Related
I was trying to understand properties better and I came across this page with this example:
https://www.tutorialspoint.com/csharp/csharp_properties.htm
using System;
namespace tutorialspoint {
class Student {
private string code = "N.A";
private string name = "not known";
private int age = 0;
// Declare a Code property of type string:
public string Code {
get {
return code;
}
set {
code = value;
}
}
// Declare a Name property of type string:
public string Name {
get {
return name;
}
set {
name = value;
}
}
// Declare a Age property of type int:
public int Age {
get {
return age;
}
set {
age = value;
}
}
public override string ToString() {
return "Code = " + Code +", Name = " + Name + ", Age = " + Age;
}
}
class ExampleDemo {
public static void Main() {
// Create a new Student object:
Student s = new Student();
// Setting code, name and the age of the student
s.Code = "001";
s.Name = "Zara";
s.Age = 9;
Console.WriteLine("Student Info: {0}", s);
//let us increase age
s.Age += 1;
Console.WriteLine("Student Info: {0}", s);
Console.ReadKey();
}
}
}
output: Student Info: Code = 001, Name = Zara, Age = 9
I don't understand how the first example is able to output the whole line written in the class "student". In the main method, we are using "s" which is an object created in the class "exampledemo". How is it able to call a method from another class?
I guess it's something related to inheritance and polymorphism (I googled the override keyword) but it seems to me that the two classes are indipendent and not a subclass of the other.
I'm a total beginner at programming and probably quite confused.
s is of type Student (as declared on the first line of Main()). Therefore one can call a method on the object to modify it or print it. When you do s.Name = "Zara"; you are already calling a method on Student to update it (technically, a method and a property are the same, they only differ by syntax).
The line Console.WriteLine("Student Info: {0}", s); is actually the same as Console.WriteLine("Student Info: " + s.ToString());. The compiler allows writing this in a shorter form, but internally the same thing happens.
Let me show a real life example.
You have a sketch of your dream bicycle. Your bicycle exists only in sketch. This is a class.
Then you are going to garage and building your bicycle from the sketch. This process can be called like creation of object
of bicycle at factory from your sketch.
According to your example, class is Student.
You are creating an object by the following line:
Student s = new Student();
Object takes space in memory. How can we read values of objects from memory? By using object reference.
s is an object reference to the newly created object type of Student.
How is it able to call a method from another class?
s is an object reference to the newly created object type of Student. So it can call any public method of this object.
I was trying to understand properties
Properties are evolution of getter and setter methods. Looking for a short & simple example of getters/setters in C#
The compiler generates a pair of get and set methods for a property, plus a private backing field for an auto-implemented property.
Are C# properties actually Methods?
How do you give a C# auto-property an initial value?
I either use the constructor, or revert to the old syntax.
Using the Constructor:
class Person
{
public Person()
{
Name = "Initial Name";
}
public string Name { get; set; }
}
Using normal property syntax (with an initial value)
private string name = "Initial Name";
public string Name
{
get
{
return name;
}
set
{
name = value;
}
}
Is there a better way?
In C# 5 and earlier, to give auto implemented properties an initial value, you have to do it in a constructor.
Since C# 6.0, you can specify initial value in-line. The syntax is:
public int X { get; set; } = x; // C# 6 or higher
DefaultValueAttribute is intended to be used by the VS designer (or any other consumer) to specify a default value, not an initial value. (Even if in designed object, initial value is the default value).
At compile time DefaultValueAttribute will not impact the generated IL and it will not be read to initialize the property to that value (see DefaultValue attribute is not working with my Auto Property).
Example of attributes that impact the IL are ThreadStaticAttribute, CallerMemberNameAttribute, ...
Edited on 1/2/15
C# 6 :
With C# 6 you can initialize auto-properties directly (finally!), there are now other answers that describe that.
