Dynamically call a specific method on every other method call - c#

I'm on .NET 4.8, under Windows Forms. I have a specific amount of declared methods inside a project, in various classes. And I would like that every method in these classes to call another specific method at the very start of each method execution. What I mean it's like If I manually add the required code at line number one inside each method body to call this other specific method.
Why I would like to do this?: I wrote a specific method that prints debug information on which I'm interested to know. This method includes info about the caller member, but it is not in any way limited to that kind of info.
Then, while I'm developing any application in Debug mode I would like to call this method automatically on every other method call in my project (inside property getter/setter too, if possible), and I'm just very curious to know if exists an alternative to the nightmare of writing/copying a thousand times the required instruction to call this specific method inside each method body in the project.
Exists a way to achieve this at runtime?. Maybe... writing an helper method that would be called once to retrieve all declared methods through Reflection and do code injection points in their method bodies?. Not sure how to do so, and not sure if that is viable anyways; maybe with Reflection.Emit as suggested in this answer?
And could this be achieved without depending on third party dependencies like Postsharp as suggested in this question?. Really using Postsharp is not a viable solution for me because I suppose the solution will consist to decorate with custom attributes every declared method in the project.
I also found this other suggestion but it's basically what I intend to avoid: manually add code changes to every method call in the project (in this case to replace the invocation code).
Some suggestions that I found like that last are not applicable to my scenario because I need to call this specific method INSIDE / FROM the method body of other methods in order to be able retrieve debug info of the current caller member including its parameters and values.

As an option, RealProxy may help. There's a nice article by Bruno Sonnino on this topic: Aspect-Oriented Programming : Aspect-Oriented Programming with the RealProxy Class.
Also you may be able to use AOP features of Unity (the DI framework) for this purpose. There's a nice article on this topic by Dino Esposito: Interceptors in Unity.
Using a weaving tool like Fody is also another option.
Creating proxy classes using Reflection.Emit could be another option.
Example - AOP using RealProxy
A LogAttribute which Has MethodExecuting and MethodExecuted and runs before and after methods
Using RealProxy, you can create a proxy for your class, so that when you call a method, the Invoke method of the proxy will run and you can run any logic there, for example you can run something before or after the actual method call.
In this example, I show how you can create a MethodFilterAttribute having two methods OnMethodExecuting and OnMethodExecuted, and then if you decorate your method with an attribute derived from this attribute, those methods will run before and after executing of the original method.
Looking into the code, you see you don't necessarily need the attributes, and attributes are just there as an extensibility point.
The usage of the code in this example is something like this:
var calc = CalculatorFactory.GetInstance();
var a = calc.Add(1, 2);
var b = calc.Subtract(1, 2);
Which produce the output:
Add executing.
Add executed.
Subtract executing.
Subtract executed.
Using statements
This is an attribute that could be used for methods. It has OnMethodExecuting and OnMethodExecuted methods, and when you get a proxy of your class, and run the methods, these two filter methods will be executed before and after the method which is decorated by this attribute:
using System;
using System.Reflection;
using System.Runtime.Remoting.Messaging;
using System.Runtime.Remoting.Proxies;
using System.Linq;
[AttributeUsage(AttributeTargets.Method)]
public class MethodFilterAttribute : Attribute
{
public int Order { get; set; }
public virtual void OnMethodExecuting(
MethodInfo methodInfo, object[] args) { }
public virtual void OnMethodExecuted(
MethodInfo methodInfo, object[] args, object result) { }
}
LogAttribute
An implementation of MethodFilterAttribute which performs log before and after method execution:
public class LogAttribute : MethodFilterAttribute
{
override public void OnMethodExecuting(
MethodInfo methodInfo, object[] args)
{
Console.WriteLine($"{methodInfo.Name} executing.");
}
override public void OnMethodExecuted(
MethodInfo methodInfo, object[] args, object result)
{
Console.WriteLine($"{methodInfo.Name} executed.");
}
}
The DynamicProxy class
Creates a proxy of your object, and if you run methods of the object, if the methdod is decorated with a method filter attribute, then OnActionExecuting and OnActionExecuted will run.
