Tasks never complete when ContinueWhenAll and TaskCompletionSource - c#

I'm trying to force load an async datasource but wait for it synchronously so it works with legacy code (Using .net4.0).
If I create several Tasks, in excess of 1000 with a TaskCompletionSource and comment out the ContinueWhenAll, eventually each task completes as expected asynchronously. However when I introduce ContinueWhenAll I'm only ever able to set the TaskCompletionSource on one task.
Is it possible to make the following wait until all TaskCompletionSource are set and then escape from the LoadAllRows method?
Any help would be appreciated,
Cheers
public void LoadAllRows()
{
var allLoaded = false;
var tasks = new List<Task<bool>>();
for (var i = 0; i <= mDataRowCount; i++)
tasks.Add(EnsureRowLoaded(mDataController, i));
Task.Factory.ContinueWhenAll(tasks.ToArray(), (antecendents) =>
{
//Check all loaded here
}).Wait();
if (!allLoaded)
{
//Throw some exception
}
}
private Task<bool> EnsureRowLoaded(AsyncServerModeDataController dataController, int rowHandle)
{
var tcs = new TaskCompletionSource<bool>();
//Async method with callback setting the tcs result
dataController.EnsureRowLoaded(rowHandle, o => tcs.SetResult(true));
return tcs.Task;
}

Related

Async method somehow yields control when it shouldn't

Consider the code below
static void Main(string[] args)
{
var ts = new CancellationTokenSource();
CancellationToken ct = ts.Token;
Task<string> task = Task.Run(() =>
{
ct.ThrowIfCancellationRequested();
var task2 = ActualAsyncTask();
while (!task2.IsCompleted)
{
var t = DateTime.Now;
while (DateTime.Now - t < TimeSpan.FromSeconds(1))
{
}
ct.ThrowIfCancellationRequested();
}
return task2;
}, ct);
Console.ReadLine();
ts.Cancel();
Console.ReadLine();
}
static async Task<string> ActualAsyncTask()
{
await Task.Delay(1000);
for(int i = 0; i < 100; ++i)
{
var t = DateTime.Now;
while (DateTime.Now - t < TimeSpan.FromSeconds(1))
{
}
Console.WriteLine("tick");
}
return "success";
}
It spawns a task that busy-waits for a cancellation request while an asynchronous method also busy-waits and prints some text into console.
When you let it run for a few seconds and then press enter, the task will throw the cancellation exception. While it's an interesting trick, I don't understand how the async method is able to yield control and make it possible.
Both the anonymous lambda within the task and the asynchronous method report to run on the same worker thread, which means they should be synchronous. In my understanding this setup should not throw the cancellation exception past the first 1 second await, because past that point there are no more awaits to allow the while loop of the anonymous lambda to gain control of the thread flow, yet somehow they seemingly both run in parallel using one thread.
If I remove the await command entirely, the execution becomes as expected - sending a cancellation request no longer interrupts the task. What am I missing?

How to cancel the running task method without specify any code inside the task method in C# [duplicate]

I'm playing with these Windows 8 WinRT tasks, and I'm trying to cancel a task using the method below, and it works to some point. The CancelNotification method DOES get called, which makes you think the task was cancelled, but in the background the task keeps running, then after it's completed, the status of the Task is always completed and never cancelled. Is there a way to completely halt the task when it's cancelled?
private async void TryTask()
{
CancellationTokenSource source = new CancellationTokenSource();
source.Token.Register(CancelNotification);
source.CancelAfter(TimeSpan.FromSeconds(1));
var task = Task<int>.Factory.StartNew(() => slowFunc(1, 2), source.Token);
await task;
if (task.IsCompleted)
{
MessageDialog md = new MessageDialog(task.Result.ToString());
await md.ShowAsync();
}
else
{
MessageDialog md = new MessageDialog("Uncompleted");
await md.ShowAsync();
}
}
private int slowFunc(int a, int b)
{
string someString = string.Empty;
for (int i = 0; i < 200000; i++)
{
someString += "a";
}
return a + b;
}
private void CancelNotification()
{
}
Read up on Cancellation (which was introduced in .NET 4.0 and is largely unchanged since then) and the Task-Based Asynchronous Pattern, which provides guidelines on how to use CancellationToken with async methods.
