentially not a reactive system (ours is still pull based). For e.g. I would only listen to the incoming async streams for a certain time and I have to stop the producer (not just unsubscribe the consumer) from the consumer side.
I can invert the method signature like this:
public IEnumerable<Task<T>> GetAllAsync()
But this makes doing LINQ operations bit tricky without blocking. I want it to be non-blocking as well as without loading the entire thing into memory. This library: AsyncEnumerable does exactly what I am looking for but how can the same be done with Ix.NET? They are meant for the same thing I believe.
In other words, how can I make use of Ix.NET to generate an IAsyncEnumerable when dealing with await? Like,
public async IAsyncEnumerable GetAllAsync()
{
foreach (var item in something)
{
var result = await GetAsync();
return // what?
}
}
(Edited)
Using System.Linq.Async 4.0.0 from NuGet, now you can use SelectAwait.
class Program
{
static void Main(string[] args)
{
Task.Run(async () =>
await GetAllAsync().ForEachAsync((x) => Console.WriteLine(x)));
Thread.Sleep(4000);
}
static IAsyncEnumerable<string> GetAllAsync()
{
var something = new[] { 1, 2, 3 };
return something
.ToAsyncEnumerable()
.SelectAwait(async (x) => await GetAsync(x));
}
static async Task<string> GetAsync(int item)
{
await Task.Delay(1000); // heavy
return "got " + item;
}
}
(Obsolete)
Using System.Interactive.Async 3.2.0 from NuGet, how about this? Currently Select() does not support async lambda, you have to implement it by yourself.
Better support for async - Task based overloads for AsyncEnumerable
class Program
{
static void Main(string[] args)
{
Task.Run(async () =>
await GetAllAsync().ForEachAsync((x) => Console.WriteLine(x)));
Thread.Sleep(4000);
}
static IAsyncEnumerable<string> GetAllAsync()
{
var something = new[] { 1, 2, 3 };
return something.SelectAsync(async (x) => await GetAsync(x));
}
static async Task<string> GetAsync(int item)
{
await Task.Delay(1000); // heavy
return "got " + item;
}
}
static class AsyncEnumerableExtensions
{
public static IAsyncEnumerable<TResult> SelectAsync<T, TResult>(this IEnumerable<T> enumerable, Func<T, Task<TResult>> selector)
{
return AsyncEnumerable.CreateEnumerable(() =>
{
var enumerator = enumerable.GetEnumerator();
var current = default(TResult);
return AsyncEnumerable.CreateEnumerator(async c =>
{
var moveNext = enumerator.MoveNext();
current = moveNext
? await selector(enumerator.Current).ConfigureAwait(false)
: default(TResult);
return moveNext;
},
() => current,
() => enumerator.Dispose());
});
}
}
The extension method is quoted from this sample. https://github.com/maca88/AsyncGenerator/issues/94#issuecomment-385286972