Looking into the code, you see you don't necessarily need the attributes, and attributes are just there as an extensibility point.
public class DynamicProxy<T> : RealProxy
{
private readonly T original;
public DynamicProxy(T original)
: base(typeof(T))
{
this.original = original;
}
public override IMessage Invoke(IMessage msg)
{
var methodCall = msg as IMethodCallMessage;
var methodInfo = methodCall.MethodBase as MethodInfo;
try
{
var filters = methodInfo.GetCustomAttributes<MethodFilterAttribute>();
if (filters.Any())
{
filters.OrderBy(x => x.Order).ToList()
.ForEach(f => f.OnMethodExecuting(methodInfo, methodCall.InArgs));
}
var result = methodInfo.Invoke(original, methodCall.InArgs);
if (filters.Any())
{
filters.OrderBy(x => x.Order).ToList()
.ForEach(f => f.OnMethodExecuted(methodInfo, methodCall.InArgs, result));
}
return new ReturnMessage(result, null, 0,
methodCall.LogicalCallContext, methodCall);
}
catch (Exception e)
{
return new ReturnMessage(e, methodCall);
}
}
}
ICalculator interface and Calculator class
Methods of Calculator are decorated with Log attribute, which means before and after execution of those methods, log will run.
Please note: In the implementation of the proxy we are looking for the attributes, using the interface. Also having the interface is necessary.
public interface ICalculator
{
[Log]
int Add(int x, int y);
[Log]
int Subtract(int x, int y);
}
public class Calculator : ICalculator
{
public int Add(int x, int y)
{
return x + y;
}
public int Subtract(int x, int y)
{
return x - y;
}
}
CalculatorFactory
The factory which returns a proxy instance of ICalculator:
public class CalculatorFactory
{
public static ICalculator GetInstance()
{
var original = new Calculator();
return new DynamicProxy<ICalculator>(original)
.GetTransparentProxy() as ICalculator;
}
}
Usage
Get an proxied instance of the interface using the factory and run methods:
var calc = CalculatorFactory.GetInstance();
var a = calc.Add(1, 2);
var b = calc.Subtract(1, 2);
Which produce the output:
Add executing.
Add executed.
Subtract executing.
Subtract executed.

Related

Mocking an Extention method C# [duplicate]

I have a preexisting Interface...
public interface ISomeInterface
{
void SomeMethod();
}
and I've extended this intreface using a mixin...
public static class SomeInterfaceExtensions
{
public static void AnotherMethod(this ISomeInterface someInterface)
{
// Implementation here
}
}
I have a class thats calling this which I want to test...
public class Caller
{
private readonly ISomeInterface someInterface;
public Caller(ISomeInterface someInterface)
{
this.someInterface = someInterface;
}
public void Main()
{
someInterface.AnotherMethod();
}
}
and a test where I'd like to mock the interface and verify the call to the extension method...
[Test]
public void Main_BasicCall_CallsAnotherMethod()
{
// Arrange
var someInterfaceMock = new Mock<ISomeInterface>();
someInterfaceMock.Setup(x => x.AnotherMethod()).Verifiable();
var caller = new Caller(someInterfaceMock.Object);
// Act
caller.Main();
// Assert
someInterfaceMock.Verify();
}
Running this test however generates an exception...
System.ArgumentException: Invalid setup on a non-member method:
x => x.AnotherMethod()
My question is, is there a nice way to mock out the mixin call?
I have used a Wrapper to get around this problem. Create a wrapper object and pass your mocked method.
See Mocking Static Methods for Unit Testing by Paul Irwin, it has nice examples.
You can't "directly" mock static method (hence extension method) with mocking framework. You can try Moles (http://research.microsoft.com/en-us/projects/pex/downloads.aspx), a free tool from Microsoft that implements a different approach.
Here is the description of the tool:
Moles is a lightweight framework for test stubs and detours in .NET that is based on delegates.
Moles may be used to detour any .NET method, including non-virtual/static methods in sealed types.
You can use Moles with any testing framework (it's independent about that).
I found that I had to discover the inside of the extension method I was trying to mock the input for, and mock what was going on inside the extension.
I viewed using an extension as adding code directly to your method. This meant I needed to mock what happens inside the extension rather than the extension itself.
I like to use the wrapper (adapter pattern) when I am wrapping the object itself. I'm not sure I'd use that for wrapping an extension method, which is not part of the object.