To summarize, you pass a CancellationToken into each method that supports cancellation, and that method must check it periodically.
private async Task TryTask()
{
CancellationTokenSource source = new CancellationTokenSource();
source.CancelAfter(TimeSpan.FromSeconds(1));
Task<int> task = Task.Run(() => slowFunc(1, 2, source.Token), source.Token);
// (A canceled task will raise an exception when awaited).
await task;
}
private int slowFunc(int a, int b, CancellationToken cancellationToken)
{
string someString = string.Empty;
for (int i = 0; i < 200000; i++)
{
someString += "a";
if (i % 1000 == 0)
cancellationToken.ThrowIfCancellationRequested();
}
return a + b;
}
Or, in order to avoid modifying slowFunc (say you don't have access to the source code for instance):
var source = new CancellationTokenSource(); //original code
source.Token.Register(CancelNotification); //original code
source.CancelAfter(TimeSpan.FromSeconds(1)); //original code
var completionSource = new TaskCompletionSource<object>(); //New code
source.Token.Register(() => completionSource.TrySetCanceled()); //New code
var task = Task<int>.Factory.StartNew(() => slowFunc(1, 2), source.Token); //original code
//original code: await task;
await Task.WhenAny(task, completionSource.Task); //New code
You can also use nice extension methods from https://github.com/StephenCleary/AsyncEx and have it looks as simple as:
await Task.WhenAny(task, source.Token.AsTask());
One case which hasn't been covered is how to handle cancellation inside of an async method. Take for example a simple case where you need to upload some data to a service get it to calculate something and then return some results.
public async Task<Results> ProcessDataAsync(MyData data)
{
var client = await GetClientAsync();
await client.UploadDataAsync(data);
await client.CalculateAsync();
return await client.GetResultsAsync();
}
If you want to support cancellation then the easiest way would be to pass in a token and check if it has been cancelled between each async method call (or using ContinueWith). If they are very long running calls though you could be waiting a while to cancel. I created a little helper method to instead fail as soon as canceled.
public static class TaskExtensions
{
public static async Task<T> WaitOrCancel<T>(this Task<T> task, CancellationToken token)
{
token.ThrowIfCancellationRequested();
await Task.WhenAny(task, token.WhenCanceled());
token.ThrowIfCancellationRequested();
return await task;
}
public static Task WhenCanceled(this CancellationToken cancellationToken)
{
var tcs = new TaskCompletionSource<bool>();
cancellationToken.Register(s => ((TaskCompletionSource<bool>)s).SetResult(true), tcs);
return tcs.Task;
}
}
So to use it then just add .WaitOrCancel(token) to any async call:
public async Task<Results> ProcessDataAsync(MyData data, CancellationToken token)
{
Client client;
try
{
client = await GetClientAsync().WaitOrCancel(token);
await client.UploadDataAsync(data).WaitOrCancel(token);
await client.CalculateAsync().WaitOrCancel(token);
return await client.GetResultsAsync().WaitOrCancel(token);
}
catch (OperationCanceledException)
{
if (client != null)
await client.CancelAsync();
throw;
}
}
Note that this will not stop the Task you were waiting for and it will continue running. You'll need to use a different mechanism to stop it, such as the CancelAsync call in the example, or better yet pass in the same CancellationToken to the Task so that it can handle the cancellation eventually. Trying to abort the thread isn't recommended.
I just want to add to the already accepted answer. I was stuck on this, but I was going a different route on handling the complete event. Rather than running await, I add a completed handler to the task.
Comments.AsAsyncAction().Completed += new AsyncActionCompletedHandler(CommentLoadComplete);
Where the event handler looks like this
private void CommentLoadComplete(IAsyncAction sender, AsyncStatus status )
{
if (status == AsyncStatus.Canceled)
{
return;
}
CommentsItemsControl.ItemsSource = Comments.Result;
CommentScrollViewer.ScrollToVerticalOffset(0);
CommentScrollViewer.Visibility = Visibility.Visible;
CommentProgressRing.Visibility = Visibility.Collapsed;
}
With this route, all the handling is already done for you, when the task is cancelled it just triggers the event handler and you can see if it was cancelled there.