C# 5 and below:
Though the intended use of the attribute is not to actually set the values of the properties, you can use reflection to always set them anyway...
public class DefaultValuesTest
{
public DefaultValuesTest()
{
foreach (PropertyDescriptor property in TypeDescriptor.GetProperties(this))
{
DefaultValueAttribute myAttribute = (DefaultValueAttribute)property.Attributes[typeof(DefaultValueAttribute)];
if (myAttribute != null)
{
property.SetValue(this, myAttribute.Value);
}
}
}
public void DoTest()
{
var db = DefaultValueBool;
var ds = DefaultValueString;
var di = DefaultValueInt;
}
[System.ComponentModel.DefaultValue(true)]
public bool DefaultValueBool { get; set; }
[System.ComponentModel.DefaultValue("Good")]
public string DefaultValueString { get; set; }
[System.ComponentModel.DefaultValue(27)]
public int DefaultValueInt { get; set; }
}
When you inline an initial value for a variable it will be done implicitly in the constructor anyway.
I would argue that this syntax was best practice in C# up to 5:
class Person
{
public Person()
{
//do anything before variable assignment
//assign initial values
Name = "Default Name";
//do anything after variable assignment
}
public string Name { get; set; }
}
As this gives you clear control of the order values are assigned.
As of C#6 there is a new way:
public string Name { get; set; } = "Default Name";
Sometimes I use this, if I don't want it to be actually set and persisted in my db:
class Person
{
private string _name;
public string Name
{
get
{
return string.IsNullOrEmpty(_name) ? "Default Name" : _name;
}
set { _name = value; }
}
}
Obviously if it's not a string then I might make the object nullable ( double?, int? ) and check if it's null, return a default, or return the value it's set to.
Then I can make a check in my repository to see if it's my default and not persist, or make a backdoor check in to see the true status of the backing value, before saving.
In C# 6.0 this is a breeze!
You can do it in the Class declaration itself, in the property declaration statements.
public class Coordinate
{
public int X { get; set; } = 34; // get or set auto-property with initializer
public int Y { get; } = 89; // read-only auto-property with initializer
public int Z { get; } // read-only auto-property with no initializer
// so it has to be initialized from constructor
public Coordinate() // .ctor()
{
Z = 42;
}
}
Starting with C# 6.0, We can assign default value to auto-implemented properties.
public string Name { get; set; } = "Some Name";
We can also create read-only auto implemented property like:
public string Name { get; } = "Some Name";
See: C# 6: First reactions , Initializers for automatically implemented properties - By Jon Skeet
In Version of C# (6.0) & greater, you can do :
For Readonly properties
public int ReadOnlyProp => 2;
For both Writable & Readable properties
public string PropTest { get; set; } = "test";
In current Version of C# (7.0), you can do : (The snippet rather displays how you can use expression bodied get/set accessors to make is more compact when using with backing fields)
private string label = "Default Value";
// Expression-bodied get / set accessors.
public string Label
{
get => label;
set => this.label = value;
}
In C# 9.0 was added support of init keyword - very useful and extremly sophisticated way for declaration read-only auto-properties:
Declare:
class Person
{
public string Name { get; init; } = "Anonymous user";
}
~Enjoy~ Use:
// 1. Person with default name
var anonymous = new Person();
Console.WriteLine($"Hello, {anonymous.Name}!");
// > Hello, Anonymous user!
// 2. Person with assigned value
var me = new Person { Name = "#codez0mb1e"};
Console.WriteLine($"Hello, {me.Name}!");
// > Hello, #codez0mb1e!
// 3. Attempt to re-assignment Name
me.Name = "My fake";
// > Compilation error: Init-only property can only be assigned in an object initializer
In addition to the answer already accepted, for the scenario when you want to define a default property as a function of other properties you can use expression body notation on C#6.0 (and higher) for even more elegant and concise constructs like:
public class Person{
public string FullName => $"{First} {Last}"; // expression body notation
public string First { get; set; } = "First";
public string Last { get; set; } = "Last";
}
You can use the above in the following fashion
var p = new Person();
p.FullName; // First Last
p.First = "Jon";
p.Last = "Snow";
p.FullName; // Jon Snow
In order to be able to use the above "=>" notation, the property must be read only, and you do not use the get accessor keyword.
Details on MSDN
In C# 6 and above you can simply use the syntax:
public object Foo { get; set; } = bar;
Note that to have a readonly property simply omit the set, as so:
public object Foo { get; } = bar;
You can also assign readonly auto-properties from the constructor.
Prior to this I responded as below.
I'd avoid adding a default to the constructor; leave that for dynamic assignments and avoid having two points at which the variable is assigned (i.e. the type default and in the constructor). Typically I'd simply write a normal property in such cases.