I use an internal Lazy Injectable Property of either type Action, Func, Predicate, or delegate and allow for injecting (swapping out) the method during a unit test.
internal Func<IMyObject, string, object> DoWorkMethod
{
[ExcludeFromCodeCoverage]
get { return _DoWorkMethod ?? (_DoWorkMethod = (obj, val) => { return obj.DoWork(val); }); }
set { _DoWorkMethod = value; }
} private Func<IMyObject, string, object> _DoWorkMethod;
Then you call the Func instead of the actual method.
public object SomeFunction()
{
var val = "doesn't matter for this example";
return DoWorkMethod.Invoke(MyObjectProperty, val);
}
For a more complete example, check out http://www.rhyous.com/2016/08/11/unit-testing-calls-to-complex-extension-methods/
If you just want to make sure that the extension method was invoked, and you aren't trying to setup a return value, then you can check the Invocations property on the mocked object.
Like this:
var invocationsCount = mockedObject.Invocations.Count;
invocationsCount.Should().BeGreaterThan(0);
Reason why it is not possible to mock an extension method is already given in good answers. I am just trying to give another possible solution with this answer: Extract a protected, virtual method with the call to the extension method and create a setup for this method in the test class/method by using a proxy.
public class Foo
{
public void Method()
=> CallToStaticMethod();
protected virtual void CallToStaticMethod()
=> StaticClass.StaticMethod();
}
and test
[TestMethod]
public void MyTestMethod()
{
var expected = new Exception("container exception");
var proxy = new Mock<Foo>();
proxy.Protected().Setup("CallToStaticMethod").Throws(expected);
var actual = Assert.ThrowsException<Exception>(() => proxy.Object.Foo());
Assert.AreEqual(expected, actual);
}
In my case extension method is a method around some public method of my class. So I checked call of that internal method. That approach is similar to Alvis answer (above).
So if you are using Moq, and want to mock the result of an Extension method, then you can use SetupReturnsDefault<ReturnTypeOfExtensionMethod>(new ConcreteInstanceToReturn()) on the instance of the mock class that has the extension method you are trying to mock.
It is not perfect, but for unit testing purposes it works well.

Is it possible to create generic overrides using Reflections? [duplicate]

For a given class I would like to have tracing functionality i.e. I would like to log every method call (method signature and actual parameter values) and every method exit (just the method signature).
How do I accomplish this assuming that:
I don't want to use any 3rd party
AOP libraries for C#,
I don't want to add duplicate code to all the methods that I want to trace,
I don't want to change the public API of the class - users of the class should be able to call all the methods in exactly the same way.
To make the question more concrete let's assume there are 3 classes:
public class Caller
{
public static void Call()
{
Traced traced = new Traced();
traced.Method1();
traced.Method2();
}
}
public class Traced
{
public void Method1(String name, Int32 value) { }
public void Method2(Object object) { }
}
public class Logger
{
public static void LogStart(MethodInfo method, Object[] parameterValues);
public static void LogEnd(MethodInfo method);
}
How do I invoke Logger.LogStart and Logger.LogEnd for every call to Method1 and Method2 without modifying the Caller.Call method and without adding the calls explicitly to Traced.Method1 and Traced.Method2?
Edit: What would be the solution if I'm allowed to slightly change the Call method?
C# is not an AOP oriented language. It has some AOP features and you can emulate some others but making AOP with C# is painful.
I looked up for ways to do exactly what you wanted to do and I found no easy way to do it.
As I understand it, this is what you want to do:
[Log()]
public void Method1(String name, Int32 value);
and in order to do that you have two main options
Inherit your class from MarshalByRefObject or ContextBoundObject and define an attribute which inherits from IMessageSink. This article has a good example. You have to consider nontheless that using a MarshalByRefObject the performance will go down like hell, and I mean it, I'm talking about a 10x performance lost so think carefully before trying that.
The other option is to inject code directly. In runtime, meaning you'll have to use reflection to "read" every class, get its attributes and inject the appropiate call (and for that matter I think you couldn't use the Reflection.Emit method as I think Reflection.Emit wouldn't allow you to insert new code inside an already existing method). At design time this will mean creating an extension to the CLR compiler which I have honestly no idea on how it's done.
The final option is using an IoC framework. Maybe it's not the perfect solution as most IoC frameworks works by defining entry points which allow methods to be hooked but, depending on what you want to achive, that might be a fair aproximation.