How to Terminate a never ending Task in C#? [duplicate]

I'm playing with these Windows 8 WinRT tasks, and I'm trying to cancel a task using the method below, and it works to some point. The CancelNotification method DOES get called, which makes you think the task was cancelled, but in the background the task keeps running, then after it's completed, the status of the Task is always completed and never cancelled. Is there a way to completely halt the task when it's cancelled?
private async void TryTask()
{
CancellationTokenSource source = new CancellationTokenSource();
source.Token.Register(CancelNotification);
source.CancelAfter(TimeSpan.FromSeconds(1));
var task = Task<int>.Factory.StartNew(() => slowFunc(1, 2), source.Token);
await task;
if (task.IsCompleted)
{
MessageDialog md = new MessageDialog(task.Result.ToString());
await md.ShowAsync();
}
else
{
MessageDialog md = new MessageDialog("Uncompleted");
await md.ShowAsync();
}
}
private int slowFunc(int a, int b)
{
string someString = string.Empty;
for (int i = 0; i < 200000; i++)
{
someString += "a";
}
return a + b;
}
private void CancelNotification()
{
}
Read up on Cancellation (which was introduced in .NET 4.0 and is largely unchanged since then) and the Task-Based Asynchronous Pattern, which provides guidelines on how to use CancellationToken with async methods.
To summarize, you pass a CancellationToken into each method that supports cancellation, and that method must check it periodically.
private async Task TryTask()
{
CancellationTokenSource source = new CancellationTokenSource();
source.CancelAfter(TimeSpan.FromSeconds(1));
Task<int> task = Task.Run(() => slowFunc(1, 2, source.Token), source.Token);
// (A canceled task will raise an exception when awaited).
await task;
}
private int slowFunc(int a, int b, CancellationToken cancellationToken)
{
string someString = string.Empty;
for (int i = 0; i < 200000; i++)
{
someString += "a";
if (i % 1000 == 0)
cancellationToken.ThrowIfCancellationRequested();
}
return a + b;
}
Or, in order to avoid modifying slowFunc (say you don't have access to the source code for instance):
var source = new CancellationTokenSource(); //original code
source.Token.Register(CancelNotification); //original code
source.CancelAfter(TimeSpan.FromSeconds(1)); //original code
var completionSource = new TaskCompletionSource<object>(); //New code
source.Token.Register(() => completionSource.TrySetCanceled()); //New code
var task = Task<int>.Factory.StartNew(() => slowFunc(1, 2), source.Token); //original code
//original code: await task;
await Task.WhenAny(task, completionSource.Task); //New code
You can also use nice extension methods from https://github.com/StephenCleary/AsyncEx and have it looks as simple as:
await Task.WhenAny(task, source.Token.AsTask());
One case which hasn't been covered is how to handle cancellation inside of an async method. Take for example a simple case where you need to upload some data to a service get it to calculate something and then return some results.
public async Task<Results> ProcessDataAsync(MyData data)
{
var client = await GetClientAsync();
await client.UploadDataAsync(data);
await client.CalculateAsync();
return await client.GetResultsAsync();
}
If you want to support cancellation then the easiest way would be to pass in a token and check if it has been cancelled between each async method call (or using ContinueWith). If they are very long running calls though you could be waiting a while to cancel. I created a little helper method to instead fail as soon as canceled.
public static class TaskExtensions
{
public static async Task<T> WaitOrCancel<T>(this Task<T> task, CancellationToken token)
{
token.ThrowIfCancellationRequested();
await Task.WhenAny(task, token.WhenCanceled());
token.ThrowIfCancellationRequested();
return await task;
}
public static Task WhenCanceled(this CancellationToken cancellationToken)
{
var tcs = new TaskCompletionSource<bool>();
cancellationToken.Register(s => ((TaskCompletionSource<bool>)s).SetResult(true), tcs);
return tcs.Task;
}
}
So to use it then just add .WaitOrCancel(token) to any async call:
public async Task<Results> ProcessDataAsync(MyData data, CancellationToken token)
{
Client client;
try
{
client = await GetClientAsync().WaitOrCancel(token);
await client.UploadDataAsync(data).WaitOrCancel(token);
await client.CalculateAsync().WaitOrCancel(token);
return await client.GetResultsAsync().WaitOrCancel(token);
}
catch (OperationCanceledException)
{
if (client != null)
await client.CancelAsync();
throw;
}
}
Note that this will not stop the Task you were waiting for and it will continue running. You'll need to use a different mechanism to stop it, such as the CancelAsync call in the example, or better yet pass in the same CancellationToken to the Task so that it can handle the cancellation eventually. Trying to abort the thread isn't recommended.
I just want to add to the already accepted answer. I was stuck on this, but I was going a different route on handling the complete event. Rather than running await, I add a completed handler to the task.