One other option is to do what ASP.Net does and define defaults via an attribute:
http://msdn.microsoft.com/en-us/library/system.componentmodel.defaultvalueattribute.aspx
My solution is to use a custom attribute that provides default value property initialization by constant or using property type initializer.
[AttributeUsage(AttributeTargets.Property, AllowMultiple = false, Inherited = true)]
public class InstanceAttribute : Attribute
{
public bool IsConstructorCall { get; private set; }
public object[] Values { get; private set; }
public InstanceAttribute() : this(true) { }
public InstanceAttribute(object value) : this(false, value) { }
public InstanceAttribute(bool isConstructorCall, params object[] values)
{
IsConstructorCall = isConstructorCall;
Values = values ?? new object[0];
}
}
To use this attribute it's necessary to inherit a class from special base class-initializer or use a static helper method:
public abstract class DefaultValueInitializer
{
protected DefaultValueInitializer()
{
InitializeDefaultValues(this);
}
public static void InitializeDefaultValues(object obj)
{
var props = from prop in obj.GetType().GetProperties()
let attrs = prop.GetCustomAttributes(typeof(InstanceAttribute), false)
where attrs.Any()
select new { Property = prop, Attr = ((InstanceAttribute)attrs.First()) };
foreach (var pair in props)
{
object value = !pair.Attr.IsConstructorCall && pair.Attr.Values.Length > 0
? pair.Attr.Values[0]
: Activator.CreateInstance(pair.Property.PropertyType, pair.Attr.Values);
pair.Property.SetValue(obj, value, null);
}
}
}
Usage example:
public class Simple : DefaultValueInitializer
{
[Instance("StringValue")]
public string StringValue { get; set; }
[Instance]
public List<string> Items { get; set; }
[Instance(true, 3,4)]
public Point Point { get; set; }
}
public static void Main(string[] args)
{
var obj = new Simple
{
Items = {"Item1"}
};
Console.WriteLine(obj.Items[0]);
Console.WriteLine(obj.Point);
Console.WriteLine(obj.StringValue);
}
Output:
Item1
(X=3,Y=4)
StringValue
little complete sample:
using System.ComponentModel;
private bool bShowGroup ;
[Description("Show the group table"), Category("Sea"),DefaultValue(true)]
public bool ShowGroup
{
get { return bShowGroup; }
set { bShowGroup = value; }
}
You can simple put like this
public sealed class Employee
{
public int Id { get; set; } = 101;
}
In the constructor. The constructor's purpose is to initialized it's data members.
private string name;
public string Name
{
get
{
if(name == null)
{
name = "Default Name";
}
return name;
}
set
{
name = value;
}
}
Have you tried using the DefaultValueAttribute or ShouldSerialize and Reset methods in conjunction with the constructor? I feel like one of these two methods is necessary if you're making a class that might show up on the designer surface or in a property grid.
Use the constructor because "When the constructor is finished, Construction should be finished". properties are like states your classes hold, if you had to initialize a default state, you would do that in your constructor.
To clarify, yes, you need to set default values in the constructor for class derived objects. You will need to ensure the constructor exists with the proper access modifier for construction where used. If the object is not instantiated, e.g. it has no constructor (e.g. static methods) then the default value can be set by the field. The reasoning here is that the object itself will be created only once and you do not instantiate it.
#Darren Kopp - good answer, clean, and correct. And to reiterate, you CAN write constructors for Abstract methods. You just need to access them from the base class when writing the constructor:
Constructor at Base Class:
public BaseClassAbstract()
{
this.PropertyName = "Default Name";
}
Constructor at Derived / Concrete / Sub-Class:
public SubClass() : base() { }
The point here is that the instance variable drawn from the base class may bury your base field name. Setting the current instantiated object value using "this." will allow you to correctly form your object with respect to the current instance and required permission levels (access modifiers) where you are instantiating it.
public Class ClassName{
public int PropName{get;set;}
public ClassName{
PropName=0; //Default Value
}
}
This is old now, and my position has changed. I'm leaving the original answer for posterity only.
Personally, I don't see the point of making it a property at all if you're not going to do anything at all beyond the auto-property. Just leave it as a field. The encapsulation benefit for these item are just red herrings, because there's nothing behind them to encapsulate. If you ever need to change the underlying implementation you're still free to refactor them as properties without breaking any dependent code.