The simplest way to achieve that is probably to use PostSharp. It injects code inside your methods based on the attributes that you apply to it. It allows you to do exactly what you want.
Another option is to use the profiling API to inject code inside the method, but that is really hardcore.
You could achieve it with Interception feature of a DI container such as Castle Windsor. Indeed, it is possible to configure the container in such way that every classes that have a method decorated by a specific attribute would be intercepted.
Regarding point #3, OP asked for a solution without AOP framework. I assumed in the following answer that what should be avoided were Aspect, JointPoint, PointCut, etc. According to Interception documentation from CastleWindsor, none of those are required to accomplish what is asked.
Configure generic registration of an Interceptor, based on the presence of an attribute:
public class RequireInterception : IContributeComponentModelConstruction
{
public void ProcessModel(IKernel kernel, ComponentModel model)
{
if (HasAMethodDecoratedByLoggingAttribute(model.Implementation))
{
model.Interceptors.Add(new InterceptorReference(typeof(ConsoleLoggingInterceptor)));
model.Interceptors.Add(new InterceptorReference(typeof(NLogInterceptor)));
}
}
private bool HasAMethodDecoratedByLoggingAttribute(Type implementation)
{
foreach (var memberInfo in implementation.GetMembers())
{
var attribute = memberInfo.GetCustomAttributes(typeof(LogAttribute)).FirstOrDefault() as LogAttribute;
if (attribute != null)
{
return true;
}
}
return false;
}
}
Add the created IContributeComponentModelConstruction to container
container.Kernel.ComponentModelBuilder.AddContributor(new RequireInterception());
And you can do whatever you want in the interceptor itself
public class ConsoleLoggingInterceptor : IInterceptor
{
public void Intercept(IInvocation invocation)
{
Console.Writeline("Log before executing");
invocation.Proceed();
Console.Writeline("Log after executing");
}
}
Add the logging attribute to your method to log
public class Traced
{
[Log]
public void Method1(String name, Int32 value) { }
[Log]
public void Method2(Object object) { }
}
Note that some handling of the attribute will be required if only some method of a class needs to be intercepted. By default, all public methods will be intercepted.
If you write a class - call it Tracing - that implements the IDisposable interface, you could wrap all method bodies in a
Using( Tracing tracing = new Tracing() ){ ... method body ...}
In the Tracing class you could the handle the logic of the traces in the constructor/Dispose method, respectively, in the Tracing class to keep track of the entering and exiting of the methods. Such that:
public class Traced
{
public void Method1(String name, Int32 value) {
using(Tracing tracer = new Tracing())
{
[... method body ...]
}
}
public void Method2(Object object) {
using(Tracing tracer = new Tracing())
{
[... method body ...]
}
}
}
If you want to trace after your methods without limitation (no code adaptation, no AOP Framework, no duplicate code), let me tell you, you need some magic...
Seriously, I resolved it to implement an AOP Framework working at runtime.
You can find here : NConcern .NET AOP Framework
I decided to create this AOP Framework to give a respond to this kind of needs. it is a simple library very lightweight. You can see an example of logger in home page.
If you don't want to use a 3rd party assembly, you can browse the code source (open source) and copy both files Aspect.Directory.cs and Aspect.Directory.Entry.cs to adapted as your wishes. Theses classes allow to replace your methods at runtime. I would just ask you to respect the license.
I hope you will find what you need or to convince you to finally use an AOP Framework.
Take a look at this - Pretty heavy stuff..
http://msdn.microsoft.com/en-us/magazine/cc164165.aspx
Essential .net - don box had a chapter on what you need called Interception.
I scraped some of it here (Sorry about the font colors - I had a dark theme back then...)
http://madcoderspeak.blogspot.com/2005/09/essential-interception-using-contexts.html
I have found a different way which may be easier...