Comments.AsAsyncAction().Completed += new AsyncActionCompletedHandler(CommentLoadComplete);
Where the event handler looks like this
private void CommentLoadComplete(IAsyncAction sender, AsyncStatus status )
{
if (status == AsyncStatus.Canceled)
{
return;
}
CommentsItemsControl.ItemsSource = Comments.Result;
CommentScrollViewer.ScrollToVerticalOffset(0);
CommentScrollViewer.Visibility = Visibility.Visible;
CommentProgressRing.Visibility = Visibility.Collapsed;
}
With this route, all the handling is already done for you, when the task is cancelled it just triggers the event handler and you can see if it was cancelled there.

How to handle task cancellation in the TPL

Good day! I am writing a helper library for WinForms UI. Started using TPL async/await mechanism and got a problem with this kind of code example :
private SynchronizationContext _context;
public void UpdateUI(Action action)
{
_context.Post(delegate { action(); }, null);
}
private async void button2_Click(object sender, EventArgs e)
{
var taskAwait = 4000;
var progressRefresh = 200;
var cancellationSource = new System.Threading.CancellationTokenSource();
await Task.Run(() => { UpdateUI(() => { button2.Text = "Processing..."; }); });
Action usefulWork = () =>
{
try
{
Thread.Sleep(taskAwait);
cancellationSource.Cancel();
}
catch { }
};
Action progressUpdate = () =>
{
int i = 0;
while (i < 10)
{
UpdateUI(() => { button2.Text = "Processing " + i.ToString(); });
Thread.Sleep(progressRefresh);
i++;
}
cancellationSource.Cancel();
};
var usefulWorkTask = new Task(usefulWork, cancellationSource.Token);
var progressUpdateTask = new Task(progressUpdate, cancellationSource.Token);
try
{
cancellationSource.Token.ThrowIfCancellationRequested();
Task tWork = Task.Factory.StartNew(usefulWork, cancellationSource.Token);
Task tProgress = Task.Factory.StartNew(progressUpdate, cancellationSource.Token);
await Task.Run(() =>
{
try
{
var res = Task.WaitAny(new[] { tWork, tProgress }, cancellationSource.Token);
}
catch { }
}).ConfigureAwait(false);
}
catch (Exception ex)
{
}
await Task.Run(() => { UpdateUI(() => { button2.Text = "button2"; }); });
}
Basically, the idea is to run two parallel tasks - one is for, say, progress bar or whatever update and a sort of timeout controller, the other is the long running task itself. Whichever task finishes first cancels the other one. So, there should not be a problem to cancel the "progress" task as it has a loop in which I can check if task is marked cancelled. The problem is with the long running one. It could be Thread.Sleep() or SqlConnection.Open(). When I run CancellationSource.Cancel(), the long running task keeps working and does not cancel. After a timeout I am not interested in long running task or whatever it may result in.
As the cluttered code example may suggest, I have tried a bunch of variants and none given me a desired effect. Something like Task.WaitAny() freezes UI... Is there a way to make that cancellation work or may be even a different approach to code these things?
UPD:
public static class Taskhelpers
{
public static async Task<T> WithCancellation<T>(this Task<T> task, CancellationToken cancellationToken)
{
var tcs = new TaskCompletionSource<bool>();
using (cancellationToken.Register(s => ((TaskCompletionSource<bool>)s).TrySetResult(true), tcs))
{
if (task != await Task.WhenAny(task, tcs.Task))
throw new OperationCanceledException(cancellationToken);
}
return await task;
}
public static async Task WithCancellation(this Task task, CancellationToken cancellationToken)
{
var tcs = new TaskCompletionSource<bool>();
using (cancellationToken.Register(s => ((TaskCompletionSource<bool>)s).TrySetResult(true), tcs))
{
if (task != await Task.WhenAny(task, tcs.Task))
throw new OperationCanceledException(cancellationToken);
}
await task;
}
}
.....