Hmm... maybe this will be the subject of it's own question later
class Person
{
/// Gets/sets a value indicating whether auto
/// save of review layer is enabled or not
[System.ComponentModel.DefaultValue(true)]
public bool AutoSaveReviewLayer { get; set; }
}
I know this is an old question, but it came up when I was looking for how to have a default value that gets inherited with the option to override, I came up with
//base class
public class Car
{
public virtual string FuelUnits
{
get { return "gasoline in gallons"; }
protected set { }
}
}
//derived
public class Tesla : Car
{
public override string FuelUnits => "ampere hour";
}
I think this would do it for ya givng SomeFlag a default of false.
private bool _SomeFlagSet = false;
public bool SomeFlag
{
get
{
if (!_SomeFlagSet)
SomeFlag = false;
return SomeFlag;
}
set
{
if (!_SomeFlagSet)
_SomeFlagSet = true;
SomeFlag = value;
}
}
I have a class called Person which has properties Name, DateOfBirthand Age. Name and DateOfBirth are supplied when class instance is created but I want the Age property to be computed automatically as soon as the instance of class is created. I know how to do it using Parametrized Constructor but as I am trying to understand the power of Properties, I attempted following program but it is not giving expected output.
using System;
namespace Property
{
class Person
{
#region private varaibles
private int _age;
#endregion
#region properties
public string Name { get; set; }
public DateTime DateOfBirth { get; set; }
public int Age
{
get { return _age; }
set { _age = (DateTime.Now - DateOfBirth).Days / 365; }
}
#endregion properties
}
class Program
{
static void Main(string[] args)
{
Person P = new Person() { Name = "Merin Nakarmi", DateOfBirth = new DateTime(1990, 1, 12) };
Console.WriteLine("{0}, whose Date Of Birth is {1} is {2} years old!", P.Name, P.DateOfBirth, P.Age);
}
}
}
The output I am getting is
I am expecting age to be 28. Help please.
It seems you need a readonly age, if that's the case, you don't need to set anything in Age property, simply do:
public int Age
{
get {
return DateTime.Now.Year - DateOfBirth.Year;
}
}
You may also want to have a look here and read a bit more on properties.
By the way as also #John pointed out concerning the correct calculation of the age(meaning taking leap years into account, you may want to have a look here)
You are trying to read the property without setting it. So you can do both of these things in code like
get { return ((DateTime.Now - DateOfBirth).Days / 365); }
For example, I have an immutable type
class Contact
{
// Read-only properties.
public string Name { get; }
public string Address { get; }
}
And I hope I can use object initializer syntax to create a Contact
Contact a = new Contact { Name = "John", Address = "23 Tennis RD" };
But I cannot. Any possible way to make use of the powerful object initializer syntax in this case?
The closest thing would be a constructor with optional parameters:
class Contact
{
public string Name { get; }
public string Address { get; }
public Contact(string name = null, string address = null) {
Name = name;
Address = address;
}
}
Then you can call it with parameter names:
new Contact(
name: "John",
address: "23 Tennis RD"
)
The syntax is slightly different from an object initializer, but it's just as readable; and IMO, the difference is a good thing, because constructor parameters tend to suggest immutable properties. And you can specify the parameters in any order, or leave some out, so it's just as powerful as object initializer syntax.
This does require some extra code (defining the constructor, assigning all the properties), so it's more work than object initializer syntax. But not too terrible, and the value of immutable objects is worth it.
(For what it's worth, C# 7 may get immutable "record types" that have much simpler syntax. These may or may not make it into the final release, but they sound pretty cool.)
This is dated now, but with the release of C# 9 you can use init to achieve the desired functionality.
So your example would become:
class Contract
{
// Read-only properties.
public string Name { get; init; }
public string Address { get; init; }
}
And then you could initialize with:
// success!
Contract a = new Contract { Name = "John", Address = "23 Tennis RD" };
But you would still be unable to modify the parameters after setting them (so effectively they are still readonly).