Declare a Method InvokeMethod
[WebMethod]
public object InvokeMethod(string methodName, Dictionary<string, object> methodArguments)
{
try
{
string lowerMethodName = '_' + methodName.ToLowerInvariant();
List<object> tempParams = new List<object>();
foreach (MethodInfo methodInfo in serviceMethods.Where(methodInfo => methodInfo.Name.ToLowerInvariant() == lowerMethodName))
{
ParameterInfo[] parameters = methodInfo.GetParameters();
if (parameters.Length != methodArguments.Count()) continue;
else foreach (ParameterInfo parameter in parameters)
{
object argument = null;
if (methodArguments.TryGetValue(parameter.Name, out argument))
{
if (parameter.ParameterType.IsValueType)
{
System.ComponentModel.TypeConverter tc = System.ComponentModel.TypeDescriptor.GetConverter(parameter.ParameterType);
argument = tc.ConvertFrom(argument);
}
tempParams.Insert(parameter.Position, argument);
}
else goto ContinueLoop;
}
foreach (object attribute in methodInfo.GetCustomAttributes(true))
{
if (attribute is YourAttributeClass)
{
RequiresPermissionAttribute attrib = attribute as YourAttributeClass;
YourAttributeClass.YourMethod();//Mine throws an ex
}
}
return methodInfo.Invoke(this, tempParams.ToArray());
ContinueLoop:
continue;
}
return null;
}
catch
{
throw;
}
}
I then define my methods like so
[WebMethod]
public void BroadcastMessage(string Message)
{
//MessageBus.GetInstance().SendAll("<span class='system'>Web Service Broadcast: <b>" + Message + "</b></span>");
//return;
InvokeMethod("BroadcastMessage", new Dictionary<string, object>() { {"Message", Message} });
}
[RequiresPermission("editUser")]
void _BroadcastMessage(string Message)
{
MessageBus.GetInstance().SendAll("<span class='system'>Web Service Broadcast: <b>" + Message + "</b></span>");
return;
}
Now I can have the check at run time without the dependency injection...
No gotchas in site :)
Hopefully you will agree that this is less weight then a AOP Framework or deriving from MarshalByRefObject or using remoting or proxy classes.
First you have to modify your class to implement an interface (rather than implementing the MarshalByRefObject).
interface ITraced {
void Method1();
void Method2()
}
class Traced: ITraced { .... }
Next you need a generic wrapper object based on RealProxy to decorate any interface to allow intercepting any call to the decorated object.
class MethodLogInterceptor: RealProxy
{
public MethodLogInterceptor(Type interfaceType, object decorated)
: base(interfaceType)
{
_decorated = decorated;
}
public override IMessage Invoke(IMessage msg)
{
var methodCall = msg as IMethodCallMessage;
var methodInfo = methodCall.MethodBase;
Console.WriteLine("Precall " + methodInfo.Name);
var result = methodInfo.Invoke(_decorated, methodCall.InArgs);
Console.WriteLine("Postcall " + methodInfo.Name);
return new ReturnMessage(result, null, 0,
methodCall.LogicalCallContext, methodCall);
}
}
Now we are ready to intercept calls to Method1 and Method2 of ITraced
public class Caller
{
public static void Call()
{
ITraced traced = (ITraced)new MethodLogInterceptor(typeof(ITraced), new Traced()).GetTransparentProxy();
traced.Method1();
traced.Method2();
}
}
You can use open source framework CInject on CodePlex. You can write minimal code to create an Injector and get it to intercept any code quickly with CInject. Plus, since this is Open Source you can extend this as well.
Or you can follow the steps mentioned on this article on Intercepting Method Calls using IL and create your own interceptor using Reflection.Emit classes in C#.
I don't know a solution but my approach would be as follows.
Decorate the class (or its methods) with a custom attribute. Somewhere else in the program, let an initialization function reflect all types, read the methods decorated with the attributes and inject some IL code into the method. It might actually be more practical to replace the method by a stub that calls LogStart, the actual method and then LogEnd. Additionally, I don't know if you can change methods using reflection so it might be more practical to replace the whole type.
You could potentially use the GOF Decorator Pattern, and 'decorate' all classes that need tracing.
It's probably only really practical with an IOC container (but as pointer out earlier you may want to consider method interception if you're going to go down the IOC path).
you need to bug Ayende for an answer on how he did it:
http://ayende.com/Blog/archive/2009/11/19/can-you-hack-this-out.aspx
AOP is a must for clean code implementing, however if you want to surround a block in C#, generic methods have relatively easier usage. (with intelli sense and strongly typed code) Certainly, it can NOT be an alternative for AOP.
Although PostSHarp have little buggy issues (i do not feel confident for using at production), it is a good stuff.