var taskAwait = 4000;
var progressRefresh = 200;
var cancellationSource = new System.Threading.CancellationTokenSource();
var cancellationToken = cancellationSource.Token;
var usefulWorkTask = Task.Run(async () =>
{
try
{
System.Diagnostics.Trace.WriteLine("WORK : started");
await Task.Delay(taskAwait).WithCancellation(cancellationToken);
System.Diagnostics.Trace.WriteLine("WORK : finished");
}
catch (OperationCanceledException) { } // just drop out if got cancelled
catch (Exception ex)
{
System.Diagnostics.Trace.WriteLine("WORK : unexpected error : " + ex.Message);
}
}, cancellationToken);
var progressUpdatetask = Task.Run(async () =>
{
for (var i = 0; i < 25; i++)
{
if (!cancellationToken.IsCancellationRequested)
{
System.Diagnostics.Trace.WriteLine("==== : " + i.ToString());
await Task.Delay(progressRefresh);
}
}
},cancellationToken);
await Task.WhenAny(usefulWorkTask, progressUpdatetask);
cancellationSource.Cancel();
By modifying for (var i = 0; i < 25; i++) limit of i I imitate whether long running task finishes before the progress task or otherwise. Works as desired. The WithCancellation helper method does the job, although two sort of 'nested' Task.WhenAny look suspicious for now.
I agree with all the points in Paulo's answer - namely, use modern solutions (Task.Run instead of Task.Factory.StartNew, Progress<T> for progress updates instead of manually posting to the SynchronizationContext, Task.WhenAny instead of Task.WaitAny for asynchronous code).
But to answer the actual question:
When I run CancellationSource.Cancel(), the long running task keeps working and does not cancel. After a timeout I am not interested in long running task or whatever it may result in.
There are two parts to this:
How do I write code that responds to a cancellation request?
How do I write code that ignores any responses after the cancellation?
Note that the first part deals with cancelling the operation, and the second part is actually dealing with cancelling the waiting for the operation to complete.
First things first: support cancellation in the operation itself. For CPU-bound code (i.e., running a loop), periodically call token.ThrowIfCancellationRequested(). For I/O-bound code, the best option is to pass the token down to the next API layer - most (but not all) I/O APIs can (should) take cancellation tokens. If this isn't an option, then you can either choose to ignore the cancellation, or you can register a cancellation callback with token.Register. Sometimes there's a separate cancellation method you can call from your Register callback, and sometimes you can make it work by disposing the object from the callback (this approach often works because of a long-standing Win32 API tradition of cancelling all I/O for a handle when that handle is closed). I'm not sure if this will work for SqlConnection.Open, though.
Next, cancelling the wait. This one is relatively simple if you just want to cancel the wait due to a timeout:
await Task.WhenAny(tWork, tProgress, Task.Delay(5000));
When you write something like await Task.Run(() => { UpdateUI(() => { button2.Text = "Processing..."; }); }); on your button2_Click, you are, from the UI thread, scheduling an action to a thread poll thread that posts an action to the UI thread. If you called the action directly, it would be quickier because it wouldn't have two context switchings.
ConfigureAwait(false) causes the synchronization context to not being captured. I should not be used inside UI methods because, you most certainely, want to do some UI work on the continuation.
You shouldn't use Task.Factory.StartNew instead of Task.Run unless you absolutely have a reason to. See this and this.
For progress updates, consider using the Progress<T> class, because it captures the synchronization context.
Maybe you should try something like this:
private async void button2_Click(object sender, EventArgs e)
{
var taskAwait = 4000;
var cancellationSource = new CancellationTokenSource();
var cancellationToken = cancellationSource.Token;
button2.Text = "Processing...";
var usefullWorkTask = Task.Run(async () =>
{
try
{
await Task.Dealy(taskAwait);
}
catch { }
},
cancellationToken);
var progress = new Progress<imt>(i => {
button2.Text = "Processing " + i.ToString();
});
var progressUpdateTask = Task.Run(async () =>
{
for(var i = 0; i < 10; i++)
{
progress.Report(i);
}
},
cancellationToken);
await Task.WhenAny(usefullWorkTask, progressUpdateTask);
cancellationSource.Cancel();
}
I think you need to check IsCancellationRequested in the progressUpdate Action.
As to how to do what you want, this blog discusses an Extension method WithCancellation that will make it so that you stop waiting for your long running task.

Asynchronous Task.WhenAll with timeout

Is there a way in the new async dotnet 4.5 library to set a timeout on the Task.WhenAll method? I want to fetch several sources, and stop after say 5 seconds, and skip the sources that weren't finished.