// error!
a.Name = "Uncle Bob";
Under the hood, when you use object initializer syntax prior to C# 9 the compiler would call the default constructor first, and then set the property values you've specified. Obviously if those properties are readonly (i.e. only a get method), it can't set them. The init only setter allows setting the value only on initialization, either via a constructor method or object initializer syntax.
More info is available here: https://learn.microsoft.com/en-us/dotnet/csharp/whats-new/csharp-9#init-only-setters
Nope, you cannot use it with readonly properties.
Here are the different property and field types in comparism.
public class sometype {
public int readonlyProp{
get;
}
public int normalProp {
get;
set;
}
public const int constField = 3;
public readonly int readonlyField = 3;
public int normalField = 3;
public void test() {
sometype test = new sometype() { readonlyProp = 3}; // Doesn't work -> Property or indexer is readonly
sometype test1 = new sometype() { normalProp = 3 }; // ok
sometype test2 = new sometype() { constField = 3 }; // Doesn't work -> Static field or property
sometype test3 = new sometype() { readonlyField = 3 }; // Doesn't work -> readonly field
sometype test4 = new sometype() { normalField = 3 }; // ok
}
}
It is important to understand that const fields are considered static and thus are not instance members. And since the object initializer is used for instance members this doesn't work.
Object initializer will first construct the object, then set property values.
It needs setters.
It's short hand for:
Contact a = new Contact();
a.Name = "John";
a.Address = "23 Tennis RD";
A readonly field can't have it's values set once the object has been constructed. To have that class immutable, you'll need to create a constructor to take those values:
class Contact // Immutable class
{
// Read-only properties.
public string Name { get; }
public string Address { get; }
public Contact(string name, string address)
{
this.Name = name;
this.Address = address;
}
}
How do you give a C# auto-property an initial value?
I either use the constructor, or revert to the old syntax.
Using the Constructor:
class Person
{
public Person()
{
Name = "Initial Name";
}
public string Name { get; set; }
}
Using normal property syntax (with an initial value)
private string name = "Initial Name";
public string Name
{
get
{
return name;
}
set
{
name = value;
}
}
Is there a better way?
In C# 5 and earlier, to give auto implemented properties an initial value, you have to do it in a constructor.
Since C# 6.0, you can specify initial value in-line. The syntax is:
public int X { get; set; } = x; // C# 6 or higher
DefaultValueAttribute is intended to be used by the VS designer (or any other consumer) to specify a default value, not an initial value. (Even if in designed object, initial value is the default value).
At compile time DefaultValueAttribute will not impact the generated IL and it will not be read to initialize the property to that value (see DefaultValue attribute is not working with my Auto Property).
Example of attributes that impact the IL are ThreadStaticAttribute, CallerMemberNameAttribute, ...
Edited on 1/2/15
C# 6 :
With C# 6 you can initialize auto-properties directly (finally!), there are now other answers that describe that.
C# 5 and below:
Though the intended use of the attribute is not to actually set the values of the properties, you can use reflection to always set them anyway...
public class DefaultValuesTest
{
public DefaultValuesTest()
{
foreach (PropertyDescriptor property in TypeDescriptor.GetProperties(this))
{
DefaultValueAttribute myAttribute = (DefaultValueAttribute)property.Attributes[typeof(DefaultValueAttribute)];
if (myAttribute != null)
{
property.SetValue(this, myAttribute.Value);
}
}
}
public void DoTest()
{
var db = DefaultValueBool;
var ds = DefaultValueString;
var di = DefaultValueInt;
}
[System.ComponentModel.DefaultValue(true)]
public bool DefaultValueBool { get; set; }
[System.ComponentModel.DefaultValue("Good")]
public string DefaultValueString { get; set; }
[System.ComponentModel.DefaultValue(27)]
public int DefaultValueInt { get; set; }
}
When you inline an initial value for a variable it will be done implicitly in the constructor anyway.
I would argue that this syntax was best practice in C# up to 5:
class Person
{
public Person()
{
//do anything before variable assignment
//assign initial values
Name = "Default Name";
//do anything after variable assignment
}
public string Name { get; set; }
}
As this gives you clear control of the order values are assigned.
As of C#6 there is a new way:
public string Name { get; set; } = "Default Name";
Sometimes I use this, if I don't want it to be actually set and persisted in my db:
class Person
{
private string _name;
public string Name
{
get
{
return string.IsNullOrEmpty(_name) ? "Default Name" : _name;
}
set { _name = value; }
}
}
Obviously if it's not a string then I might make the object nullable ( double?, int? ) and check if it's null, return a default, or return the value it's set to.