Generic wrapper class,
public class Wrapper
{
public static Exception TryCatch(Action actionToWrap, Action<Exception> exceptionHandler = null)
{
Exception retval = null;
try
{
actionToWrap();
}
catch (Exception exception)
{
retval = exception;
if (exceptionHandler != null)
{
exceptionHandler(retval);
}
}
return retval;
}
public static Exception LogOnError(Action actionToWrap, string errorMessage = "", Action<Exception> afterExceptionHandled = null)
{
return Wrapper.TryCatch(actionToWrap, (e) =>
{
if (afterExceptionHandled != null)
{
afterExceptionHandled(e);
}
});
}
}
usage could be like this (with intelli sense of course)
var exception = Wrapper.LogOnError(() =>
{
MessageBox.Show("test");
throw new Exception("test");
}, "Hata");
Maybe it's to late for this answer but here it goes.
What you are looking to achieve is built in MediatR library.
This is my RequestLoggerBehaviour which intercepts all calls to my business layer.
namespace SmartWay.Application.Behaviours
{
public class RequestLoggerBehaviour<TRequest, TResponse> : IPipelineBehavior<TRequest, TResponse>
{
private readonly ILogger _logger;
private readonly IAppSession _appSession;
private readonly ICreateLogGrain _createLogGrain;
public RequestLoggerBehaviour(ILogger<TRequest> logger, IAppSession appSession, IClusterClient clusterClient)
{
_logger = logger;
_appSession = appSession;
_createLogGrain = clusterClient.GetGrain<ICreateLogGrain>(Guid.NewGuid());
}
public async Task<TResponse> Handle(TRequest request, CancellationToken cancellationToken, RequestHandlerDelegate<TResponse> next)
{
var name = typeof(TRequest).Name;
_logger.LogInformation($"SmartWay request started: ClientId: {_appSession.ClientId} UserId: {_appSession.UserId} Operation: {name} Request: {request}");
var response = await next();
_logger.LogInformation($"SmartWay request ended: ClientId: {_appSession.ClientId} UserId: {_appSession.UserId} Operation: {name} Request: {request}");
return response;
}
}
}
You can also create performance behaviours to trace methods that take too long to execute for example.
Having clean architecture (MediatR) on your business layer will allow you to keep your code clean while you enforce SOLID principles.
You can see how it works here:
https://youtu.be/5OtUm1BLmG0?t=1
Write your own AOP library.
Use reflection to generate a logging proxy over your instances (not sure if you can do it without changing some part of your existing code).
Rewrite the assembly and inject your logging code (basically the same as 1).
Host the CLR and add logging at this level (i think this is the hardest solution to implement, not sure if you have the required hooks in the CLR though).
The best you can do before C# 6 with 'nameof' released is to use slow StackTrace and linq Expressions.
E.g. for such method
public void MyMethod(int age, string name)
{
log.DebugTrace(() => age, () => name);
//do your stuff
}
Such line may be produces in your log file
Method 'MyMethod' parameters age: 20 name: Mike
Here is the implementation:
//TODO: replace with 'nameof' in C# 6
public static void DebugTrace(this ILog log, params Expression<Func<object>>[] args)
{
#if DEBUG
var method = (new StackTrace()).GetFrame(1).GetMethod();
var parameters = new List<string>();
foreach(var arg in args)
{
MemberExpression memberExpression = null;
if (arg.Body is MemberExpression)
memberExpression = (MemberExpression)arg.Body;
if (arg.Body is UnaryExpression && ((UnaryExpression)arg.Body).Operand is MemberExpression)
memberExpression = (MemberExpression)((UnaryExpression)arg.Body).Operand;
parameters.Add(memberExpression == null ? "NA" : memberExpression.Member.Name + ": " + arg.Compile().DynamicInvoke().ToString());
}
log.Debug(string.Format("Method '{0}' parameters {1}", method.Name, string.Join(" ", parameters)));
#endif
}

Is it possible create a custom method attribute to control the method signature or the method's parameters?

I would like to control in a class the signature of certain methods so that it throws a compilation error if a method does not have the signature I want.
I have thought do it creating a custom attribute, something like this:
public class CustomAttributeForMethodWithStringParameterFirstAttribute : Attribute
{
}
public class MyClass
{
[CustomAttributeForMethodWithStringParameterFirst]
public void Method1 (string p)
{
}
[CustomAttributeForMethodWithStringParameterFirst]
public void Method2 () // <--- I wish a compile error
{
}
}
But... Now I do not know how to continue.