You could combine the resulting Task with a Task.Delay() using Task.WhenAny():
await Task.WhenAny(Task.WhenAll(tasks), Task.Delay(timeout));
If you want to harvest completed tasks in case of a timeout:
var completedResults =
tasks
.Where(t => t.Status == TaskStatus.RanToCompletion)
.Select(t => t.Result)
.ToList();
I think a clearer, more robust option that also does exception handling right would be to use Task.WhenAny on each task together with a timeout task, go through all the completed tasks and filter out the timeout ones, and use await Task.WhenAll() instead of Task.Result to gather all the results.
Here's a complete working solution:
static async Task<TResult[]> WhenAll<TResult>(IEnumerable<Task<TResult>> tasks, TimeSpan timeout)
{
var timeoutTask = Task.Delay(timeout).ContinueWith(_ => default(TResult));
var completedTasks =
(await Task.WhenAll(tasks.Select(task => Task.WhenAny(task, timeoutTask)))).
Where(task => task != timeoutTask);
return await Task.WhenAll(completedTasks);
}
Check out the "Early Bailout" and "Task.Delay" sections from Microsoft's Consuming the Task-based Asynchronous Pattern.
Early bailout. An operation represented by t1 can be grouped in a
WhenAny with another task t2, and we can wait on the WhenAny task. t2
could represent a timeout, or cancellation, or some other signal that
will cause the WhenAny task to complete prior to t1 completing.
What you describe seems like a very common demand however I could not find anywhere an example of this. And I searched a lot... I finally created the following:
TimeSpan timeout = TimeSpan.FromSeconds(5.0);
Task<Task>[] tasksOfTasks =
{
Task.WhenAny(SomeTaskAsync("a"), Task.Delay(timeout)),
Task.WhenAny(SomeTaskAsync("b"), Task.Delay(timeout)),
Task.WhenAny(SomeTaskAsync("c"), Task.Delay(timeout))
};
Task[] completedTasks = await Task.WhenAll(tasksOfTasks);
List<MyResult> = completedTasks.OfType<Task<MyResult>>().Select(task => task.Result).ToList();
I assume here a method SomeTaskAsync that returns Task<MyResult>.
From the members of completedTasks, only tasks of type MyResult are our own tasks that managed to beat the clock. Task.Delay returns a different type.
This requires some compromise on typing, but still works beautifully and quite simple.
(The array can of course be built dynamically using a query + ToArray).
Note that this implementation does not require SomeTaskAsync to receive a cancellation token.
In addition to timeout, I also check the cancellation which is useful if you are building a web app.
public static async Task WhenAll(
IEnumerable<Task> tasks,
int millisecondsTimeOut,
CancellationToken cancellationToken)
{
using(Task timeoutTask = Task.Delay(millisecondsTimeOut))
using(Task cancellationMonitorTask = Task.Delay(-1, cancellationToken))
{
Task completedTask = await Task.WhenAny(
Task.WhenAll(tasks),
timeoutTask,
cancellationMonitorTask
);
if (completedTask == timeoutTask)
{
throw new TimeoutException();
}
if (completedTask == cancellationMonitorTask)
{
throw new OperationCanceledException();
}
await completedTask;
}
}
Check out a custom task combinator proposed in http://tutorials.csharp-online.net/Task_Combinators
async static Task<TResult> WithTimeout<TResult>
(this Task<TResult> task, TimeSpan timeout)
{
Task winner = await (Task.WhenAny
(task, Task.Delay (timeout)));
if (winner != task) throw new TimeoutException();
return await task; // Unwrap result/re-throw
}
I have not tried it yet.
void result version of #i3arnon 's answer, along with comments and changing first argument to use extension this.
I've also got a forwarding method specifying timeout as an int using TimeSpan.FromMilliseconds(millisecondsTimeout) to match other Task methods.
public static async Task WhenAll(this IEnumerable<Task> tasks, TimeSpan timeout)
{
// Create a timeout task.
var timeoutTask = Task.Delay(timeout);
// Get the completed tasks made up of...
var completedTasks =
(
// ...all tasks specified
await Task.WhenAll(tasks
// Now finish when its task has finished or the timeout task finishes
.Select(task => Task.WhenAny(task, timeoutTask)))
)
// ...but not the timeout task
.Where(task => task != timeoutTask);
// And wait for the internal WhenAll to complete.
await Task.WhenAll(completedTasks);
}
Seems like the Task.WaitAll overload with the timeout parameter is all you need - if it returns true, then you know they all completed - otherwise, you can filter on IsCompleted.
if (Task.WaitAll(tasks, myTimeout) == false)
{
tasks = tasks.Where(t => t.IsCompleted);
}
...