Then I can make a check in my repository to see if it's my default and not persist, or make a backdoor check in to see the true status of the backing value, before saving.
In C# 6.0 this is a breeze!
You can do it in the Class declaration itself, in the property declaration statements.
public class Coordinate
{
public int X { get; set; } = 34; // get or set auto-property with initializer
public int Y { get; } = 89; // read-only auto-property with initializer
public int Z { get; } // read-only auto-property with no initializer
// so it has to be initialized from constructor
public Coordinate() // .ctor()
{
Z = 42;
}
}
Starting with C# 6.0, We can assign default value to auto-implemented properties.
public string Name { get; set; } = "Some Name";
We can also create read-only auto implemented property like:
public string Name { get; } = "Some Name";
See: C# 6: First reactions , Initializers for automatically implemented properties - By Jon Skeet
In Version of C# (6.0) & greater, you can do :
For Readonly properties
public int ReadOnlyProp => 2;
For both Writable & Readable properties
public string PropTest { get; set; } = "test";
In current Version of C# (7.0), you can do : (The snippet rather displays how you can use expression bodied get/set accessors to make is more compact when using with backing fields)
private string label = "Default Value";
// Expression-bodied get / set accessors.
public string Label
{
get => label;
set => this.label = value;
}
In C# 9.0 was added support of init keyword - very useful and extremly sophisticated way for declaration read-only auto-properties:
Declare:
class Person
{
public string Name { get; init; } = "Anonymous user";
}
~Enjoy~ Use:
// 1. Person with default name
var anonymous = new Person();
Console.WriteLine($"Hello, {anonymous.Name}!");
// > Hello, Anonymous user!
// 2. Person with assigned value
var me = new Person { Name = "#codez0mb1e"};
Console.WriteLine($"Hello, {me.Name}!");
// > Hello, #codez0mb1e!
// 3. Attempt to re-assignment Name
me.Name = "My fake";
// > Compilation error: Init-only property can only be assigned in an object initializer
In addition to the answer already accepted, for the scenario when you want to define a default property as a function of other properties you can use expression body notation on C#6.0 (and higher) for even more elegant and concise constructs like:
public class Person{
public string FullName => $"{First} {Last}"; // expression body notation
public string First { get; set; } = "First";
public string Last { get; set; } = "Last";
}
You can use the above in the following fashion
var p = new Person();
p.FullName; // First Last
p.First = "Jon";
p.Last = "Snow";
p.FullName; // Jon Snow
In order to be able to use the above "=>" notation, the property must be read only, and you do not use the get accessor keyword.
Details on MSDN
In C# 6 and above you can simply use the syntax:
public object Foo { get; set; } = bar;
Note that to have a readonly property simply omit the set, as so:
public object Foo { get; } = bar;
You can also assign readonly auto-properties from the constructor.
Prior to this I responded as below.
I'd avoid adding a default to the constructor; leave that for dynamic assignments and avoid having two points at which the variable is assigned (i.e. the type default and in the constructor). Typically I'd simply write a normal property in such cases.
One other option is to do what ASP.Net does and define defaults via an attribute:
http://msdn.microsoft.com/en-us/library/system.componentmodel.defaultvalueattribute.aspx
My solution is to use a custom attribute that provides default value property initialization by constant or using property type initializer.