Is it possible do this via attributes?
Thanks in advance.
If not, is there any way to do it?
EDIT
Sorry, I have simplified my scenario to expone the concrete problem.
I'm writting the interface for a WCF service and I wish implement this attributes in the interface. Certain methods must have one string parameters in first position for custom operations.
I've developed a custom attribute to do something with this first parameter before methods calls of my service.
public interface MyInterface
{
[CustomAttributeForMethodWithStringParameterFirst]
void Method1 (string p);
[CustomAttributeForMethodWithStringParameterFirst]
void Method2 (); // <--- I wish a compile error
}

Delegate caching behavior changes in Roslyn

Given the following code:
public class C
{
public void M()
{
var x = 5;
Action<int> action = y => Console.WriteLine(y);
}
}
Using VS2013, .NET 4.5. When looking at the decompiled code, we can see that the compiler is caching the delegate at the call site:
public class C
{
[CompilerGenerated]
private static Action<int> CS$<>9__CachedAnonymousMethodDelegate1;
public void M()
{
if (C.CS$<>9__CachedAnonymousMethodDelegate1 == null)
{
C.CS$<>9__CachedAnonymousMethodDelegate1 = new Action<int>(C.<M>b__0);
}
Action<int> arg_1D_0 = C.CS$<>9__CachedAnonymousMethodDelegate1;
}
[CompilerGenerated]
private static void <M>b__0(int y)
{
Console.WriteLine(y);
}
}
Looking at the same code decompiled in Roslyn (using TryRoslyn), yields the following output:
public class C
{
[CompilerGenerated]
private sealed class <>c__DisplayClass0
{
public static readonly C.<>c__DisplayClass0 CS$<>9__inst;
public static Action<int> CS$<>9__CachedAnonymousMethodDelegate2;
static <>c__DisplayClass0()
{
// Note: this type is marked as 'beforefieldinit'.
C.<>c__DisplayClass0.CS$<>9__inst = new C.<>c__DisplayClass0();
}
internal void <M>b__1(int y)
{
Console.WriteLine(y);
}
}
public void M()
{
Action<int> arg_22_0;
if (arg_22_0 = C.<>c__DisplayClass0.CS$<>9__CachedAnonymousMethodDelegate2 == null)
{
C.<>c__DisplayClass0.CS$<>9__CachedAnonymousMethodDelegate2 =
new Action<int>(C.<>c__DisplayClass0.CS$<>9__inst.<M>b__1);
}
}
}
We can now see that the delegate is now lifted into a private class inside C, a similar behavior that we're used to seeing when closing over an instance variable / field (closure).
I know this is an implementation detail which may be subject to change at any given time.
Still I wonder, what are the benefits of lifting the delegate into a new class and caching it there over simply caching it at the call site?
Edit:
This issue talks about the same behavior as asked here.
Yes. The most important part is that the method containing lambda implementation is now an instance method.
You can see a delegate as a middleman receiving an instance call through Invoke and dispatching that call according to the calling convention of the implementing method.
Note that there are platform ABI requirements that specify how arguments are passed, how results are returned, what arguments are passed via registers and in which ones, how "this" is being passed and so on. Violating these rules may have bad impact on tools that rely on stack-walking, such as debuggers.
Now, if the implementing method is an instance method, the only thing that needs to happen inside the delegate is to patch "this", which is the delegate instance at the time of Invoke, to be the enclosed Target object. At that point, since everything else is already where it needs to be, the delegate can jump directly to the implementing method body. In many cases this is noticeably less work than what would need to happen if the implementing method was a static method.
Still I wonder, what are the benefits of lifting the delegate into a new class and caching it there over simply caching it at the call site?
You've missed one other really important detail - it's now an instance method. I believe that's the key here. IIRC, it was found that invoking a delegate which was "backed" by an instance method was faster than invoking a delegate backed by a static method - which is the motivation behind the change.
This is all hearsay, vaguely remembered from spending time with Dustin Campbell and Kevin Pilch-Bisson (both from the Roslyn team) at CodeMash, but it would make sense given the code you've shown.
(I haven't validated the performance difference for myself, and it sounds like it's backwards... but CLR internals can be funny like that...)