I came to the following piece of code that does what I needed:
using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using System.Net.Http;
using System.Json;
using System.Threading;
namespace MyAsync
{
class Program
{
static void Main(string[] args)
{
var cts = new CancellationTokenSource();
Console.WriteLine("Start Main");
List<Task<List<MyObject>>> listoftasks = new List<Task<List<MyObject>>>();
listoftasks.Add(GetGoogle(cts));
listoftasks.Add(GetTwitter(cts));
listoftasks.Add(GetSleep(cts));
listoftasks.Add(GetxSleep(cts));
List<MyObject>[] arrayofanswers = Task.WhenAll(listoftasks).Result;
List<MyObject> answer = new List<MyObject>();
foreach (List<MyObject> answers in arrayofanswers)
{
answer.AddRange(answers);
}
foreach (MyObject o in answer)
{
Console.WriteLine("{0} - {1}", o.name, o.origin);
}
Console.WriteLine("Press <Enter>");
Console.ReadLine();
}
static async Task<List<MyObject>> GetGoogle(CancellationTokenSource cts)
{
try
{
Console.WriteLine("Start GetGoogle");
List<MyObject> l = new List<MyObject>();
var client = new HttpClient();
Task<HttpResponseMessage> awaitable = client.GetAsync("http://ajax.googleapis.com/ajax/services/search/web?v=1.0&q=broersa", cts.Token);
HttpResponseMessage res = await awaitable;
Console.WriteLine("After GetGoogle GetAsync");
dynamic data = JsonValue.Parse(res.Content.ReadAsStringAsync().Result);
Console.WriteLine("After GetGoogle ReadAsStringAsync");
foreach (var r in data.responseData.results)
{
l.Add(new MyObject() { name = r.titleNoFormatting, origin = "google" });
}
return l;
}
catch (TaskCanceledException)
{
return new List<MyObject>();
}
}
static async Task<List<MyObject>> GetTwitter(CancellationTokenSource cts)
{
try
{
Console.WriteLine("Start GetTwitter");
List<MyObject> l = new List<MyObject>();
var client = new HttpClient();
Task<HttpResponseMessage> awaitable = client.GetAsync("http://search.twitter.com/search.json?q=broersa&rpp=5&include_entities=true&result_type=mixed",cts.Token);
HttpResponseMessage res = await awaitable;
Console.WriteLine("After GetTwitter GetAsync");
dynamic data = JsonValue.Parse(res.Content.ReadAsStringAsync().Result);
Console.WriteLine("After GetTwitter ReadAsStringAsync");
foreach (var r in data.results)
{
l.Add(new MyObject() { name = r.text, origin = "twitter" });
}
return l;
}
catch (TaskCanceledException)
{
return new List<MyObject>();
}
}
static async Task<List<MyObject>> GetSleep(CancellationTokenSource cts)
{
try
{
Console.WriteLine("Start GetSleep");
List<MyObject> l = new List<MyObject>();
await Task.Delay(5000,cts.Token);
l.Add(new MyObject() { name = "Slept well", origin = "sleep" });
return l;
}
catch (TaskCanceledException)
{
return new List<MyObject>();
}
}
static async Task<List<MyObject>> GetxSleep(CancellationTokenSource cts)
{
Console.WriteLine("Start GetxSleep");
List<MyObject> l = new List<MyObject>();
await Task.Delay(2000);
cts.Cancel();
l.Add(new MyObject() { name = "Slept short", origin = "xsleep" });
return l;
}
}
}
My explanation is in my blogpost:
http://blog.bekijkhet.com/2012/03/c-async-examples-whenall-whenany.html
In addition to svick's answer, the following works for me when I have to wait for a couple of tasks to complete but have to process something else while I'm waiting:
Task[] TasksToWaitFor = //Your tasks
TimeSpan Timeout = TimeSpan.FromSeconds( 30 );
while( true )
{
await Task.WhenAny( Task.WhenAll( TasksToWaitFor ), Task.Delay( Timeout ) );
if( TasksToWaitFor.All( a => a.IsCompleted ) )
break;
//Do something else here
}
You can use the following code:
var timeoutTime = 10;
var tasksResult = await Task.WhenAll(
listOfTasks.Select(x => Task.WhenAny(
x, Task.Delay(TimeSpan.FromMinutes(timeoutTime)))
)
);
var succeededtasksResponses = tasksResult
.OfType<Task<MyResult>>()
.Select(task => task.Result);
if (succeededtasksResponses.Count() != listOfTasks.Count())
{
// Not all tasks were completed
// Throw error or do whatever you want
}
//You can use the succeededtasksResponses that contains the list of successful responses
How it works:
You need to put in the timeoutTime variable the limit of time for all tasks to be completed. So basically all tasks will wait in maximum the time that you set in timeoutTime. When all the tasks return the result, the timeout will not occur and the tasksResult will be set.