[AttributeUsage(AttributeTargets.Property, AllowMultiple = false, Inherited = true)]
public class InstanceAttribute : Attribute
{
public bool IsConstructorCall { get; private set; }
public object[] Values { get; private set; }
public InstanceAttribute() : this(true) { }
public InstanceAttribute(object value) : this(false, value) { }
public InstanceAttribute(bool isConstructorCall, params object[] values)
{
IsConstructorCall = isConstructorCall;
Values = values ?? new object[0];
}
}
To use this attribute it's necessary to inherit a class from special base class-initializer or use a static helper method:
public abstract class DefaultValueInitializer
{
protected DefaultValueInitializer()
{
InitializeDefaultValues(this);
}
public static void InitializeDefaultValues(object obj)
{
var props = from prop in obj.GetType().GetProperties()
let attrs = prop.GetCustomAttributes(typeof(InstanceAttribute), false)
where attrs.Any()
select new { Property = prop, Attr = ((InstanceAttribute)attrs.First()) };
foreach (var pair in props)
{
object value = !pair.Attr.IsConstructorCall && pair.Attr.Values.Length > 0
? pair.Attr.Values[0]
: Activator.CreateInstance(pair.Property.PropertyType, pair.Attr.Values);
pair.Property.SetValue(obj, value, null);
}
}
}
Usage example:
public class Simple : DefaultValueInitializer
{
[Instance("StringValue")]
public string StringValue { get; set; }
[Instance]
public List<string> Items { get; set; }
[Instance(true, 3,4)]
public Point Point { get; set; }
}
public static void Main(string[] args)
{
var obj = new Simple
{
Items = {"Item1"}
};
Console.WriteLine(obj.Items[0]);
Console.WriteLine(obj.Point);
Console.WriteLine(obj.StringValue);
}
Output:
Item1
(X=3,Y=4)
StringValue
little complete sample:
using System.ComponentModel;
private bool bShowGroup ;
[Description("Show the group table"), Category("Sea"),DefaultValue(true)]
public bool ShowGroup
{
get { return bShowGroup; }
set { bShowGroup = value; }
}
You can simple put like this
public sealed class Employee
{
public int Id { get; set; } = 101;
}
In the constructor. The constructor's purpose is to initialized it's data members.
private string name;
public string Name
{
get
{
if(name == null)
{
name = "Default Name";
}
return name;
}
set
{
name = value;
}
}
Have you tried using the DefaultValueAttribute or ShouldSerialize and Reset methods in conjunction with the constructor? I feel like one of these two methods is necessary if you're making a class that might show up on the designer surface or in a property grid.
Use the constructor because "When the constructor is finished, Construction should be finished". properties are like states your classes hold, if you had to initialize a default state, you would do that in your constructor.
To clarify, yes, you need to set default values in the constructor for class derived objects. You will need to ensure the constructor exists with the proper access modifier for construction where used. If the object is not instantiated, e.g. it has no constructor (e.g. static methods) then the default value can be set by the field. The reasoning here is that the object itself will be created only once and you do not instantiate it.
#Darren Kopp - good answer, clean, and correct. And to reiterate, you CAN write constructors for Abstract methods. You just need to access them from the base class when writing the constructor:
Constructor at Base Class:
public BaseClassAbstract()
{
this.PropertyName = "Default Name";
}
Constructor at Derived / Concrete / Sub-Class:
public SubClass() : base() { }
The point here is that the instance variable drawn from the base class may bury your base field name. Setting the current instantiated object value using "this." will allow you to correctly form your object with respect to the current instance and required permission levels (access modifiers) where you are instantiating it.
public Class ClassName{
public int PropName{get;set;}
public ClassName{
PropName=0; //Default Value
}
}
This is old now, and my position has changed. I'm leaving the original answer for posterity only.
Personally, I don't see the point of making it a property at all if you're not going to do anything at all beyond the auto-property. Just leave it as a field. The encapsulation benefit for these item are just red herrings, because there's nothing behind them to encapsulate. If you ever need to change the underlying implementation you're still free to refactor them as properties without breaking any dependent code.
Hmm... maybe this will be the subject of it's own question later
class Person
{
/// Gets/sets a value indicating whether auto
/// save of review layer is enabled or not
[System.ComponentModel.DefaultValue(true)]
public bool AutoSaveReviewLayer { get; set; }
}
I know this is an old question, but it came up when I was looking for how to have a default value that gets inherited with the option to override, I came up with
//base class
public class Car
{
public virtual string FuelUnits
{
get { return "gasoline in gallons"; }
protected set { }
}
}
//derived
public class Tesla : Car
{
public override string FuelUnits => "ampere hour";
}
I think this would do it for ya givng SomeFlag a default of false.
private bool _SomeFlagSet = false;
public bool SomeFlag
{
get
{
if (!_SomeFlagSet)
SomeFlag = false;
return SomeFlag;
}
set
{
if (!_SomeFlagSet)
_SomeFlagSet = true;
SomeFlag = value;
}
}