Mocking Extension Methods with Moq

I have a preexisting Interface...
public interface ISomeInterface
{
void SomeMethod();
}
and I've extended this intreface using a mixin...
public static class SomeInterfaceExtensions
{
public static void AnotherMethod(this ISomeInterface someInterface)
{
// Implementation here
}
}
I have a class thats calling this which I want to test...
public class Caller
{
private readonly ISomeInterface someInterface;
public Caller(ISomeInterface someInterface)
{
this.someInterface = someInterface;
}
public void Main()
{
someInterface.AnotherMethod();
}
}
and a test where I'd like to mock the interface and verify the call to the extension method...
[Test]
public void Main_BasicCall_CallsAnotherMethod()
{
// Arrange
var someInterfaceMock = new Mock<ISomeInterface>();
someInterfaceMock.Setup(x => x.AnotherMethod()).Verifiable();
var caller = new Caller(someInterfaceMock.Object);
// Act
caller.Main();
// Assert
someInterfaceMock.Verify();
}
Running this test however generates an exception...
System.ArgumentException: Invalid setup on a non-member method:
x => x.AnotherMethod()
My question is, is there a nice way to mock out the mixin call?
I have used a Wrapper to get around this problem. Create a wrapper object and pass your mocked method.
See Mocking Static Methods for Unit Testing by Paul Irwin, it has nice examples.
You can't "directly" mock static method (hence extension method) with mocking framework. You can try Moles (http://research.microsoft.com/en-us/projects/pex/downloads.aspx), a free tool from Microsoft that implements a different approach.
Here is the description of the tool:
Moles is a lightweight framework for test stubs and detours in .NET that is based on delegates.
Moles may be used to detour any .NET method, including non-virtual/static methods in sealed types.
You can use Moles with any testing framework (it's independent about that).
I found that I had to discover the inside of the extension method I was trying to mock the input for, and mock what was going on inside the extension.
I viewed using an extension as adding code directly to your method. This meant I needed to mock what happens inside the extension rather than the extension itself.
If you just want to make sure that the extension method was invoked, and you aren't trying to setup a return value, then you can check the Invocations property on the mocked object.
Like this:
var invocationsCount = mockedObject.Invocations.Count;
invocationsCount.Should().BeGreaterThan(0);
I like to use the wrapper (adapter pattern) when I am wrapping the object itself. I'm not sure I'd use that for wrapping an extension method, which is not part of the object.
I use an internal Lazy Injectable Property of either type Action, Func, Predicate, or delegate and allow for injecting (swapping out) the method during a unit test.
internal Func<IMyObject, string, object> DoWorkMethod
{
[ExcludeFromCodeCoverage]
get { return _DoWorkMethod ?? (_DoWorkMethod = (obj, val) => { return obj.DoWork(val); }); }
set { _DoWorkMethod = value; }
} private Func<IMyObject, string, object> _DoWorkMethod;
Then you call the Func instead of the actual method.
public object SomeFunction()
{
var val = "doesn't matter for this example";
return DoWorkMethod.Invoke(MyObjectProperty, val);
}
For a more complete example, check out http://www.rhyous.com/2016/08/11/unit-testing-calls-to-complex-extension-methods/
Reason why it is not possible to mock an extension method is already given in good answers. I am just trying to give another possible solution with this answer: Extract a protected, virtual method with the call to the extension method and create a setup for this method in the test class/method by using a proxy.
public class Foo
{
public void Method()
=> CallToStaticMethod();
protected virtual void CallToStaticMethod()
=> StaticClass.StaticMethod();
}
and test
[TestMethod]
public void MyTestMethod()
{
var expected = new Exception("container exception");
var proxy = new Mock<Foo>();
proxy.Protected().Setup("CallToStaticMethod").Throws(expected);
var actual = Assert.ThrowsException<Exception>(() => proxy.Object.Foo());
Assert.AreEqual(expected, actual);
}
In my case extension method is a method around some public method of my class. So I checked call of that internal method. That approach is similar to Alvis answer (above).
So if you are using Moq, and want to mock the result of an Extension method, then you can use SetupReturnsDefault<ReturnTypeOfExtensionMethod>(new ConcreteInstanceToReturn()) on the instance of the mock class that has the extension method you are trying to mock.
It is not perfect, but for unit testing purposes it works well.

Categories