After that we are only getting the completed tasks. The tasks that were not completed will have no results.
I tried to improve on the excellent i3arnon's solution, in order to fix some minor issues, but I ended up with a completely different implementation. The two issues that I tried to solve are:
In case more than one of the tasks fail, propagate the errors of all failed tasks, and not just the error of the first failed task in the list.
Prevent memory leaks in case all tasks complete much faster than the timeout.
Leaking an active Task.Delay might result in a non-negligible amount of leaked memory, in case the WhenAll is called in a loop, and the timeout is large.
On top of that I added a cancellationToken argument, XML documentation that explains what this method is doing, and argument validation. Here it is:
/// <summary>
/// Returns a task that will complete when all of the tasks have completed,
/// or when the timeout has elapsed, or when the token is canceled, whatever
/// comes first. In case the tasks complete first, the task contains the
/// results/exceptions of all the tasks. In case the timeout elapsed first,
/// the task contains the results/exceptions of the completed tasks only.
/// In case the token is canceled first, the task is canceled. To determine
/// whether a timeout has occured, compare the number of the results with
/// the number of the tasks.
/// </summary>
public static Task<TResult[]> WhenAll<TResult>(
Task<TResult>[] tasks,
TimeSpan timeout, CancellationToken cancellationToken = default)
{
if (tasks == null) throw new ArgumentNullException(nameof(tasks));
tasks = tasks.ToArray(); // Defensive copy
if (tasks.Any(t => t == null)) throw new ArgumentException(
$"The {nameof(tasks)} argument included a null value.", nameof(tasks));
if (timeout < TimeSpan.Zero && timeout != Timeout.InfiniteTimeSpan)
throw new ArgumentOutOfRangeException(nameof(timeout));
if (cancellationToken.IsCancellationRequested)
return Task.FromCanceled<TResult[]>(cancellationToken);
var cts = CancellationTokenSource.CreateLinkedTokenSource(cancellationToken);
cts.CancelAfter(timeout);
var continuationOptions = TaskContinuationOptions.DenyChildAttach |
TaskContinuationOptions.ExecuteSynchronously;
var continuations = tasks.Select(task => task.ContinueWith(_ => { },
cts.Token, continuationOptions, TaskScheduler.Default));
return Task.WhenAll(continuations).ContinueWith(allContinuations =>
{
cts.Dispose();
if (allContinuations.IsCompletedSuccessfully)
return Task.WhenAll(tasks); // No timeout or cancellation occurred
Debug.Assert(allContinuations.IsCanceled);
if (cancellationToken.IsCancellationRequested)
return Task.FromCanceled<TResult[]>(cancellationToken);
// Now we know that timeout has occurred
return Task.WhenAll(tasks.Where(task => task.IsCompleted));
}, default, continuationOptions, TaskScheduler.Default).Unwrap();
}
This WhenAll implementation elides async and await, which is not advisable in general. In this case it is necessary, in order to propagate all the errors in a not nested AggregateException. The intention is to simulate the behavior of the built-in Task.WhenAll method as accurately as possible.
Usage example:
string[] results;
Task<string[]> whenAllTask = WhenAll(tasks, TimeSpan.FromSeconds(15));
try
{
results = await whenAllTask;
}
catch when (whenAllTask.IsFaulted) // It might also be canceled
{
// Log all errors
foreach (var innerEx in whenAllTask.Exception.InnerExceptions)
{
_logger.LogError(innerEx, innerEx.Message);
}
throw; // Propagate the error of the first failed task
}
if (results.Length < tasks.Length) throw new TimeoutException();
return results;
Note: the above API has a design flaw. In case at least one of the tasks has failed or has been canceled, there is no way to determine whether a timeout has occurred. The Exception.InnerExceptions property of the task returned by the WhenAll may contain the exceptions of all tasks, or part of the tasks, and there is no way to say which is which. Unfortunately I can't think of a solution to this problem.

Categories